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Propagation of Joint Space Quantization Error
to Operational Space Coordinates

and Their Derivatives
Nick Colonnese1 and Allison M. Okamura2

Abstract—Many robotic systems achieve position sensing
through the use of optical encoders that specify the position
of a joint to a certain resolution. Encoders effectively quantize
joint space coordinates and introduce position measurement
error in the process. This error propagates to operational
space coordinates, limiting end-effector position and orientation
resolution, and also to joint and operational space coordinate
derivatives, manifesting as noise that can vitiate the signal. In this
paper, we characterize encoder error in a robotic system. Given
encoder specifications, robot kinematics, and discrete transfer
functions mapping coordinates to their derivatives, we describe
the propagation of quantization error on joint space coordinates
to operational space coordinates, joint space coordinate deriva-
tives, and operational space coordinate derivatives. We establish
two results for quantization error. The first is a general result
useful for establishing worst-case bounds. The second models
each quantization as independent additive pseudo quantization
noise (PQN) for which stochastic metrics on the error are deter-
mined. Experimental data gathered from a Phantom Premium
robot/haptic device supports the analytical results.

Index Terms—Motion Control, Encoder Error, Robotic and
Haptic Device Design

I. INTRODUCTION

A. Quantization from Optical Encoders in Robots

FOR many robotic systems, including manipulators, mo-
bile robots, and kinesthetic haptic devices, position sens-

ing is achieved through the use of optical encoders mounted
on each joint. Encoders are the most common position sensing
method in robotics and haptics because they can feature higher
reliability and precision at a lower cost compared to other posi-
tion sensing alternatives, and they are easy to implement. The
output of an optical encoder is a digital signal, free of external
noise, that corresponds to a certain range in which the position
of the joint lies (Fig. 1). Because encoders specify the position
of a joint to a limited resolution (the quantization interval of
the encoder), they effectively quantize joint space coordinates,
and in the process, introduce error. This usually small error
propagates to operational space coordinates, such as Cartesian
position and Euler angles. The error is also propagated, and
can be amplified, to estimates of joint or operational space
coordinate derivatives, e.g., Cartesian velocity or acceleration.
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Fig. 1. A. Schematic of an optical encoder: a photoemitter and photodetector
pair sit on opposite sides of a slotted disk. B. The optical encoder setup on the
joint of a Falcon haptic device (Novint Technologies, Inc.). C. True, quantized,
and error on position, velocity, and acceleration signals.

In a broad array of robotic applications, in which a robot
must be controlled accurately and precisely, signals derived
from quantized joint positions are used for control. These
applications include pick and place, tracking, haptic virtual
environments, teleoperation, and many others. The feedback
control algorithms used for these applications commonly rely
on operational space coordinates, as well as estimates of
their velocities. In these scenarios, the error introduced by
quantization from encoders in joint space can be a limiting
factor on performance in two main ways. The first is that
the encoders determine the position and orientation resolution
for the robot in joint space, and contribute to the resolution
(along with gearing and kinematic structure) in operational
space. A baseline resolution for operational space coordinates
assuming rigid kinematic linkages is determined by encoder
quantization. The second limiting factor is that error intro-
duced by quantization in joint space coordinates is amplified
when derivative estimates are formed, manifesting as noise.
The magnitude of the noise can be difficult to establish theo-
retically, and is usually found experimentally. For applications
with strict requirements, e.g., haptic velocity rendering, this
makes design cumbersome and requires iterations.
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B. Background

This analysis draws on the results of quantization theory and
the propagation of noise in linear systems. To our knowledge,
applying quantization theory to determine error from optical
encoders has not been considered. No worst-case, or average,
quantization error results exist for a robotic system in which
many sources of quantization combine to many outputs.

A coherent analysis of single-input, single-output (SISO)
quantization theory is presented by Widrow and Kollár [1].
Bennett first proposed a model of additive white noise (or
pseudo quantization noise, PQN) from which stochastic results
are established for the error distribution [2]. Widrow popu-
larized this approach, and described how quantization error
propagates through a linear system [3]. Conditions for the
validity of the PQN model were established in prior work [4],
[5], [6], [7]. The worst-case model of quantization error was
initially proposed by Bertram [8].

In our analysis, the propagation of quantization error
through diagonal multiple-input, multiple-output (MIMO)
transfer functions is accomplished using the propagation of
power spectral densities [9], and transfer function norms
[10]. Specifically, worst-case and stochastic error results are
presented in the form of `1 and H2 norms of transfer functions,
respectively. Because they are expressed explicitly as transfer
function norms, they can be used in modern optimization
techniques [11].

Prior work has examined derivative error on discrete quan-
tized coordinates from optical encoders. Kavanagh and Mur-
phy presented variance and spectral error characteristics for a
quantizer with a constant rate input subject to additive uniform
noise [12]. Brown et al. investigated algorithms for velocity
estimation and established relative accuracy and error of vari-
ous methods based on numerical simulations and experiments
[13]. Phillips and Branicky also compared velocity estimation
algorithms, in which they derived upper bounds on absolute
and relative errors for each of the algorithms under constant
velocity and acceleration [14]. Harrison and Stoten presented
a method to estimate arbitrary derivative order using truncated
finite difference schemes [15].

Our analysis is applicable to all robots with quantized joint
space coordinates, but is particularly relevant to kinesthetic
(force-feedback) haptic devices using optical encoders for
joint position sensing. Human vibration sensing is extremely
acute, and in many haptic controller design scenarios the error
introduced by quantization can be the limiting factor on the
performance of the haptic display. Recent research in this
field has established conditions for quantization-error passivity
and limit cycles for a general haptic control law for a single
quantization source [16]; our analysis in this paper expands
those results to an arbitrary number of quantization elements.

C. Contributions

In this paper, we characterize encoder error in a robotic
system. Given encoder specifications, robot kinematics, and
discrete transfer functions mapping coordinates to their deriva-
tives, we describe the propagation of quantization error on
joint space coordinates to operational space coordinates, joint

Fig. 2. Two common architectures to obtain operational space coordinate
derivative estimates from joint space coordinates. Quantized joint space
coordinates θ̂ have error that propagates to operational space coordinates x̂,
joint space coordinate derivative estimates φ̂, and operational space coordinate
derivative estimates ŷ. Operational space coordinate derivative estimates can
be formed by filtering in operational space (A), or filtering in joint space (B).

space coordinate derivatives, and operational space coordinate
derivatives. We propose two models for quantization error
in joint space. The first model is a general one useful for
establishing worst-case bounds on the error. The second case,
which models quantization as additive PQN sources, estab-
lishes stochastic metrics on the error, i.e., mean vectors and
covariance matrices.

II. SYSTEM MODEL

Table I lists the notation used. Fig. 2 shows two system
diagrams representing common methods to form derivative
estimates on operational space coordinates. By operational
space, we refer to any coordinates derived from the joint
coordinates of the robot. Common operational space coor-
dinates include Cartesian position or Euler angles. Fig. 2
A. forms operational space coordinate derivatives by first
calculating the operational space coordinates with the forward
kinematics, and then inputting these coordinates into a transfer
function matrix that map these coordinates to estimates of their
derivatives. In contrast, Fig. 2 B. first estimates joint space
coordinate derivatives using a transfer function matrix, then
forms operational space coordinate derivate estimates using
the forward kinematics.

In both methods, discrete-time true joint space coordinates
θ1, θ2, . . . , θn ∈ R undergo spatial quantization with respec-
tive quantization intervals ∆1,∆2, . . . ,∆n ∈ R, resulting
in quantized joint angles θ̂1, θ̂2, . . . , θ̂n ∈ R. The quantized



3

TABLE I
NOTATION

Symbol Description

∆ ∈ Rn quantization interval vector
θ ∈ Rn true joint space vector
φ ∈ Rn true joint space deriv. vector
x ∈ Rm true operational space vector
y ∈ Rm true operational space deriv. vector
(̂.) ∈ Rd(.) quantized (.) vector, e.g., θ̂, φ̂, x̂, ŷ
(̃.) ∈ Rd(.) error on (.) vector, e.g., θ̃, φ̃, x̃, ỹ
J ∈ Rm×n Jacobian matrix: ẋ = Jθ̇
Ji ∈ Rm ith column of J
Σ(.) ∈ Rd(.)×d(.) covariance matrix of (.), e.g., Σθ̃
Gi joint space SISO TF at index i
Hj op. space SISO TF at index j
G (size n× n) diagonal joint space TF matrix
H (size m×m) diagonal op. space TF matrix
R(.)(k) ∈ Rd(.)×d(.) autocorrelation matrix of (.)
S(.)(ω) ∈ Rd(.)×d(.) power spectral density matrix of (.)
1 ≤ i ≤ n indexes joint space coordinates, e.g. θi ∈ R
1 ≤ j ≤ m indexes operational space coordinates, e.g. xj ∈ R
d(.) denotes the dimension of (.)

joint angles are mapped to operational space coordinates
x̂1, x̂2, . . . , x̂m ∈ R by the forward kinematics.

A derivative signal estimate on a joint space coordinate
at index i, φ̂i ∈ R, (e.g. joint velocity or acceleration) is
obtained through a single-input, single-output (SISO) discrete
transfer function Gi, φ̂i = Gi(θ̂i). Similarly, a derivative
signal estimate on an operational space coordinate at index
j, ŷj ∈ R, is obtained through a SISO discrete transfer
function Hj , ŷj = Hj(x̂j). The SISO coordinate-wise filtering
is equivalent to diagonal MIMO discrete transfer function
matrices G (size n×n) and H (size m×m), which map joint
and operational space coordinates, respectively, to estimates
of their derivatives.

III. ERROR PROPAGATION

Here we describe the propagation of quantization error
on joint space coordinates to operational space coordinates,
estimates of joint space coordinate derivatives, and estimates
of operational space coordinate derivatives. We establish two
results for quantization error. The first result is a general one
useful for establishing worst-case bounds. The second models
each quantization as independent additive PQN for which
stochastic metrics, e.g. means and variances, on the error are
determined.

A. Error on Joint Space Coordinates

The quantization operator maps an input set with an infinite
number of elements to an output set with a finite number of
elements. An ideal optical encoder measuring the position of a
robot joint behaves as a uniform quantizer in which the output
elements are all equally spaced. At a certain joint at index i,
quantization operates on the true joint space coordinate, θi ∈

Fig. 3. Two conceptual models for quantization. A. quantization operates on
true joint space coordinate at index i, θi, and returns θ̂i with resolution ∆i.
B. Noise θ̃i ∈ R[−∆i/2,∆i/2] is added to the true joint space coordinate
to produce θ̂i. For the pseduo-quantization-noise (PQN) model, the noise is
white, with a uniform distribution between −∆i/2 and ∆i/2.

R, to return a quantized coordinate, θ̂i ∈ R. The error at this
coordinate, θ̃i ∈ R, is the difference between the quantized
and true coordinate,

θ̃i = θi − θ̂i. (1)

Quantization introduces error on the joint space coordinate
measurement, which we refer to as “noise”. This noise is
used as a conceptual model, and should not be confused with
some additional source of error. This interpretation is shown
in Fig. 3.

At joint index i, the quantized joint coordinate is always
within ∆i/2 of the true joint coordinate. Thus, the error at a
joint must satisfy

−1

2
∆i ≤ θ̃i ≤

1

2
∆i. (2)

This can also be expressed in vector form as

−1

2
∆ ≤ θ̃ ≤ 1

2
∆. (3)

where θ̃ ∈ Rn is a vector of the joint space coordinate

errors θ̃ =
[
θ̃1, θ̃2, . . . , θ̃n

]T
, and ∆ ∈ Rn is a vector of the

quantization intervals: ∆ = [∆1,∆2, . . . ,∆n]
T . Equations (2)

and (3) establish worst-case bounds for the quantization error
in joint space.

If quantization on a joint space coordinate at index i is
modeled stochastically as additive PQN, then θ̂i has a uniform
distribution,

θ̃i ∼ U(−∆i/2,∆i/2). (4)

The mean of θ̃i, Eθ̃i, is given by

Eθ̃i =

∫
θ̃ip(θ̃i)dθ̃i = 0. (5)

The variance of θ̃i, σ2
θ̃i

, is given by

σ2
θ̃i

= E((θ̃i −Eθ̃i)(θ̃i −Eθ̃i)) = ∆2
i /12. (6)

For the PQN model, θ̃ is random vector. The mean of θ̃,
Eθ̃, is given by

Eθ̃ = 0, (7)

where 0 denotes the zero vector in Rn. The covariance of θ̃,
Σθ̃ ∈ Rn×n, is defined by

Σθ̃ = E((θ̃ −Eθ̃)(θ̃ −Eθ̃)T ). (8)

If the error at one joint is independent of another, Σθ̃ is given
by the diagonal matrix,

Σθ̃(i, i) =
∆2
i

12
for i = 1, 2, . . . , n. (9)
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B. Local Error on Operational Space Coordinates
Let x ∈ Rm and x̂ ∈ Rm be vectors representing opera-

tional space coordinates formed from true and quantized joint
space coordinates, respectively, using the forward kinematics
f : Rn → Rm. The operational space error vector, x̃ ∈ Rm is
defined as

x̃ = x̂− x. (10)

We use an affine approximation to the forward kinematics to
describe local error propagation. Let J ∈ Rm×n be the Jaco-
bian relating joint and operational space velocities; ẋ = Jθ̇. In
general, the Jacobian is a function of the configuration, J(θ),
but for simplicity of notation, we note it simply as J . Then

x̃ = x̂− x, (11)

= f(θ̂)− f(θ), (12)

≈ f(θ) + J(θ̂ − θ)− f(θ), (13)

= Jθ̃. (14)

The affine approximation of f(θ̂), performed at θ, is valid
if the contribution of higher-order terms in θ̂−θ are negligible
compared to the approximation. The J(θ̂ − θ) term scales
linearly with the entries of θ̂−θ, while the higher-order terms
scale quadratically or higher. The entries of θ̂−θ are bounded
by the quantization interval ∆i for each joint, and if the
quantization intervals are sufficiently small, the approxima-
tion is valid. However, because the Jacobian is configuration
dependent, the approximation is only valid locally, in the
neighborhood of values close to θ.

The error at operational space coordinate indexed by j,
x̃j ∈ R, must satisfy

−
n∑
i=1

1

2
|Jji|∆i ≤ x̃j ≤

n∑
i=1

1

2
|Jji|∆i, (15)

or in vector form,

−1

2
|J |∆ ≤ x̃ ≤ 1

2
|J |∆, (16)

where |J | is the element-wise absolute value of J . Equation
(16) establishes a worst-case bound.

For the independent PQN model of quantization, a local
description of the mean of the error vector in operational space
is given by

Ex̃ = 0, (17)

where 0 represents the zero vector in Rm. The local descrip-
tion of the covariance of the error vector in operational space
is given by

Σx̃ = JΣθ̃J
T . (18)

The variance of a specific operational space coordinate at
index j, Σx̃(j, j) is given by

Σx̃(j, j) = (JΣθ̃J
T )(j, j) (19)

=

(
n∑
i=1

JiJ
T
i

∆2
i

12

)
(j, j) (20)

=

n∑
i=1

∆2
i ai
12

, (21)

where
ai ∈ R = JiJ

T
i (j, j), (22)

and Ji is the ith column of J . Equation (21) establishes
that, given a certain configuration of the robot, the variance
of the error on an operational space coordinate is a lin-
ear combination of the square of the quantization intervals
∆2
i . This representation is useful because the set of ai for

i = 1, 2, . . . , n shows the relative effect of the quantization
intervals on an operational space coordinate error. If all the
quantization intervals are the same, the variance of the error
is proportional to the square of the quantization interval, so
the standard deviation is linear in the quantization interval.

C. Error Propagation to Derivative Signals

In this subsection we establish worst-case and stochastic
error results for joint and operational space derivatives. Con-
sider SISO discrete transfer functions Gi and Hj . Here Gi
maps the joint space coordinate at index i, θ̂i, to φ̂i, and Hj

maps the operational space coordinate at index j, x̂j , to ŷj .
The SISO coordinate-wise filtering is equivalent to diagonal
MIMO discrete transfer function matrices, G and H , where
φ̂ = G(θ̂), and ŷ = H(x̂).

The output error of the transfer functions will be the input
error propagated through the transfer functions. In this analysis
we are interested in transfer functions that map coordinates
to estimates of their derivatives, although the approach is
applicable to any transfer function matrix.

1) Worst-case derivative error results: If a transfer function
is stable, given a bound on the error at the input, a bound
on the error at the output can be determined using the sub-
multiplicative property [17].

For bounding the error on a joint space derivative estimate
at index i, φ̂i,

‖φ̃i‖∞ = ‖Gi(θ̃i)‖∞ (23)

≤ ‖Gi‖`1‖θ̃i‖∞, (24)

where ‖φ̃i‖∞, ‖G(θ̃i)‖∞, and ‖θ̃i‖∞ are the infinity norms
of the discrete time signals, i.e., the peak absolute value, and
‖Gi‖`1 is the `1 norm of the transfer function Gi. Because the
infinity norm of a signal bounds all the values of the signal,
this can also be expressed as,

|φ̃i| ≤ ‖Gi‖`1 |θ̃i|max. (25)

Similar results exist for bounding the error on an operational
space derivative estimate at index j, ỹj , for both architectures
shown in Fig. 2. If we use the architecture that filters in
operational space,

|ỹj | ≤ ‖Hj‖`1 |x̃j |max. (26)

If we use the architecture that filters in joint space,

|ỹj | ≤
n∑
i=1

|Jji||φ̃i|max. (27)

Equations (25), (26) and (27) establish worst-case bounds on
the derivative estimates.
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2) Stochastic derivative error results: Results for stochastic
metrics on the derivative signal estimates, e.g. their mean and
covariance, are obtained by examining the error distribution
of the input, which is valid for the independent PQN model
of quantization.

Because the input error to the transfer functions, θ̃ and x̃,
are zero mean, the output errors will also be zero mean,

Eφ̃ = 0, (28)
Eỹ = 0. (29)

To find the covariance matrices of the error on the derivative
estimates, Σθ̃ and Σỹ , the propagation of power spectral
densities through transfer functions is used.

First, we establish the covariance matrix for the error on
the joint space derivative estimates, Σφ̃ ∈ Rn×n. Because the
error on φ̃ is zero mean,

Σφ̃ = E((φ̃−Eφ̃)(φ̃−Eφ̃)T ) (30)

= E(φ̃φ̃T ) (31)
= Rφ̃(0), (32)

where Rφ̃(τ) ∈ Rn×n,

Rφ̃(τ) = E(φ̃(k)φ̃(k − τ)T ), (33)

is the autocorrelation matrix of φ̃. The diagonal entries of
Rφ̃(τ) are the autocorrelations of the n random variables,
φ̃1, . . . , φ̃n, and the cross terms are the cross-correlations. The
relationship between the power spectral density matrix of φ̃,
Sφ̃(ω) ∈ Rn×n,

Sφ̃(ω) =

∞∑
τ=−∞

Rφ̃(τ)e−jωτ , (34)

and the covariance matrix of φ̃ (with zero mean) is

Σφ̃ =
1

2π

∫ π

−π
Sφ̃(ω)dω. (35)

For φ̃ = Gθ̃, the input and output error power spectral
densities are related by

Sφ̃(ω) = G(ω)∗Sθ̃(ω)G(ω), (36)

where G∗(ω) denotes the complex conjugate of G(ω). In the
independent PQN model, the error at a coordinate is white, so

Sθ̃ = Σθ̃. (37)

Therefore, combining Equations (35), (36) and (37),

Σφ̃ =
1

2π

∫ π

−π
G(ω)∗Σθ̃G(ω)dω. (38)

Here Σφ̃ will be diagonal, and can be expressed component-
wise as

Σφ̃(i, i) =
1

2π

∫ π

−π
Gi(ω)∗Gi(ω)dω Σθ̃(i, i) (39)

= ‖Gi‖22 Σθ̃(i, i), (40)

where ‖Gi‖22 is the squared H2 norm of the transfer function
Gi [17].

The covariance matrix of the error on the operational space
coordinate derivative estimates Σỹ ∈ Rm×m is found for both
architectures shown in Fig. 2.

For the filter in joint space architecture, because ỹ = Jφ̃,

Σỹ = JΣφ̃J
T . (41)

For the filter in operational space architecture, the propaga-
tion of the error power spectral densities is used to find Σỹ ,
similar to the approach used for finding Σφ̃,

Sỹ(ω) = H(ω)∗Sx̃(ω)H(ω). (42)

Because x̃ = Jθ̃, the power spectral density of the input error
x̃, Sx̃(ω), is given by,

Sx̃(ω) = JSθ̃(ω)JT = JΣθ̃J
T = Σx̃. (43)

Therefore, using the relationships of Equations (42) and (43),

Σỹ =
1

2π

∫ π

−π
Sỹ(ω)dω (44)

=
1

2π

∫ π

−π
H(ω)∗Σx̃H(ω)dω. (45)

Because of the diagonal structure of H , Σỹ can be expressed
component-wise as

Σỹ(j, j) =

∫ ∞
−∞

Hj(ω)∗Hj(ω)dω Σx̃(j, j) (46)

= ‖Hi‖22 Σx̃(j, j), (47)

for the diagonal entires, and

Σỹ(p, q) =

∫ ∞
−π

Hp(ω)∗Hq(ω)dω Σx̃(p, q) (48)

=
∑
HpHq Σx̃(p, q), (49)

for the cross terms, where Hp represents the impulse response
of Hp. From Equation (48) to (49) Pareseval’s equation was
used [17].

Table II summarizes the worst-case and stochastic results
for the quantization error on joint space, operational space,
and joint and operational space derivative estimates.

IV. EXPERIMENT: CARTESIAN POSITION, VELOCITY, AND
ACCELERATION ERROR OF THE PHANTOM PREMIUM

ROBOT

Experiments with a Phantom Premium 1.5 haptic de-
vice/robot (SensAble Technologies, Inc.) were conducted to
compare theoretical and experimental results. Two sets of
experiments were performed to analyze the error from quanti-
zation in joint space. The first set tested the error distributions
on operational space coordinates for various configurations of
the robot. The second set analyzed the error distributions on
operational space derivative signals. The joint and operational
space coordinates of the robot are the standard coordinates for
the Phantom Premium [18], and are shown in Fig. 4.

An input undergoes d back differences, and then n low-pass
filters with a cut-off frequency of ω0 (rad/s) and unity gain at
zero frequency. Other filters could be used; this specific filter
was chosen because of its simplicity and common implemen-
tation. The parameters of the filter are d = 1 (corresponding to
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TABLE II
JOINT SPACE QUANTIZATION ERROR PROPAGATION SUMMARY

General Independent PQN

|θ̃| ≤ 1
2∆

Eθ̃ = 0

Σθ̃(i, i) = 1
12∆2

i

|φ̃i| ≤ ‖Gi‖`1 |θi|max
Eφ̃ = 0

Σφ̃(i, i) = ‖Gi‖22 Σθ̃(i, i)

|x̃| ≤ 1
2 |J |∆

Ex̃ = 0

Σx̃ = JΣθ̃J
T

Eỹ = 0

|ỹj | ≤
∑n
i=1 |Jji||φ̃i|max Σỹ = JΣφ̃J

T

|ỹj | ≤ ‖Hj‖`1 |x̃j |max Σỹ(j, j) = ‖Hj‖22 Σx̃(j, j)

Σỹ(p, q) =
∑
HpHqΣx̃(p, q)

Fig. 4. A. The Phantom Premium 1.5 used in the experiment. B. A schematic
of the Phantom Premium 1.5. The joint space coordinates are θ1, θ2, and θ3,
and the operational space coordinates are x, y, and z. The schematic displays
the robot in the zero position. This figure is modified from [18].

velocity), a filter order of n = 1, a sample rate of 1000 Hz, and
a cut-off frequency of 50 Hz. Because we use a linear model
of the forward kinematics to obtain a local description of the
error, an alternate filter in joint space (with the structure of G
equivalent to H) would result in the same error on velocity.

A. Experimental Procedure

In both sets of experiments, the robot was controlled to
oscillate about a given configuration with sinusoidal motion
in which two types of signals were recorded: one with sig-
nals constructed from artificially quantized joint angles with
a quantization interval of 1 milli-rad, and another without
artificial quantization to create signals acting as truth. The
actual quantization of the robot is 0.125 milli-rad for all joints,
so the artificial quantization was 8 times the natural. The

Fig. 5. The structure of the transfer functions, Hj , to form derivative signal
estimates for Section IV. The input undergoes d back differences and n single
order low-pass filters with cut-off frequency ω0 (rad/s).

50

75

100

125

150

Fig. 6. The theoretical and experimental worst-case, and standard deviations
of, the operational space coordinate error for various configurations (in
degrees) of the Phantom Premium 1.5 used in the experiment.

amplitude of the motion, A, was 3◦ in each joint angle, and
each joint had a different frequency, ω, within 0.1 Hz of 5
Hz to ensure independent error in joint space coordinates. All
experiments were run with a control and data collection rate
of 1 kHz, and a specific experiment was 15 seconds.

Because the robot was moving with amplitude sufficiently
large compared to the quantization intervals, and the motion
of the robot was sufficiently fast compared to the product of
∆f , the PQN model is predicted to hold to a high degree of
accuracy [1].

B. Error Distribution on Operational Space Coordinates

For the first set of experiments, theoretical and experimental
results for the worst-case and standard deviation error for
operational space coordinates in various configurations of the
robot were found. The experimental error for an operational
space coordinate (e.g., the x coordinate), was the difference
between the signal constructed using the forward kinematics
with artificial quantization and the one without. The results
are displayed in Fig. 6 for various configurations of the robot.
Matching the analytical results of Section III, the mean of the
experimental error was close to zero for all experiments. The
largest magnitude of the mean error for all experiments was
less than 2µm.

C. Error Distribution on Operational Space Velocity and
Acceleration

The second set of experiments examined the error on the
velocity and acceleration estimates of an operational space
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Fig. 7. The theoretical and experimental worst-case, and standard deviations
of, the operational space coordinate derivative error about the zero position
of the Phantom Premium 1.5 used in the experiment for various filter orders.

coordinate (the x coordinate) about the zero configuration for
various filter orders. The error was formed by the difference
between artificially quantized joint space coordinates and those
without using the filter in operational space approach described
in Fig. 2A. The structure of the transfer functions were that of
Fig. 5, where the back-difference order, d, was 1 for velocity,
and 2 for acceleration. The experimental mean, variance, and
worst-case error was computed for various cut-off frequencies,
ω0, of the low-pass filter for three filter orders n = 1, 2, and
3, and compared to theoretical predictions. The results are
displayed in Fig. 7. The mean of the experimental derivative
error was small for all experiments; the largest magnitude of
the mean of an error signal was less than 1% of its standard
deviation for all experiments.

D. Comparison of Theory and Experiment

The minor discrepancies between the theory and exper-
imental data present in Figures 6 and 7 come from two
sources. The first source is that an affine model of the forward
kinematics is used to analyze the error on operational space
coordinates and estimates of their derivatives. Thus, the results
for operational space are configuration dependent, and the
region for which the results are valid is related to how well
the forward kinematics are described by an affine model in

a certain configuration. The second source of discrepancy
between analytical predictions and experimental data, which
applies only to the stochastic results, is the independent PQN
model of quantization error.

V. CONCLUSION

We characterized quantization error in a robotic system.
Given quantization specifications, robot kinematics, and dis-
crete transfer functions mapping coordinates to their deriva-
tives, we described the propagation of quantization error on
joint space coordinates to operational space coordinates, joint
space coordinate derivatives, and operational space coordinate
derivatives. This work can be used by designers of robotics
mechanisms and control engineers in order to predict the
relationships between encoder quantization and the error on
joint and operational space coordinates and their derivatives.
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