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ABSTRACT
Low-Power Edge-AI capabilities are essential for on-device ex-
tended reality (XR) applications to support the vision of Metaverse.
In this work, we investigate two representative XR workloads: (i)
Hand detection and (ii) Eye segmentation, for hardware design
space exploration. For both applications, we train deep neural net-
works and analyze the impact of quantization and hardware spe-
cific bottlenecks. Through simulations, we evaluate a CPU and
two systolic inference accelerator implementations. Next, we com-
pare these hardware solutions with advanced technology nodes.
The impact of integrating state-of-the-art emerging non-volatile
memory technology (STT/SOT/VGSOT MRAM) into the XR-AI
inference pipeline is evaluated. We found that significant energy
benefits (≥24%) can be achieved for hand detection (IPS=10) and
eye segmentation (IPS=0.1) by introducing non-volatile memory
in the memory hierarchy for designs at 7nm node while meeting
minimum IPS (inference per second). Moreover, we can realize sub-
stantial reduction in area (≥30%) owing to the small form factor of
MRAM compared to traditional SRAM.
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1 INTRODUCTION
Extended reality (XR), i.e., virtual, augmented, and mixed reality is
fast emerging as a key technology paradigm for the future edge and
mobile systems in the incoming era of Metaverse or Omniverse. XR
technology has awide variety of applications in entertainment, com-
munication, advertising, education, healthcare, defense, robotics,
smart manufacturing, human-machine interaction, etc. XR applica-
tions are becoming more computationally intensive [7] which poses
new challenges for designing portable XR devices and systems.
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Table 1: Projected specs of state-of-the-art XR devices [7].

Metric HTC Ideal Microsoft Ideal
Vive Pro VR HoloLens2 AR

Resolution (MP) 4.6 200 4.4 200
Refresh rate (Hz) 90 90-144 120 90-144
Motion-to-photon

<20 <20 <9 <5latency (ms)
Power (W) N/A 1-2 >7 0.1-0.2

The current generation portable XR devices depend extensively on
high-performance compute servers to perform the heavy-lifting
computation due to limitation on local device’s power, compute
capability, and memory capacity. This approach, however, has disad-
vantages such as (i) patchy and non-seamless user experiences, (ii)
data transfer/network overheads, and (iii) user privacy and security
concerns. Further, the explosive growth and success of techniques
such as deep learning for computer vision have made computation-
ally intensive AI-based techniques a natural use case for future XR
systems [7]. The projected specifications of some current and future
generation XR devices are shown in Table 1 [7]. In certain vision-
based use cases, very high-resolution (∼200 MP) and high frame
rates (>90 Hz) are required at modest power budgets (<1W). In this
study, we perform detailed architectural design-space exploration
and DTCO (design technology co-optimization) for building opti-
mized portable XR systems while tackling some of these concerns.
Our key contributions and the novel aspects are: (i) Two XR-specific
computer vision AI workloads were analyzed: (a) Hand detection
using DetNet with FPHAB dataset and (b) Eye segmentation using
UNet with OpenEDS dataset. Both models were evaluated based
on full precision and post-training quantization. (ii) Benchmarking
of the XR-AI applications was performed on three architectures
including a general-purpose Intel-based CPU architecture and two
systolic accelerator architectures: NVidia’s Simba, and MIT’s Ey-
eriss. (iii) Technology scalability study at process nodes of 28nm,
22nm, and 7nm for all three architectures was conducted and their
respective EDP (energy delay product) trends were investigated.
(iv) Non-volatility was introduced into the XR compute pipeline by
replacing SRAM with emerging MRAM devices (STT/SOT/VGSOT
MRAM) for all three architectures through two variants: (a) P0
(Weight Buffer and Global Weight Buffer replaced by MRAM), (b)
P1 (all memory replaced by MRAM). (v) Compared to SRAM-only
architecture, memory power savings of 27% with area savings of
∼16% were observed for P0 variants. Correspondingly for P1 vari-
ants, memory power savings of 24% and area savings of ∼34% were
observed compared to SRAM-only variants.
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Figure 1: Sample images from datasets: (a) FPHAB and (b) OpenEDS. (c) MobileNetV2 building block (Inverted Residual
Bottelneck [13]). (d) DetNet. (e) EDSNet (UNetmodel +MobileNetV2 Backbone). (f) Training loss evolution. (g) DetNet evaluation,
on sample image, with FP32 and INT8 precision. Red circle shows ground truth and purple shows predicted. (h) EDSNet
evaluation, on sample image, with FP32 and INT8 precision. (i) Trained and quantized weight distributions for both networks.

2 ANALYSIS ON REPRESENTATIVE XR-AI
WORKLOADS

In this section, we present algorithmic approaches for training net-
works used in XR-AI inference workloads of interest followed by
details regarding quantization-based inference optimization. Hand
detection [5, 6] and eye segmentation [4] have been heavily used
as part of VR and AR headset deployment. Segmentation of ocular
biometric traits of the eye region such as pupil, iris, sclera have
been extensively used for studying eye movements as well as per-
forming gaze estimation [4], making it imperative to XR display
designs when optimizing users’ experiences. Similarly, vision-based
hand tracking has been explored and adopted by commercial plat-
forms such as Meta’s Oculus Quest, HTC’s VIVE, and Microsoft’s
Hololens as a convenient and low-friction input for XR devices
to enable a seamless and less strenuous user experience. Hence,
both applications are considered representative by this work for
benchmarking on a variety of compute platforms for XR-AI.

2.1 Dataset Description
FPHAB. Since XR devices employ ego-centric/first-person view,
we use the First Person Hand Action Benchmark (FPHAB) dataset
from [5] for training the hand detection network. The dataset con-
sists 100K frames of 45 daily hand action categories, involving 26
different objects in several hand configurations. Training and vali-
dation sets consist of 52,868 and 52,212 frames, respectively. The
dataset provides annotation in the form of 3D locations of 21 key
joints of a hand estimated using a motion capture glove. When
mapped to a 2D frame, they result in 21 keypoints.
OpenEDS. For eye segmentation applications, we use the OpenEDS
2019 dataset in [4]. OpenEDS was collected from voluntary partic-
ipants of ages between 19 and 65. The dataset contains a total of
12,759 eye images with corresponding annotation masks for key eye
regions such as (a) Eyelid, (b) Iris, and (c) Pupil. The dataset is then
divided into three splits, namely, (i) training (8,916), (ii) validation

(2,403), and (iii) testing (1,440). The sample images from FPHAB
and OpenEDS datasets are illustrated in Fig. 1(a) and Fig. 1(b).

2.2 Network Training and Quantization
All our neural network training experiments were performed us-
ing PyTorch. Optimized neural network architectures such as Mo-
bileNet [13] have been adopted for XR applications, e.g., detecting
hand gestures [6]. A key building block in such architectures known
as inverted residual bottleneck (IRB) is shown in Fig. 1(c). The IRB
helps reduce the memory footprint during inferences by not fully
materializing large intermediate tensors (using depth-wise sepa-
rable convolution, i.e., two layers in place of a single convolution
layer), thus reducing the frequency of main memory accesses. To
perform hand detection, we trained the DetNet which is composed
of a MobileNetV2-based feature extractor and three regression net-
works to estimate the center, the radius, and the labels of the tracked
hand. The network shown in Fig. 1(d) performs a bounding circle
detection to enable the tracking of the joint movement. To train
the DetNet, we first converted the keypoint annotations of FPHAB
dataset to bounding circles. The center of each circle was estimated
by computing the mean of x and y coordinates for each keypoint,
while the radius was estimated as the maximum distance in XY
plane between the center and all keypoints. The DetNet was trained
over 300 epochs using AdamW optimizer. We used a combination
of two loss components for the overall network training: (i) Circle
loss, i.e., the loss in MSE (mean square error) for predicting center
and radii of bounding circles for both hands and (ii) Label loss, i.e.,
the cross-entropy loss for predicting left hand or right hand. The
training progress for each loss component is shown in Fig. 1(f).
The Circle loss is calculated as the weighted sum of the center and
the radius MSE losses with a higher weight given to the center. As
depicted in Fig. 1(f), the Circle loss achieves MSE values around
10−3 within 200 epochs. To perform eye segmentation, we trained
EDSNet—UNet model [12] with MobileNetV2 backbone (Fig. 1(e))—
using the "segmentation models" library [20]. The training was
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Figure 2: Simulated: (a) CPU + Memory in QKeras, (b) Eyeriss PE [1] and (c) Simba [16] in Timeloop. (d) Specification of
simulated architectures used in the study. Numbers mentioned in bracket indicate bus size. (e) Energy Breakdown of simulated
architectures. (f) Estimated EDP for inference of DetNet and EDSNet. SRAM-only variant was estimated at 45 nm for CPU and
40 nm for Eyeriss/Simba. Scaling estimates on other nodes are based on [8, 14].

performed using Adam optimizer with DiceLoss over six epochs.
The training progress is shown in Fig. 1(f). The loss value converges
within three epochs indicating high efficiency of the trained fea-
ture extractor. Since most optimized edge AI hardware platforms
can benefit from using lower precision (e.g., INT8), we performed
post-training quantization on both models using NVIDIA’s Ten-
sorRT library. The evaluation of full precision and quantized models
of DetNet on samples from the dataset are visualized in Fig. 1(g).
Similarly, the segmentation results on a sample image using both
FP32 and quantized INT8 models of EDSNet are shown in Fig. 1(h).
The weight histograms for trained and quantized models for both
networks are shown in Fig. 1(i). The quantized model shows a
more smooth and uniform weight distribution with discrete lev-
els. This further helps model compression by opening possibilities
for weight sharing across layers [1] The satisfactory inference re-
sults for both networks, with INT8 quantization, is exploited for
hardware exploration discussed in the following sections.

3 IMPLEMENTATION ON EDGE-AI
ACCELERATORS

We benchmark our XR-AI workloads on three simulated architec-
tures illustrated in Fig. 2: (i) a generic CPU [2] and two systolic
inference accelerators: (ii) Eyeriss [1], and (iii) Simba [16]. These
architectural simulations help us to investigate the roles of various
important design parameters such as datapath, operation mapping,
parallelism, and memory hierarchy as described in Fig. 2(d). The key
difference between Eyeriss and Simba is in their memory organiza-
tion. While Eyeriss heavily relies on localized memory for every
PE (processing element), Simba utilizes shared buffers across rows
in the form of input buffer, weight buffer, and accumulation buffer.
For architectural workload mapping and network simulations, we
used the following three frameworks: QKeras [2], Timeloop [10],

and Accelergy [19]. In the case of QKeras (CPU), models were first
translated to Keras followed by quantization using QKeras library
with energy estimation based on the operation mapping to a CPU
instruction set. QKeras maps the workload to a pure CPU architec-
ture and provides energy estimates at 45nm node [2]. QKeras also
allows choices of memory configurations, they are (a) SRAM-only
(b) SRAM+DRAM with writeback (c) DRAM-only. For the current
study, we use SRAM-only configuration for the memory.

Timeloop was used to estimate the cycle-wise operation map-
ping of the two neural network workloads on the systolic PEs
based on Eyeriss (row-stationary) and Simba (weight-stationary).
For using Timeloop, we exported the models from torch using the
pytorch2timeloop converter. We performed the following modifica-
tions on baselines Simba and Eyeriss to make them more relevant
for the XR-AI use cases. First, DRAMwas completely removed from
both accelerators and SRAM global buffer size was chosen as per
workload requirement shown in Fig. 2(d). While both SRAM and
DRAM are volatile memory technologies, DRAM offers a lower
area/cost in contrast to that SRAM offers latency and energy bene-
fits which are critical for such applications. Secondly, we employed
Aladdin’s 40nm standard cell library as a reference in place of the
original 45nm one provided by Accelergy. The adoption of 40nm
cell library enabled INT8 support for Eyeriss in place of the de-
fault INT16 MAC operations. Moreover, since the 40nm library
offers multiple versions of modules in adders/multipliers/registers,
it enables DTCO through Accelergy on the basis of energy-latency
trade-offs. CACTI [15] is used to estimate the energy for various
SRAM buffers shown in Fig. 2(b) and (c). The estimated EDP for in-
ference of both workloads—hand detection and eye segmentation—
is shown in Fig. 2(f). Apart from the baseline DRAM-free vari-
ants at 45nm/40nm, we also projected energy scaling for more
advanced nodes (28nm, 22nm, and 7nm) for all three architectures.
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Energy and latency scaling factors used for the analysis were de-
rived from [8, 14]. Scaling from the baseline technology node (45nm
for CPU, 40nm for Simba/Eyeriss) leads to an energy reduction of
up to 4.5× across all architectures. While the systolic accelerators
may have significant benefits in terms of latency, it can be observed
that energy costs increase significantly as compared to a baseline
CPU. Simba shows better savings by a factor of 26% for DetNet and
33% for EDSNet. In case of 7nm, Simba and Eyeriss show similar en-
ergy dissipations for EDSNet while in case of DetNet Simba shows
energy savings of 11% compared to Eyeriss. The discrepancy at 7nm
observed for EDSNet can be attributed to the memory-intensive
nature of the workload which benefits from row-stationary archi-
tecture of Eyeriss.

4 PROPOSED NVM-BASED ENHANCEMENT
In previous sections, we explored the implication of network archi-
tecture and computing platforms in terms of EDP. In addition to
the absolute energy depicted in Fig. 2(f), Fig. 2(e) further analyzes
the energy dissipation for the systolic architectures (Eyeriss and
Simba) and indicates that memory power dissipation is far more sig-
nificant than that of compute, leaving more room for optimization.
One such optimization already included was the removal of DRAM.
Furthermore, from literature it is evident that some XR-AI work-
loads are highly asymmetric in terms of their temporal compute
requirements; i.e., AI compute may not be executed at every cycle or
uniformly with time, but rather in a sporadic manner [6]. Such pe-
culiar compute requirements can benefit from active power-gating
(e.g., normally-off computing) of the edge-AI accelerators to extend
the battery life. An essential component required to implement
power-gated/normally-off edge systems is non-volatile memory
(NVM). NVM enables quick wake-up from off/sleep modes without
the need of energy-hungry and time-consuming data reloads to
SRAM or main memory [17]. A major benefit of these NVMs is
observed in silicon area due to use of additional BEOL process or 3D
integration. As shown in [18], cell area reductions of up to 1.3x, 2.3x,
and 2.5x can be achieved for SOT-, VGSOT-, and STT-MRAM over
their high-density SRAM counterpart. Moreover, recent progress
of emerging magneto-resistive/spintronic NVM (STT-MRAM, SOT-
MRAM, etc.) has led to device performance comparable to that of
SRAM [18]. To assess this prospect, we performed a detailed analy-
sis of energy dissipation of the aforementioned architectures for
the two XR-AI workloads after including two state-of-the-art NVM
devices, STT and SOT, in the XR-AI compute pipelines.

The temporal operation cycle of the simulated XR-AI pipeline
is shown in Fig. 3(a). It involves the execution modes in follow-
ing sequence: (i) Accelerator wakeup (WU), (ii) Frame Acquisition
or frame load (FA), (iii) AI Inference, and (iv) Power-Gating of
Accelerator. The memory type (SRAM or NVM) used in the sys-
tem will have a direct impact on the overall latency and energy.
A pipeline that uses only volatile SRAM will follow the operation
cycle shown in Fig. 3(b)-(i), while an alternate pipeline that uses
NVM in Fig. 3(b)-(ii) can be powered-off during the intervals after
performing inference without the need of any rewrite. Option to go
in power-off mode due to non-volatility of memory leads to energy
savings. We propose two strategies, P0 and P1 mappings shown
in Fig. 3(c), to adopt NVM-based pipelines in the edge devices for

the XR-AI workloads. The per-inference cycle memory operation
breakdown for AI inference is shown in Fig. 3(c). In the proposed
P0 mapping as shown in Fig. 3(c)-(ii), we introduce NVM (STT and
SOT) only for the weight memory. In a more aggressive variant
P1 mapping, we replace all SRAM memory buffers with NVM as
illustrated in Fig. 3(c)-(iii).

5 RESULTS AND DISCUSSION
To estimate the energy for the proposed variants P0 and P1, MRAM
and SRAM macro energy characterization from recent literature is
used (7nm [18], 28nm [17]) along with our compute/MAC energy
analysis The total workload energy was estimated by using opera-
tion counts based on Timeloop+Accelergy and QKeras simulations.
A 64-bit memory bit-width is assumed for CPU while Timeloop em-
ploys memory bit-widths specific to the architecture (see Fig. 2(d)).
Fig. 3(d) presents a comprehensive analysis of energy trends for both
XR-AI workloads on nine different simulated architectural variants
(three flavors each for CPU, Eyeriss and Simba) for two technology
nodes (28nm and 7nm). For each of the three architectures, three
memory flavors are considered, i.e., SRAM only, P0: SRAM+MRAM,
and P1:MRAM only. NVM technology used for 7nm estimates is
VGSOT-MRAM [18] in place of STT-MRAM. Since the parameters
used for VGSOT-MRAM are based on highly-scaled device esti-
mates, a scaling factor based method was employed to first energy
scaling in terms of SRAM. Subsequently SRAM to VGSOT-MRAM,
scaling factor is employed based on literature data[18]. Some key ob-
servations from single inference energy analysis (shown in Fig. 3(d))
are listed below.

• Both P0 and P1 variants show higher energy dissipation com-
pared to SRAM-only case at 7nm for the systolic accelerators,
whereas for CPU the energy dissipation is nearly equivalent
irrespective of workload.

• P1 variants show higher energy dissipation for all architec-
tures and workloads across both nodes. This can be attrib-
uted to the asymmetric energies for read and write operation
shown by MRAM as compared to SRAM.

• At 28nm, P0 variants of all architectures show energy savings
compared to SRAM-only case for both workloads while a
reverse trend exists at 7nm. This can be attributed to the
difference in read energy costs demonstrated by STT-MRAM
andVGSOT-MRAM i.e. VGSOT-MRAM is optimized for write
while STT-MRAM is optimized for read.

The detailed energy breakdown in terms of compute and mem-
ory operations (read/write) is shown in Fig. 4. For all workloads
and architectures based on P0 configuration and P1 at 7nm, the
memory read energy dominates the memory write energy. In case
of P1-28nm, this trend reverses for all architectures and workloads
except for Simba with EDSNet workload. This can be attributed to
the weight-stationary dataflow of Simba which results in reduced
memory fetches for weights. Compute energy dominates over mem-
ory for CPU and the trend is reversed for both systolic accelerators.
This can be attributed to the sequential computation dataflow em-
ployed by the CPU thus reducing unnecessary memory fetches.
For P1-7nm, the memory read energy becomes overwhelmingly
dominant (≈ 50×) in comparison to memory write energy for all
architectures and workloads. This can be attributed to the fact that
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Figure 3: (a) Operation breakdown for XR-AI accelerator (b) Memory activity profile during XR-AI workload execution: (i)
SRAM (ii) NVM. (c) Breakdown of memory specific operations in the AI Inference mode. Proposed NVM introduction strategies:
(ii) PO (SRAM+MRAM) and (iii) P1 (MRAM-only). (d) Single inference energy dissipation for 9 simulated architectural variants
on DetNet and EDSNet.

Figure 4: Simulated energy breakdown in terms of memory
and compute for NVM-based architectural variants for Det-
Net on: (a) CPU (b) Eyeriss (c) Simba, and EDSNet on: (d) CPU
(e) Eyeriss (f) Simba.

the VGSOT-device used for 7nm is more optimized for write as
opposed to read.

Next, we analyze the benefits in terms of the area by introducing
NVM for the systolic accelerator architectures at 7nm node. To
perform area estimation, compute area was scaled as per scaling
factor derived from Deepscale [14]. For memory area estimates of
SRAM, we utilized CACTI config files used by Accelergy with Fin-
CACTI [15] tool. Next, area scaling factors based on the feature size
of a single bit-cell were derived for SRAM and VGSOT-MRAM [18].
Using internal CACTI computations for multiple sizes of SRAM
memory, periphery area factors were derived to estimate overheads
at subarray, MAT, and Bank level, respectively [15]. Using the above
mentioned methodology, area estimates were derived for both P0
and P1 variants as summarized in Table 2. While P0 variants show
marginal benefits in area (≈ 2%), P1 variants show 34% area savings
as compared to the standard SRAM-only architecture. A key reason
for smaller area benefits of P0 variants can be attributed to the
periphery area overhead for small memory macros. This was espe-
cially true based on the current workloads where weight memory
could be optimized leading to requirements of 12 kB for storage of
model weights. However for more complex workloads involving
video streams, weight memory may emerge as a significant factor
leading to better savings for P0.

Table 2: Estimation of Area Benefits on Systolic Accelerators
using Proposed P0 and P1 variants at 7nm node.

Architecture 7 nm Area (𝑚𝑚2) Area savings
SRAM-only P0 P1 P0 P1

Simba 2.89 2.41 1.88 16.56% 34.97%
Eyeriss 2.56 2.11 1.67 17.52% 34.98%

Figure 5: Simulated memory power vs. IPS benchmarking
for proposed architectural variants utilizing SRAM, STT,
SOT, and VGSOT devices. (a,b,e,f) correspond to Simba while
(c,d,g,h) correspond to Eyeriss. For each case, IPS cross-over
points w.r.t SRAM and VGSOT are indicated in the plots.
Any IPS value below cross-over point would lead to energy-
savings while using NVM. Plots (a-d) (top row) are for P1
variants while (e-h) (bottom row) are for P0 variants. For P0
variants, cross-over points are limited based on maximum
frequency supported by the memory architecture.

To analyze the impact of the asymmetric temporal compute pro-
file of the workloads, we estimate memory power (total, weight,
I/O buffer) as a function of hypothetical inference event frequency /
IPS (inference per second). This metric is a direct function of the re-
quired frame rate of the application and can also assist in modeling
workload for an accelerator receiving input streams from multiple
sensors since the focus is on the throughput of the accelerator. In
this analysis, it is assumed that accelerators can be put to sleep
(power-gated) during the intervals between the completion of an
inference and the arrival of the next inference request. The standby
current of memory is assumed to be 100× lower compared to the
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Table 3: IPS Analysis summary for proposed architectures
using PE configuration v2 (64×64).

XR-AI Inference 𝑃𝑀𝑒𝑚 Savings
Workload Architecture Latency (ms) @ 𝐼𝑃𝑆𝑚𝑖𝑛

P0 P1 P0 P1
DetNet Simba 0.34 0.42 27% 31%

𝐼𝑃𝑆𝑚𝑖𝑛=10 Eyeriss 0.86 0.86 -4% 9%
EDSNet Simba 48.57 60.72 29% 24%

𝐼𝑃𝑆𝑚𝑖𝑛=0.1 Eyeriss 45.22 45.22 -15% -26%

read current[11] with a wakeup time of 100𝜇s. The memory power
vs IPS estimates for 7nm node using SRAM and three spintronic
devices (STT, SOT, and VGSOT) are shown in Fig. 5. Fig. 5(a-d)
and Fig. 5(e-h) show the results of memory energy savings for P1
and P0 variants, respectively. The key results on memory power
savings for all combinations are summarized in Table 3. In addition,
the inference latency results shown in Table 3 reflect that Simba
offers the best opportunity to exploit sleep time intervals. The la-
tency numbers were based on the estimated cycle counts extracted
from Timeloop [10] multiplied by the frequency of operation for
accelerator. The base frequency of compute is derived from the
physically realized chips of the accelerators [1, 16] scaled down
to 7nm using DeepScale [14]. Operational frequency is primarily
limited by memory. Hence, using peak workload-specific memory
bandwidth requirements derived from Timeloop+Accelergy sim-
ulations, a relaxed operation frequency was estimated. Here we
assume support for multi-cycle read and write operations using
corresponding memory technology.

An important point to note here is that at 7nm, all memory
technologies under consideration have very low read and write
latencies (≤5ns) equivalent to SRAM’s [18], thus resulting in opera-
tions running at similar inference latencies as the SRAM-only case.
Here we set the minimum reasonable application-specific inference
throughput values (𝐼𝑃𝑆𝑚𝑖𝑛) to be ∼40 and ∼6 for hand detection
and eye segmentation applications respectively. The 𝐼𝑃𝑆𝑚𝑖𝑛 values
are based on latency metrics estimated in recent studies for both
applications [3, 9]. The key observations from Memory Power vs.
IPS analysis are listed below:

• The noticeable differences in memory power for different
spintronic devices (Fig. 5(a-d)) can be attributed to the differ-
ences in the read and write energy for each device type (STT,
SOT, VGSOT), where VGSOT has the lowest write energy
but higher read energy.

• In the case of P0 variants shown in (Fig. 5(e-h)), it can be
observed that achievable cut-off IPS (IPS for which SRAM
and MRAM variants show equal power dissipation) with VG-
SOT improves for Simba whereas it decreases for Eyeriss.
This can be attributed to the smaller local weight buffers
used by Eyeriss requiring increased read operations in the
global weight-memory.

• P0 variants show a clear distinction inMRAMvariants for the
EDSNet workload which can be attributed to the increased
requirement of read operations in the weight memory due
to the nature of the workload.

• While P0 variants of Simba outperform P1 variants in terms
of achievable cut-off IPS (see Fig. 5b and Fig. 5f) this comes

at the cost of increased power (see Table 3) and area (see
Table 2). Furthermore, a hybrid memory architecture would
lead to higher design complexity.

From the above analysis, it can be summarized that for the scaled
nodes (7nm) P1 variant outperforms P0 and SRAM-only variants
for DetNet workload in terms of memory power savings as well as
area when operating at lower inference rates. However, this trend is
reversed in case of a read-intensive workload such as EDSNet that
heavily uses the input buffer and thus reduces savings from VGSOT-
MRAM which is more write-optimized. P1 variants also incur the
cost of slightly higher inference latency (≈20%). However, this can
be considered inconsequential with regards to the application since
the latency of the P1 variants can very well satisfy the minimum
IPS requirement of the application for real-world use cases. Using
the accelerators with uniquely different dataflows, we can observe
that while row-stationary may be beneficial for energy savings in a
conventional CMOS architecture, weight-stationary dataflow leads
reduced stress on memory bandwidth. This in turn facilitates the
applicability of NVM in the memory hierarchy. This makes a case
for switching to higher proportion of on-chip NVMwith aggressive
device scaling. However, based on the nature of workload and IPS
requirement of the application, a complete replacement of on-board
volatile memory with NVM may not be the optimal choice as NVM
write latency might limit the computation speed. Furthermore,
given the asymmetric energy dissipation trends of read and write
operations for state-of-the-art NVM devices the power benefits
maybe limit. Hence, based on the exact nature of the workload (i.e.
memory read-dominated or memory write-dominated), one needs
to carefully fine-tune the proportion of the splits between NVM
and SRAM to achieve the optimal results.

6 CONCLUSION
We present a detailed study on two XR-AI workloads (hand detec-
tion and eye segmentation). We first present results for network
training and quantization. To perform more extensive design ex-
ploration, simulations were performed for CPU and systolic accel-
erators using QKeras and Timeloop+Accelergy frameworks with
node-scaling analysis. Finally, we propose memory-oriented DTCO
based on the use of different types of the emerging MRAM devices.
We also analyze the energy benefits of introducing non-volatility in
the XR compute pipeline with respect to the inference activity rates
at 7nm node. When MRAM NVM was introduced in the memory
hierarchy, memory energy savings ≥24% were observed for hand
detection (at IPS = 10) and eye segmentation (at IPS=0.1), respec-
tively. Additionally, MRAM replacing SRAM leads to substantial
area reduction (≥30%) due to the high density feature of MRAM
technology.
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