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Abstract

We introduce a unified framework to jointly model im-
ages, text, and human attention traces. Our work is built
on top of the recent Localized Narratives annotation frame-
work [28], where each word of a given caption is paired
with a mouse trace segment. We propose two novel tasks:
(1) predict a trace given an image and caption (i.e., visual
grounding), and (2) predict a caption and a trace given
only an image. Learning the grounding of each word is
challenging, due to noise in the human-provided traces and
the presence of words that cannot be meaningfully visually
grounded. We present a novel model architecture that is
jointly trained on dual tasks (controlled trace generation
and controlled caption generation). To evaluate the quality
of the generated traces, we propose a local bipartite match-
ing (LBM) distance metric which allows the comparison
of two traces of different lengths. Extensive experiments
show our model is robust to the imperfect training data
and outperforms the baselines by a clear margin. More-
over, we demonstrate that our model pre-trained on the pro-
posed tasks can be also beneficial to the downstream task of
COCO’s guided image captioning.

1. Introduction
The development of powerful models and algorithms

within computer vision and natural language processing
proceeded along distinct trajectories with only occasional
overlap until recently. However, ideas from these two fields
are gradually converging, with a focus on building multi-
modal models, particularly for aligning visual and language
stimuli [23, 32, 31, 8]. The goal of these models is to
mimic humans’ extraordinary abilities to compress infor-
mation and translate it across modalities. Several joint or
combined visual recognition and natural language under-
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“Here we can see a person 
wearing ski boards on his legs 
and skating in the snow and 
he is also wearing gloves, 
helmet, goggles and we can 
see a flag behind him and 
trees present.”
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Figure 1: The three vision-and-language tasks, as illustrated
on a single example from the Localized Narratives dataset.
The first and third depicted tasks are novel.

standing tasks have emerged as natural tests of these vision-
and-language models’ capabilities. Image captioning asks
a model to identify and localize the key scene elements in
an image and describe them in natural language form. Vi-
sual grounding, and specifically phrase localization, asks a
model to solve the reverse problem: given a natural lan-
guage query, identify the target object(s) of the query in
the image. Controlled image captioning, first introduced
in [10], combines the two tasks. Here, an external user is
asked to specify which parts of the image they want de-
scribed and in what order (e.g., by providing an ordered se-
quence of bounding boxes). The output captions are there-
fore explicitly grounded in the image. One application of
this line of work is automatically generating localized de-
scriptions of images for visually impaired users on social
media services. This removes the need to rely on human-
written “alt” text, which is often missing in web images [5].

Vision-and-language models share common components
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and techniques. Image captioning architectures are typi-
cally composed of two modules: an image encoder, which
ingests and interprets an image, and a language model de-
coder, which generates a natural language caption [36, 15].
Visual grounding models first identify the key components
of the image (i.e., bounding box proposals) and query (i.e.,
which words or phrases to focus on), extract features from
each, and then correlate them to predict the referred-to ob-
ject [30, 14, 27, 39]. Architectures for both tasks often rely
on attention [36, 13, 15, 23], a mechanism inspired by the
human visual system [29, 9]. Researchers have also de-
signed more complex models that can do both caption gen-
eration and grounding. For example, [25] and [39] can both
generate an unambiguous description of a specific object or
region in an image and automatically select an object given
a referring text expression.

Despite these advancements, existing image captioning
and visual grounding models cannot jointly generate long-
form, natural language captions and dense, word-level vi-
sual groundings. This is because existing image captioning
datasets only provide short captions with sparse ground-
ings at the noun level (Flickr30k Entities [27]) or phrase
level (Google RefEx [25], Flickr30k Entities [27] and Vi-
sual Genome [20]). To address these limitations, [28] intro-
duced the Localized Narratives dataset, in which annotators
were asked to describe an image with their voice while si-
multaneously drawing a mouse trace over the region they
are describing. This annotation framework provides rich,
longform image captions and dense visual grounding in the
form of a mouse trace segment for each word. [28] incor-
porates the annotated mouse trace to aid in standard image
captioning and controlled image captioning tasks. However,
they do not investigate the reverse problem of directly pre-
dicting the mouse trace or explore the connections between
caption generation and trace generation.

In this paper, we take a step beyond [28] by requiring
models to directly predict the trace, which is analogous to
a fine-grained and temporally grounded log of human at-
tention. Besides controlled caption generation, where a
model generates a caption guided by the given ordered trace
from [28], we further introduce two challenging new tasks:
controlled trace generation, where a model must densely lo-
calize each word from a natural language caption in an im-
age, and joint caption and trace generation, where a model
is only given an image and must act as an annotator in
the Localized Narratives protocol. There tasks are shown
in Fig. 1. To evaluate the generated traces, we propose a
novel evaluation metric - local bipartite matching (LBM) to
compare two traces of arbitrary length. We present a flexi-
ble new transformer-based model architecture that is trained
in parallel on controlled caption generation and controlled
trace generation. The model also incorporates a symmetric
cycle loss to improve the quality of the generated caption

and trace. In addition to the three tasks mentioned above,
we show that our approach can benefit downstream tasks by
pre-training on our proposed tasks before fine-tuning to the
downstream setting.

To summarize, we make the following contributions:

• We introduce two novel tasks: (i) controlled trace gen-
eration and (ii) joint caption and trace generation.

• We present a novel mirrored transformer model archi-
tecture (MITR), which is jointly trained and evaluated
on three vision-and-language tasks.

• We design an evaluation metric to address the chal-
lenge of computing the distance between two traces of
different lengths.

• By jointly learning from the mirrored trace genera-
tion task, our proposed method benefits the down-
stream task of guided caption generation on the COCO
dataset.

2. Related Work
Image Captioning Image captioning is typically for-
mulated using a generative model, creating descriptions
in textual space given the input image via CNN-to-
RNN/LSTM/Transformer [35, 7, 18, 11]. An increasingly
common addition to this basic architecture is a visual at-
tention mechanism which typically produces a spatial map
that identifies the specific image region(s) most relevant
to the current word prediction task [37, 2]. However, the
learned spatial attention may not well align with human at-
tention [12]. To model attention more directly, controlled
image captioning was first introduced in [36]. It requires the
user to provide a sequence of bounding boxes in the image
and outputs the image caption in the same order, describing
the objects in those bounding boxes. The authors in [28] ad-
justed the task by using an annotator’s mouse trace for the
control. We follow the same setup in this work.
Visual Grounding The task of visual grounding is to
localize a region described by a given text query. Re-
searchers have introduced multiple datasets to tackle this
problem, such as RefCOCO [39], Google RefEx [25],
Flickr30K [27], and DenseCap [17]. State-of-the-art ap-
proaches [38, 40, 22, 41] treat visual grounding as select-
ing the most matched box to the input text query. However,
the input query is typically short (the average length of cap-
tions in RefCOCO is 3.5 words) and the grounding is sparse
(each query corresponds to just a single box). By contrast,
our work focuses on denser word-to-region grounding.
Localized Narratives As described above, image cap-
tioning datasets only provide image-sentence pairs without
the spatial localization of words. Visual grounding datasets
only provide sparse region-sentence mapping. Recently,
Localized Narratives [28] was proposed, which offers dense
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word-region alignment for each full caption. This dataset
was collected by recording annotators’ voice and mouse
traces simultaneously when describing the image content.
The three modalities of image, trace, and caption signif-
icantly expands the scope of how we can connect vision
and language. While [28] only addressed a single task of
controlled captioning, we introduce two more novel and
challenging tasks, i.e., controlled trace generation, and joint
caption and trace generation. At first glance, these three
tasks as shown in Fig. 1 appear separate; however, we pro-
pose a unified framework using a mirrored transformer to
jointly model all three tasks.

3. Method
3.1. Three Tasks on the Three Modalities

We first introduce how we encode the new trace modal-
ity. The trace is a series of points with corresponding times-
tamps, each associated with a single word from the caption.
Instead of encoding each individual point, we convert the
trace into a sequence of word-aligned bounding boxes, i.e.,
one box per word. This encoding mitigates the local “draw-
ing” variation (by different annotators) within the same re-
gion, and thus more reliably allows the model to attend to
the full spatial extent of a referred region.

In order to generate this dense word-to-box alignment
from the provided trace points, we take the following steps:
(i) Split the trace into segments, with one segment per word
(using the word-to-trace alignment from Localized Narra-
tives). (ii) Generate one bounding box per trace segment,
by taking the axis-aligned minimum bounding box of the
convex hull of the mouse points. Then we introduce the
three tasks:
Controlled Trace Generation Given an image I and a
caption describing this image w = {w1, w2, ..., wN}, the
model is required to generate a trace indicating the visual
grounding corresponding to the caption, in the form of an
ordered region sequence r = {r1, r2..., rT }.
Controlled Caption Generation Given an image I and
a mouse trace provided by the user that is mapped to a se-
quence of regions, r = {r1, r2, ..., rT }, the model gener-
ates a caption w = {w1, w2, ..., wN} describing the image
along this trace.
Joint Caption and Visual Trace Generation We further
propose a task which can be regarded as an extension of
standard image captioning: given an image I , the model
generates both caption w = {w1, w2, ..., wN} and its cor-
responding trace of ordered regions r = {r1, r2..., rT } that
matches the caption.

3.2. Mirrored Transformer for Three Modalities

Although the three tasks defined above are quite differ-
ent, they operate on the same set of three modalities: im-

age, caption, and trace. In this work, we propose a model
that effectively addresses all three tasks together in a uni-
fied framework with shared parameters, rather than build-
ing three separate models. Due to its symmetric structure,
we name this model architecture “MIrrored TransformeR”
(MITR), as in Fig. 2.
Features The inputs to the model are subsets of: image
features, text features, and trace features. For image fea-
tures, we use pre-trained Faster R-CNN [2] to compute the
visual features of the detected regions. For the text feature,
we sum up the positional embeddings and the word embed-
dings, as in [33], where the position refers to the index of
the word within the caption. For the trace feature, we sum
up the positional embeddings and the input trace, which is
projected into d hidden dimensions. Specifically, we de-
fine the trace position as the index of the bounding box that
is aligned with the word in the corresponding caption. We
denote the input visual features, text features, and trace fea-
tures as xv, xw, xr, respectively.
Model Architecture As in Fig. 3, our model is composed
of three modules (corresponding to three modalities): im-
age encoder, caption encoder-decoder, and trace encoder-
decoder. Each module consists of a transformer with self-
attention. Specifically, the image encoder, hv , is defined as:

hv = FFN(MultiHeadv(xv, xv, xv)), (1)

where we follow [33] to define the feed-forward network
(FFN) as two linear transformation layers with a ReLU ac-
tivation in between, and the MultiHead as:

MultiHead(Q,K, V ) = Concat(head1, ..., headc)W
O

headi = Attention(QWQ
i ,KW

K
i , V WV

i ),

where the projections are parameter matrices. We refer
readers to [33] for more details of MultiHead attention.
Note, there is no masking operation in the MultiHead mod-
ule from Eqn. (1), since we allow the model to attend to all
visual features when processing the caption and trace.

We then design a mirrored structure for the caption and
trace modules, based on the observation that the two modal-
ities are symmetric in the controlled caption generation and
controlled trace generation tasks. The caption encoder-
decoder, hw, and trace encoder-decoder, hr, are defined as:

hw = MultiHead2
w(MultiHead1

w(xw, xw, xw), hv, hv)

hr = MultiHead2
r(MultiHead1r(xr, xr, xr), hv, hv)

Our caption and trace modules can switch roles between
encoder and decoder seamlessly. Inspired by [24], such
switching is implemented by a masking operation, where
the encoder observes all inputs but the decoder only ob-
serves partial previous information. This prevents the de-
coder from attending to future information. We implement
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A boy on a skateboard. In the 
background there are a grassland 
and trees.

Mirrored Transformer
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Figure 2: Overall architecture. Our proposed Mirrored Transformer (MITR) architecture effectively addresses the three tasks
together by sharing most of the network modules. The structure is mirrored for processing the caption and trace. Depending
on the task, we add a masking operation for the encoding/decoding of each module.
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Figure 3: Mirrored Transformer (MITR) architecture.
MHA stands for MultiHead Attention.

a masking operation in either MultiHead1
w or MultiHead1r ,

depending on the specified task:

• For controlled caption generation, the input caption is
shifted right by one position, and MultiHead1w applies
masking to prevent leftward information flow. This en-
sures every position can only see its previous positions
in the attention module. Note, the input trace is not
shifted and MultiHead1r does not have masking.

• For controlled trace generation, the input trace is
shifted right by one position and MultiHead1r applies
masking, while the input caption is not shifted and
MultiHead1

w does not perform the mask operation.

• For the joint caption and trace generation task, both
the input caption and input trace are shifted right by
one position, and both MultiHead1w and MultiHead1

r

perform mask operations.

Our model also supports multiple layers. The mod-
ule between xv, xw, xr and hv, hw, hr can be repeated N
times. Specifically, MultiHeadv acts as the encoder, while
MultiHead1w, MultiHead2

w, MultiHead1
r , and MultiHead2r

switch roles between encoder and decoder depending on
what task is being performed. All of these modules are
shared across different tasks.

Finally, once hw and hr have been computed,
MultiHead3

w and MultiHead3
r are used to fuse the infor-

mation from caption and trace modules. Note in the joint
caption and trace generation task, both MultiHead3

w and
MultiHead3

r need to include a mask operation, while in
other two tasks no mask operation is needed.

3.3. Distance Metrics for Controlled Trace Genera-
tion

Given a ground truth trace of length q, represented as
a sequence of q bounding boxes, and a predicted trace
of length m, we need a metric that can measure the dis-
tance between these two traces. When q = m, the most
straightforward way is to compute the L1 loss between
pairs of bounding boxes (where the two bounding boxes at
the same index in the sequence form a pair): D(rgt, r̂) =
1
q

∑q
i=1 |r

gt
i − r̂i|, where |rgti − r̂i| is the mean L1 distance

on the four coordinates of the i-th bounding box.
However, there are two main challenges. First, when

q 6= m, we need to find the exact alignment between the
two sets of bounding boxes. Second, even when q = m,
we may not want to force the two sets to match in the given
order because the dataset may contain examples where the
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local bounding box ordering is not semantically meaning-
ful. To address the two issues, we cast the evaluation task
into a bipartite matching problem. Note that standard bi-
partite matching is not a direct solution because it operates
on two unordered sets of samples and thus would ignore the
ordering within a trace. Instead, we propose to add local
constraints to the bipartite matching so that the orderless
matching can only happen within a local window. On the
one hand, it provides a way to match two ordered sequences
of bounding boxes; on the other hand, it allows local disor-
der, which is robust to the noise in the dataset annotation.

Consider two traces of lengths q and m; without loss of
generality, we assume that q ≤ m. Let C ∈ Rq×m be the
cost matrix where Cij is the mean L1 distance between the
four coordinates of the i-th box from the first trace and j-th
box from the second trace, and let X be the assignment ma-
trix. We solve the following linear programming problem
to get the distance between these two traces:

min
X

Tr(CXT )

s.t., X1m = 1q, XT1q ≤ 1m, X ≥ 0, Xi,j = 0,

∀i, j s.t., 0 ≤ i ≤ q − 1, 0 ≤ j ≤ m− 1,

j <

⌊
(i− k)m

q

⌋
or j ≥ (i+ 1 + k)

m

q
,

where 1m ∈ Rm is all one vector and k is the window size
controlling the local range of disordered matching. For ex-
ample, when q = m and k = 1, this allows one box from the
first trace to match with the box at the same index from the
second trace and also its left and right neighbors. After solv-
ing this linear programming problem, we use Tr(CXT )/q
as the distance metric between two traces. We call our pro-
posed metric the Local Bipartite Matching score (LBM).

3.4. Cycle Interaction of Trace and Caption

Another interesting finding of our model architecture is
that the controlled trace generation and controlled caption
generation become dual problems in one framework, i.e.,
the output of one direction serves as the input of the other
direction. This inspires us to allow the two modules interact
with each other. First, we randomly permute the trace and
feed it into the controlled caption generation module, gener-
ating the caption. Then we feed this generated caption1 into
our controlled trace generation model, and enforce that the
predicted trace be close to the originally permuted trace by
adding a cycle loss. By doing so, we enrich the training set
by adding more meaningful but unseen trace-caption pairs.
As shown in Section 4.5, this further boosts the performance
of both controlled caption generation and controlled trace
generation tasks.

1Gumbel-softmax [16] is applied to approximate the non-differentiable
categorical sampling of words.

We denote our mirrored transformer model as f(), the
controlled trace generation task as r̂ = f(I,w), and the
controlled caption generation task as ŵ = f(I, r). We en-
force the cycle consistency via

Lr̃→ŵ→r̂ = Distr(f(I, f(I, r̃)), r̃),

where Distr is the L1 loss between the predicted trace and
the ground truth trace, and r̃ is the randomly manipulated
trace. Specifically, we perform two types of manipulation:
(i) randomly switch the trace within a mini-batch, and (ii)
cut a trace into S segments and randomly permute these
segments to form a new trace. We show that both manipu-
lations are effective in improving the performance.

3.5. Total Loss Function

The final loss function can be formulated as:

Ltotal = λ1L[trace] + λ2L[caption]

+ λ3Lr̃→ŵ→r̂ + λ4L[joint], (2)

where L[trace] is the L1 loss between the predicted trace
boxes and ground truth trace boxes for controlled trace gen-
eration, L[caption] is the cross-entropy loss of the caption for
controlled caption generation, Lr̃→ŵ→r̂ is the cycle loss,
and L[joint] is the sum of the trace loss and the caption loss
for the joint caption and trace generation task.

3.6. Bridging the Gap between Training and Testing

Discrepancies between training and inference always ex-
ist in sequential prediction models [4]: during training,
the model predicts a point given the ground truth previous
point, while at inference the previous point is replaced with
the predicted one generated by the model itself. In our pro-
posed joint caption and trace generation task, such discrep-
ancy is even more severe than in standard caption genera-
tion, as both the previous word and trace box are generated
by the model and are connected with each other. Especially
the trace suffers more from noise due to the lack of syn-
tax as in the caption. A single offset could cause the fol-
lowing trace boxes quickly move to anywhere. To alleviate
this problem, we propose a random replacement of the in-
put trace boxes, where we replace a box with [0, 0, 1, 1, 1]
(corresponding to the whole image) with probability p. As
shown in Table 3, this approach improves the performance
of joint caption and trace generation by a clear margin.

4. Experiments
4.1. Dataset

We conduct experiments on four datasets, COCO,
Flickr30k, ADE20k, and Open Images, with annotations
from two different frameworks: COCO Captions [6] and
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# images # captions # words/capt
COCO Loc. Narr. [28] 123,287 142,845 41.8
Flickr30k Loc. Narr. [28] 31,783 32,578 57.1
ADE20k Loc. Narr. [28] 22,210 22,529 43.0
Open Images Loc. Narr. [28] 671,469 675,155 34.2

Table 1: Localized Narratives built on top of COCO,
Flickr30k, ADE20k, and Open Images.

Localized Narratives [28], summarized by Table 1. We eval-
uate Tasks 1-3 on the Localized Narratives annotations by
doing ablation study on COCO and reporting performance
of our best performing model on other three datasets, and
the downstream task introduced in Section 4.7 on the COCO
Captions annotations. We use the COCO2017 split for all
experiments except Section 4.7, where we follow [10] to
use the split they provide.

The annotations provided by Localized Narratives are
challenging to work with for a number of reasons. First,
the human-generated trace segment ri is a noisy visual
representation of the mentioned object. This is caused
by imperfect voice-trace synchronization (e.g., if the an-
notator moves their mouse without speaking), errors in
voice-word synchronization (from the automatic sequence-
to-sequence alignment model in [28]), inconsistent drawing
habits among annotators, and the different nature between
mouse trace lines and bounding boxes. Second, not every
word can be meaningfully visually grounded in the image,
such as existentials (e.g., “there are”) and language refer-
ring to the observer (e.g., “in this image, I can see ...”, “we
can also see in the photo ...”). By our estimate, such words
account for at least 20% of the words in the COCO vali-
dation captions from Localized Narratives. Traces for such
words are less meaningful than the other groundable words.

4.2. Experimental Setting

We use our mirrored transformer (MITR) defined in Sec-
tion 3.2 with N = 1 (as shown in Fig. 3). The hidden size
of attention layers is 512 and that of the feed-forward lay-
ers is 2048. We train the network with batch size 30 using
the Adam optimizer [19]. The initial learning rate is 5e−4,
which decays every 3 epochs with decay rate 0.8, for a total
of 30 epochs. We use the same training setup for all exper-
iments reported in this paper. The random masking rate for
joint caption and trace prediction is p = 0.5. In the follow-
ing, we denote controlled trace generation as Task1, con-
trolled caption generation as Task2, and joint caption and
trace generation as Task3.
Controlled Trace Generation In this task, we represent
the trace as an ordered sequence of bounding boxes, and the
model predicts one bounding box for each word of the input
caption, as described in Section 3.1. Given a ground truth
trace rgt = {rgt1 , r

gt
2 , ..., r

gt
T } and a predicted trace r̂ =

{r̂1, r̂2, ..., r̂T } for the same image, we compute the local
bipartite matching (LBM) score proposed in Section 3.3 for
k = 0 and k = 1.
Controlled Caption Generation Given an image and a
trace, the model predicts the caption corresponding to the
trace. When evaluating the quality of generated caption,
we report the following widely adopted metrics: BLEU-
1, BLEU-4 [26], METEOR [3], ROGUE [21], CIDEr [34],
SPICE [1]. We set beam search with size 5.
Joint Caption and Trace Generation In this task, the
model is given only an image as input and outputs both
caption and trace simultaneously. The model produces out-
puts iteratively, generating one word and one corresponding
bounding box at each time step. At test time, we end the
generation when the caption generation branch outputs the
END token. In this process, since the model itself controls
the length of the output, the length of the predicted trace r̂
may differ from the length of the ground truth trace rgt. The
max length for generating caption and trace is set to be 100.
We report our LBM metric for both k = 0 and k = 1.
Baselines For controlled trace generation, we construct
the baseline by using a standard one-layer encoder-decoder
transformer architecture as defined in [33], and feed both
visual features and captions to the encoder. Similarly, for
controlled caption generation, we use the same architecture
as a baseline and feed both visual features and traces to the
encoder. For joint caption and trace generation, we con-
struct the baseline by also using the same architecture, but
only using visual features as input, and we train it on the
caption generation task.

4.3. Results on Individual Tasks

Controlled Trace Generation In Fig. 4 (top left), we
demonstrate the qualitative results of the controlled trace
generation: we can see that the trace closely follows the
ground truth trace and also semantically corresponds well
to the input caption. Table 6 shows the quantitative results.
From the table, we see that our proposed MITR outperforms
the baseline method constructed in Section 4.2 (standard
transformer with one encoder and one decoder [33]).
Controlled Caption Generation We demonstrate our
quantitative results in Table 2 and show qualitative results
on the right side in Fig. 4. Our baseline model differs from
that in [28] at several places: we use a one-layer encoder-
decoder transformer while [28] uses 2 layers; In addition,
we process the trace by cutting the trace by word while [28]
cuts the trace by a fixed time interval. Thus, the results from
[28] are not directly comparable to ours. We put the perfor-
mance of [28] in Table 2 for easy reference.
Joint Caption and Trace Generation The quantitative
results for this task are in Table 3. We can see that, by
modeling the trace at the same time as the caption, the per-
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Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE
[28] Task2 0.522 0.246 N/A 0.483 1.065 0.365
Baseline Task2 0.563 0.255 0.240 0.453 0.997 0.293
MITR Task2 0.577 0.257 0.245 0.456 1.213 0.293
MITR Task2 + Task1 0.586 0.272 0.252 0.470 1.329 0.307
MITR Task2 + Task1 + cycles 0.596 0.282 0.257 0.476 1.390 0.309
MITR Task2 + Task1 + cycleb 0.598 0.286 0.258 0.479 1.407 0.313
MITR(2 layer) Task2 + Task1 + cycleb 0.607 0.292 0.263 0.487 1.485 0.317

Table 2: Quantitative results for Task 2 (controlled caption generation) on COCO. cycles and cycleb refer to two types of
cycle loss defined in Sec 4.5. Results from [28] are not directly comparable to ours due to differences mentioned in Sec 4.3.

Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM(k=0) LBM(k=1)
Baseline Task2 0.355 0.087 0.155 0.307 0.310 0.210 N/A N/A
MITR Task3 0.387 0.118 0.168 0.316 0.170 0.194 0.387 0.369
MITR Task3 + random mask 0.395 0.128 0.184 0.328 0.219 0.223 0.308 0.292
MITR Task3 + Task1 + Task2 + random mask 0.417 0.125 0.178 0.323 0.216 0.213 0.283 0.267

Table 3: Quantitative results for Task 3 (joint caption and trace generation) on COCO.

Dataset Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM(k=0) LBM(k=1)
Flickr30k Baseline Task1 N/A N/A N/A N/A N/A N/A 0.253 0.249
Flickr30k Baseline Task2 0.620 0.345 0.286 0.524 1.763 0.341 N/A N/A
Flickr30k MITR Task1 + Task2 + cycleb 0.644 0.374 0.300 0.547 2.014 0.365 0.195 0.188
Flickr30k MITR(2 layer) Task1 + Task2 + cycleb
ADE20k Baseline Task1 N/A N/A N/A N/A N/A N/A 0.251 0.247
ADE20k Baseline Task2 0.565 0.278 0.259 0.585 1.288 0.341 N/A N/A
ADE20k MITR Task1 + Task2 + cycleb 0.580 0.297 0.269 0.599 1.463 X 0.177 0.168
ADE20k MITR(2 layer) Task1 + Task2 + cycleb
Open Images Baseline Task1 N/A N/A N/A N/A N/A N/A
Open Images Baseline Task2
Open Images MITR Task1 + Task2 + cycleb
Open Images MITR(2 layer) Task1 + Task2 + cycleb

Table 4: Quantitative results for Task 1 and Task2 on Localized Narratives of Flickr30k, ADE20k and Open Images.

Dataset Method Trained on BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM(k=0) LBM(k=1)
Flickr30k Baseline Task2
Flickr30k MITR Task3 + random mask
ADE20k Baseline Task2
ADE20k MITR Task3 + random mask
Open Images Baseline Task2
Open Images MITR Task3 + random mask

Table 5: Quantitative results for Task 3 on Localized Narratives of Flickr30k, ADE20k and Open Images.

Method Trained on LBM (k=0) LBM (k=1)
Baseline Task1 0.208 0.204
MITR Task1 0.171 0.159
MITR Task1 + Task2 0.169 0.157
MITR Task1 + Task2 + cycles 0.165 0.156
MITR Task1 + Task2 + cycleb 0.166 0.155
MITR(2 layer) Task1 + Task2 + cycleb 0.163 0.154

Table 6: Quantitative results for Task 1 (controlled trace
generation). cycles and cycleb refer to the two cycle losses
defined in Sec 4.5. Note: smaller values of LBM are better.

formance of caption generation improves by a large margin
over the baseline which only models the caption. In addi-
tion, our proposed random masking technique further im-

prove the performance of Task 3 on caption generation by
over 1% absolute improvement on all metrics, and on trace
generation by nearly 20% relative improvement. The qual-
itative results are in Fig. 4 (bottom). Without the human
annotated attention trace to guide the caption generation,
sometimes the same objects or descriptions are repeated
multiple times in a single caption. Future work includes
keeping an accounting of all the objects referenced to avoid
repetition.

4.4. Joint Training Results

We demonstrate that by doing joint training, our model
can boost the performance of each individual task while us-
ing approximately one half of the parameters and training
computational cost, compared with training one separate

7



Task 2: Controlled Caption GenerationTask 1: Controlled Trace Generation

Ground-truth caption Predicted trace Ground-truth trace Predicted caption

Task 3: Joint Caption + Trace Generation
Predicted tracePredicted captionImage

Figure 4: Qualitative results on Tasks 1, 2, and 3 (with more results in the supplementary file).

model for each individual task. The quantitative results are
in Tables 6 and 2. We can further see from Table 3 that the
joint training of Task 1 and Task 2 can also help Task 3.

4.5. Cycle Loss Results

We show that, by enforcing cycle consistency, both con-
trolled trace generation and controlled caption generation
get further improved when doing joint training. The quanti-
tative results are in Tables 6 and 2. We use cycles to repre-
sent cycle loss where a single trace is cut into segments and
then randomly permuted before forming a new trace, and
cycleb to represent cycle loss where the trace is permuted
along the batch dimension within a mini-batch. Adding
cycleb achieves over 1% absolute improvement on BLEU-1
and BLEU-4 compared with our joint training result, and
over 3% absolute improvement from our baseline model.

4.6. Results on Flickr30k, ADE20k, Open Images

We also report the performance of our best performing
model and the baseline model on another three datasets
(Flicker30k, AED20k, Open Images), where Localized
Narratives are also collected [28]. The results are in Table 4
and 5. As shown, our method achieves consistent improve-
ment over the baseline methods on all datasets.

B-1 B-4 M R C S
Ours w/o pretrain 0.463 0.182 0.219 0.466 1.746 0.363
Ours w/ pretrain 0.474 0.189 0.225 0.475 1.819 0.370

Table 7: Downstream task on guided caption generation.

4.7. Downstream Task

We further investigate the benefit of our joint training
framework. By pre-training using our joint training frame-
work on Localized Narratives [28] and fine-tuning on a
guided caption generation task [10] on COCO Captions [6],
we are able to get better results than directly training on
COCO Captions. In this experiment, we follow [10] to use
the COCO split provided by [18].

The task is defined as: given an image I and a sequence
of ordered bounding boxes r = {r1, r2, ..., rT } as guid-
ance, the model generates a caption w = {w1, w2, ..., wN}.
This task is similar to our controlled caption generation task
(Task 2), but we do not assume any correspondence between
the boxes and words for both training and testing. Note [10]
considers a slightly different setting, where the dense cor-
respondences between boxes and words are given during
training but not at testing. Thus a special gate function was
proposed to automatically attend the words to the boxes dur-
ing test time. See the supplementary material for the details
of our implementation. The results are in Table 7, where
pre-training brings a clear gain.

5. Conclusion
We presented a unified framework for modeling vision,

language, and human attention traces. Our work is built on
top of the Localized Narratives framework and motivated
by the need for longform image captions and dense visual
grounding. We designed a Mirrored Transformer model
architecture that was jointly trained on three vision-and-
language tasks. We demonstrated the effectiveness of our
approach through detailed experiments on 4 datasets.
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Supplementary Material:
Connecting What to Say With Where to Look by Modeling Human Attention

Traces

1. Implementation Details of Downstream Task
on COCO Captions

In the key boxes guided caption generation task defined
by [1], at training time, we are provided a dense correspon-
dence between caption and bounding boxes that associates
every word in the caption with a bounding box detected
by Faster-RCNN. If a word has no associated bounding
box, [1] uses the average feature from all detected bound-
ing boxes in this image as its corresponding visual repre-
sentation. At inference time, the only input is the image
with several ordered bounding boxes given by the user – no
knowledge of which bounding box corresponds to which
word(s) in the generated caption is assumed. [1] addressed
this problem by proposing a specialized gate function to
learn how to attend each word to the given boxes at infer-
ence time.

In contrast, our experiment proceeds under a slightly dif-
ferent setting: we are given the same information for both
training and inference, i.e., only a sequence of bounding
boxes for an image dense correspondence between boxes
and words are not provided. We have the same inference
setting as [1] but it is a more challenging training setting
than [1], because we are provide sparser alignment of boxes
and words during training.

Also note that this new task is different from the con-
trolled caption generation task in our main paper. In con-
trolled caption generation, the input is a meaningful smooth
trace describing overall image content that often includes
the relationship between objects and the background in the
image, but our downstream task only utilizes several key
box-object pairs.

To adapt such an input into the same form as the setting
where we deal with localized narratives dataset, we simply
concatenate the given bounding boxes into a sequence, and
pad [0, 0, 1, 1, 1] if the length is less than what is needed
(e.g., the length of sentence).In this way, the input form be-
comes the same form (although the contained information is
not exactly the same) as what we used on the Localized Nar-
ratives experiments. Principally the specialized gate func-
tion proposed by [1] can also be added in our network, but

we simply choose to use the same input format as our ex-
periments on Localized Narratives because our goal here is
to demonstrate the benefit of pretraining instead of trying to
reproduce the setting in [1]. This results in a slightly differ-
ent setting than that defined in [1]. As shown in the main
paper, our pre-training on Localized Narratives brings clear
gain under this new setting.

2. More Layers for Mirrored Transformer

We demonstrate the influence of the number of layers in
our proposed mirrored transformer by varying the number
of layers in the model trained with Task1 + Task2 + cycleb
(cycle loss by permuting the trace within a mini batch). The
results are shown in Table 1, which shows that two layers
lead to better performance compared to one layer on both
controlled trace generation (Task1) and controlled caption
generation (Task2), while using three layers does not further
improve results.

3. Influence of λ in Joint Training

We use the joint training of Task1 and Task2 as an exam-
ple to show the influence of different λ values (defined in
Eq. (3) in our main paper). The results are shown in Table 2.
We can see that the performance of Task2 (controlled cap-
tion generation) remains relatively stable across different λ,
while the performance of Task1 (controlled trace genera-
tion) improves when Task1 has a larger weight compared
with Task2. In the experiments of the main paper, all values
of λ are chosen from {1.0, 0.5, 0.3, 0.1, 0.0} according to
specific experiment settings and the performance on a sub-
set of 5000 images from COCO2017 Training set (which
we use to tune the hyperparameters).

4. More Qualitative Results

This section shows more qualitative results and analysis,
for both success and failure cases of the model. In each sub-
section, the failure cases are ordered in descending order of
subtlety (i.e., most obvious to most subtle).



# layers BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM (k = 0) LBM (k = 1)
1 0.598 0.286 0.258 0.479 1.407 0.313 0.166 0.155
2 0.607 0.292 0.263 0.487 1.485 0.317 0.163 0.154
3 0.604 0.289 0.261 0.485 1.444 0.314 0.197 0.191

Table 1. Influence of the number of layers. The model was trained on Task1 + Task2 + cycleb, and evaluated on Task1 (LBM metric)
and Task2 (other metrics in this table) respectively. Note: smaller values of LBM are better. The evaluation is performed on COCO2017
Validation set.

λ2 BLEU-1 BLEU-4 METEOR ROUGEL CIDEr SPICE LBM (k = 0) LBM (k = 1)
1.0 0.589 0.272 0.254 0.472 1.346 0.306 0.187 0.178
0.5 0.595 0.278 0.256 0.476 1.368 0.312 0.179 0.169
0.3 0.586 0.272 0.252 0.470 1.329 0.307 0.169 0.157
0.1 0.595 0.279 0.256 0.474 1.375 0.310 0.161 0.150

Table 2. Results on different λ2 when λ1 = 1 for joint training of Task1 and Task2 (λ defined in eq. (3) in our main paper). The model
was trained on Task1 + Task2, and evaluated on Task1 (LBM metric) and Task2 (other metrics in this table) respectively. Note: smaller
values of LBM are better. The evaluation is done on COCO2017 Validation set.

4.1. Controlled Trace Generation

Below, we describe some successful instances and com-
mon failure cases of the model on the controlled trace gen-
eration task. Examples are all in Fig. 1, on the left column.

4.1.1 Successes

Correct object localization and spatial extent. The
model successfully localizes the referred to objects and
identifies their full spatial extents. For example, see row
1 (the animals and trees), row 2 (the woman, her hat, the
stick), and row 3 (the tennis court, the woman, the racket,
and the “adidas” text).

Recognition of directionality. The model attends to di-
rection words in the input caption, such as “right” and “left.”
For example, in row 1, the caption specifies that there is
a zebra and a giraffe in the “right side of the image” and
the predicted trace correctly localizes these animals, even
though there are other zebras and giraffes in the image that
are described earlier in the caption. In row 2, where the cap-
tion begins “In the image in middle ...”, the model quickly
narrows in on the middle of the image (the red bounding
boxes), rather than localizing the entire image. In row 3,
the model correctly localizes the “back” of the image when
the caption refers to this area.

Adapting to errors in the input caption. The model is
able to adapt to errors in the input caption, such as spelling
errors and incorrect object classifications. For example, in
row 3, the model successfully localizes the “adidas” text
when the caption reads “hoarding” (perhaps the annotator
meant “heading”), and also localizes the tennis racket, even
though it is referred to as a “bat.”

4.1.2 Failure cases

False negatives in the trace. A ground-truth object or
concept is not localized by the predicted trace. For example,
see row 6. The predicted trace does not include the baseball
bats and grass. This could be due to two reasons: (1) the
model recognizes the bats and fence as relevant, but incor-
rectly localizes them, or (2) the model is focusing on larger
and more visually dominant false positive objects in the im-
age (such as the red columns in this image), and neglects
the bats and fence from the trace.

Incorrect object spatial extent. A predicted region has
the correct localization (e.g., the bounding box is positioned
in the center of the referred-to object), but its spatial ex-
tent does not cover the full object. For example, see row 4:
the man and the sheep are correctly localized, but their pre-
dicted spatial extents are too small. Another example is row
7: the predicted box for “sand” has good precision, in that
it only localizes sand, but it does not cover the full spatial
extent of the sand.

Poor region differentiation. Predicted regions referring
to different objects/regions are correctly localized and have
reasonable spatial extents, but these regions are not specific
to each object. For example, see row 5. The duck and the
water are correctly localized, but there is no way to dif-
ferentiate these regions (since they all cover the same area
around the duck). Ideally, the model would predict a tight
box around the duck and a much larger box covering the
entire water region.

4.2. Controlled Caption Generation

In this section, we describe some successful instances
and common failure cases of the model on the controlled
caption generation task. Examples are all in Fig. 1, on the
right column.
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Task 2: Controlled Caption GenerationTask 1: Controlled Trace Generation

Ground-truth caption Predicted trace Ground-truth trace Predicted caption

Figure 1. Qualitative results and selected failure cases on Tasks 1 and 2. The model was trained on Task1 + Task2 + cycleb.

4.2.1 Successes

All major image components are described. The model
successfully describes all the objects and “stuff” in the im-
age, as compared to the ground-truth caption. See rows 1-3
for examples.

Caption is grammatical and tells a story. The predicted
caption uses proper grammar, introduces the image (e.g.,
“In this image, there is ...”), and moves around the image
describing different regions and objects. See rows 1-3 for
examples.
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Caption includes directionality. The model uses direc-
tions to refer to specific regions of the image it is describ-
ing. For example, see row 1 (the zebras and giraffes on
the “center and “right side” of the image) and row 2 (the
woman in the “foreground”, the plants and grass on the
“left side”, and the stone wall in the “background”.
Adapting to poor input traces. The model can output a
rich caption, even given a poor input trace where the anno-
tator drew a trace that is uncorrelated with the ground-truth
caption. See rows 2 and 3 for examples.

4.2.2 Failure cases

False negative objects in the caption. Here, the caption
omits mentioning a visually significant object or region that
is specified by the human-provided trace. For example, see
row 1 (the predicted caption neglects to mention the sheep)
or row 7 (the model misses the sand).
False positive objects in the caption. Here, the caption
hallucinates objects that are not present in the image. For
example, see row 6: the model incorrectly describes the im-
age as containing “drums.”
Incorrect object counts. In this failure case, the model
predicts the wrong number of objects that are present in the
image. For example, see row 5: the model incorrectly pre-
dicts that there are “two ducks,” rather than just one.
Object repetition. Here, the model correctly identifies
an object in the image (that only has one instance), but
mentions it multiple times. For example, see row 7: the
model mentions the airplane twice (“there is an airplane on
the ground and there is an airplane on the ground”), even
though the image contains only instance of “airplane.”
Grammar errors. This is a fairly common error, where
the contents of the caption are correct, but the model uses
incorrect grammar. For example, see row 5 (“this is a water,
this is a sand”), and row 6 (“and some there are and some
boards are there”). In many cases, the ground-truth captions
have incorrect grammar (for example, see Fig. 1, left side,
row 5), which could cause the model to learn and internalize
these errors.

4.3. Joint Caption And Trace Generation

In this section, we describe some successful instances
and common failure cases of the model on the joint caption
and trace generation task. The model may also experience
the issues described in Sections 4.1 and 4.2, but we focus
on the errors specific to Task 3. Examples are all in Fig. 2.

4.3.1 Successes

Successful examples follow all the qualities of Task 1 and
2 (correct object localizations and spatial extents in the pre-
dicted trace, and precise, descriptive, and comprehensive

predicted captions). They also have good alignment be-
tween the boxes in the predicted trace and the words in the
caption. See rows 1 and 2 for examples.

4.3.2 Failure cases

Unaligned caption and trace. In this failure case, the
model predicts a much longer trace than what is reasonable
for the caption. For example, see row 3: the predicted trace
has length 100, while the caption only has 18 words.
Caption cuts off due to maximum length constraint. In
this case, the model is forced to stop predicting words be-
cause it hits the maximum caption length requirement (in
this paper, this value is 100). This error usually happens
in images that contain many distinct objects, because it is
challenging for the model to group objects for conciseness.
See row 4 for an example: the caption ends in the middle of
a sentence (“On the ground there is a giraffe”). One solu-
tion would be to enforce the maximum caption length and
require the caption to terminate with a full sentence (i.e.,
ending with a period), rather than allowing sentence frag-
ments.

Predicted trace

Task 3: Joint Caption + Trace Generation

Predicted captionImage

Figure 2. Qualitative results and selected failure cases on Task 3.
The model was trained on Task3 + random mask.

4



References
[1] Marcella Cornia, Lorenzo Baraldi, and Rita Cucchiara. Show,

control and tell: A framework for generating controllable and
grounded captions. In CVPR, 2019. 1

5


