
Measuring Systematic Generalization
in Neural Proof Generation with Transformers

Nicolas Gontier
Quebec Artifical Intelligence Institute (Mila),

Polytechnique Montréal
gontiern@mila.quebec

Koustuv Sinha
Quebec Artifical Intelligence Institute (Mila),

McGill University
Facebook AI Research

Siva Reddy
Quebec Artifical Intelligence Institute (Mila),

McGill University
Facebook CIFAR AI Chair

Christopher Pal
Quebec Artifical Intelligence Institute (Mila),

Polytechnique Montréal
ElementAI

Canada CIFAR AI Chair

Abstract

We are interested in understanding how well Transformer language models (TLMs)
can perform reasoning tasks when trained on knowledge encoded in the form of
natural language. We investigate systematic generalization abilities on an inductive
logical reasoning task in natural language, which involves reasoning over rela-
tionships between entities grounded in first-order logical proofs. Specifically, we
perform soft theorem-proving by leveraging TLMs to generate logical proofs rep-
resented in natural language. We systematically test proof generation capabilities,
along with inference capabilities leveraging the generated proofs. We observe
length-generalization issues in proof generation and inference when evaluated on
longer-than-trained sequences. However, we observe TLMs improve their general-
ization performance after being exposed to longer, exhaustive proofs. In addition,
we discover that TLMs are able to generalize better using backward-chaining
proofs compared to their forward-chaining counterparts, while they find it easier to
generate forward chaining proofs. We observe that models that are not trained to
generate proofs are better at generalizing to problems based on longer proofs. This
result suggests that Transformers have efficient, yet not interpretable reasoning
strategies internally. These results also highlight the systematic generalization
issues in TLMs in the context of logical reasoning, and we believe this work will
motivate deeper inspection of their underlying reasoning strategies.

1 Introduction

Systematic Generalization is the capacity to understand and produce a potentially infinite number of
novel combinations from known components (Chomsky, 1957; Montague, 1970). For example, in
Figure 1, a model could be exposed to a set of facts (e.g., “Nat is the granddaughter of Betty”, “Greg
is the brother of Nat”, “Flo is the sister of Greg”), but not to all the possible facts that can be inferred
by combination of the known components (e.g., “Flo is the granddaughter of Betty”). If a model is
able to perfectly accomplish a task by leveraging existing facts to infer new ones, we deem the model
is generalizing systematically.

Recent development in natural language processing (NLP) showed that Transformer (Vaswani et al.,
2017) language models are able to capture linguistic knowledge (Peters et al., 2018; Goldberg, 2019;
Tenney et al., 2019), and yield state-of-the-art performances in many NLP tasks (Radford et al., 2018;

To appear at NeurIPS 2020, submitted for peer review on June 5th 2020.



Devlin et al., 2019; Dai et al., 2019; Yang et al., 2019), including but not limited to answering reading
comprehension questions (Radford et al., 2019; Brown et al., 2020) and generating factual knowledge
(Petroni et al., 2019) with little to no task supervision. These models are optimized on large corpora
to predict the next word in a sentence or to predict masked words in a sentence. While yielding
impressive results, it is not clear if Transformer models rely on many superficial patterns in the data
or if they actually learn re-usable skills, enabling them to generalize to new tasks by leveraging
compositionality of those skills (Lake and Baroni, 2018; Liška et al., 2018). Training on massive data
can give certain advantages with respect to understanding the meanings of words, but we conjecture
that such data gives models much less experience with reasoning over long inference chains.

granddaughter

brother
Nat.

grandson

Greg.

granddaughter

sister

sister
Flo.

Betty

Figure 1: Example of
a CLUTRR graph with
known facts (solid lines)
and unknown facts to in-
fer (dotted lines).

In our work, we study the less understood issues related to how well
Transformer Language Models (TLMs) are able to perform long chains of
reasoning. In particular, we study TLMs in the task of theorem proving,
where facts and proofs are specified in natural language. Theorem provers
are effective and interpretable solutions for systematically composing
known facts into novel ones (De Raedt et al., 2007; Rocktäschel and
Riedel, 2017). Using thereom proving, we test if TLMs can generate
interpretable proofs with language modeling as their main objective. In
particular, we study their behavior as logical reasoners on text through
analyzing the proofs generated in natural language and the final answer.
This setup allows us to evaluate the reasoning and generalization capa-
bilities of TLMs. Recent work such as Petroni et al. (2019); Raffel et al.
(2020); Brown et al. (2020) suggest that language models can be treated
as knowledge bases. This directly motivates us to investigate if language
models can also learn certain reasoning strategies. Studying these abilities would enable future
research in using these models as dynamic knowledge bases that could infer new knowledge even
when it is not “stored” directly (i.e. seen during pre-training).

For natural language theorem proving, we use the question answering CLUTRR benchmark suite
(Sinha et al., 2019) to perform controlled studies. This dataset is of interest because (i) of the
compositional nature of tasks involved, making it ideal to evaluate systematic generalization and (ii)
each question–answer pair is accompanied by a proof that can be used to explain how to arrive at the
answer. We use the dataset as a medium to design targeted experiments to understand the reasoning
capacity of TLMs.

Our experiments reveal the following:

1. TLMs suffer from length generalization, i.e., they cannot extrapolate to proofs which require more
proof steps than seen during training time.

2. They generalize better when trained to generate long proofs compared to short proofs.
3. They generalize better when trained to generate backward-chaining proofs rather than forward-

chaining.
4. Surprisingly, they generalize better when they are trained to directly generate the answer instead

of learning to generate the proof and then the answer.

To the best of our knowledge, we are the first to use a language modeling objective to do interpretable
theorem proving with a Transformer. We hope that this work can shed some light on the reasoning
capacity of Transformers and inspire future research directions for the community to design models
with greater reasoning capacity.

2 Related Work

Systematic generalization has recently been in spotlight due to its importance in understanding
the strengths and weaknesses of neural networks. Bahdanau et al. (2019a,b) identify and evaluate
the generalization capacity of visual question answering models. We however focus this study on
a fully natural language domain. There have been several recent studies on explicitly evaluating
systematic generalization capabilities of natural language understanding and generation. Dasgupta
et al. (2019) introduce a natural language inference (NLI) dataset which proves to be challenging
for language understanding models for compositional generalization. Goodwin et al. (2020) also
evaluate systematic generalization in NLI setting with procedurally generated controlled test cases to
observe the failures of neural architectures.

2



raw facts amt

story
[(Natasha, granddaughter, Betty),

(Florence, sister, Gregorio),
(Gregorio, brother, Natasha)]

<STORY>
Natasha is a granddaughter to Betty.

Florence is Gregorio ’s sister.
Gregorio is a brother of Natasha.

<STORY> Betty likes picking berries with
her son ’s daughter. Her name is Natasha.

Gregorio took his sister, Florence, to a baseball game.
Gregorio and his sister Natasha love it when their

grandmother visits because she spoils them.
She is coming this week to watch them while

their parents are out of town.
query (Florence, _, Betty) <QUERY> Who is Florence for Betty ?

proof

[{(Florence, granddaughter, Betty):
[(Florence, sister, Gregorio),

(Gregorio, grandson, Betty)]},
{(Gregorio, grandson, Betty):
[(Gregorio, brother, Natasha),

(Natasha, granddaughter, Betty)]}]

<PROOF>
since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,

then Florence is a granddaughter to Betty.
since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,

then Gregorio is a grandson of Betty.

answer granddaughter <ANSWER> Florence is the granddaughter of Betty

Table 1: CLUTRR example of level 3 (ie: 4 entities, 3 relations, 2 proof steps). The proof follows the
short-proof-rev strategy. We refer the reader to Figure 1 to visualize the corresponding graph in which solid
lines refer to the facts given in the story and dotted lines refer to the new facts inferred in each proof step.

Our work studies the systematic generation and reasoning capabilities on Transformer-based (Vaswani
et al., 2017) language model using CLUTRR (Sinha et al., 2019), a dataset for logical question
answering which provides access to the underlying logical proofs. Similar datasets include SCAN
(Lake and Baroni, 2018) which has been instrumental to test systematic generalization (Lake, 2019;
Baroni, 2020) and CFQ (Keysers et al., 2020) which measures systematicity of language understanding
via a question answering setup. Sinha et al. (2019) propose a series of baseline models with the
CLUTRR dataset but none of them took advantage of the provided proof attached with each example.
In addition, their Transformer baselines were not fine-tuned on the task. Unlike them, we focus on
learning and generating proofs for studying systematic generalization.

Neural proof generation (Sekiyama et al., 2017) and neural theorem proving (Rocktäschel and Riedel,
2017; Weber et al., 2019; Minervini et al., 2020) have been explored in previous work. They tend to
combine symbolic and statistical approaches to leverage the compositionality of symbolic systems
and the flexibility of statistical systems. Nevertheless, these combined systems all assume some
predefined set of atoms and rules making up the environment. We instead use natural language text to
define our environment and measure the limits of a purely statistical approach.

Clark et al. (2020) is the most relevant work to ours. However their system is not generative, rather
they predict a true/false binary label on candidate answers. We instead explore the generalization
capacity of Transformer decoders and use the generated proof as an interpretable explanation for the
final answer.

3 Evaluating systematic generalization through interpretable reasoning

3.1 The task

Background. We use the family relation CLUTRR benchmark suite (Sinha et al., 2019) to generate
our dataset. Each example is composed of (i) a family graph G = (V,E) (referred as story) with
entities as nodes (v ∈ V ) and relationships as edges (e ∈ E), (ii) a query about the relationship
between two entities separated by more than one hop in the family graph, or (u, v) (iii) a reasoning
path (referred as proof ) expressed as a list of (node, edge, node) tuples, referred to as facts and
(iv) the target relationship between the two queried entities (referred to as the answer). The dataset
contains 272 distinct entities and 20 relationship types, ordering to ∼ 1.5M possible facts. Each
(node, edge, node) fact can be expressed in natural language using either one of 5 factual sentences
(referred to as facts template), or by using one of 6, 000 noisy but more natural sentences written
by mechanical turkers (refered as amt template). Family graphs are expressed using either the facts
template or the amt template, while queries, proofs and answers are always expressed with the facts
template. A CLUTRR example can be seen in Table 1 and Figure 1.

Terminology. In order to evaluate systematic generalization, we define the following building blocks
that constitute a proof :

• entity: one node. e.g. “Anna”.
• relation: one edge. e.g. “mother”.

3



sp

since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is a grandson of Betty.
since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,
then Florence is a granddaughter to Betty.

spr

since Florence is a sister of Gregorio, and Gregorio is a grandson to Betty,
then Florence is a granddaughter to Betty.
since Gregorio is a brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is a grandson of Betty.

lp

since Gregorio is the brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is the grandson of Betty.
since Florence is the sister of Gregorio, and Gregorio is the brother of Natasha,
then Florence is the sister of Natasha.
since Florence is the sister of Natasha, and Natasha is the granddaughter of Betty,
then Florence is the granddaughter of Betty.

lpr

since Florence is the sister of Natasha, and Natasha is the granddaughter of Betty,
then Florence is the granddaughter of Betty.
since Florence is the sister of Gregorio, and Gregorio is the brother of Natasha,
then Florence is the sister of Natasha.
since Gregorio is the brother of Natasha, and Natasha is the granddaughter of Betty,
then Gregorio is the grandson of Betty.

Table 2: Proof resolution types for an example of level 3. We refer the reader to Figure 1 for the
kinship graph corresponding to this example. sp=short-proof, spr=short-proof-reversed, lp=long-
proof, lpr=long-proof-reversed.

• fact: Single factual sentence representing a (node, edge, node) tuple using facts template. e.g.
“Anna is the mother of Bob.”
• proof_step: Single inference step combining two facts to get a new one. e.g. “since (A, mother,

B) and (B, brother, C) then (A, mother, C).”
• proof: The entire resolution chain, consisting of multiple proof_steps.

Following the setup of CLUTRR, we define the relative difficulty of individual tasks according to the
number of edges present in the family graph. For instance, Figure 1 shows a level-3 example because
it has 3 solid edges (known facts) between 4 entities. In general, a level k task consists of k edges
(corresponding to k sentences in the story) between k + 1 nodes and k − 1 hidden edges to infer
(corresponding to k − 1 proof steps to solve the task). As the levels increase, so does the number of
sentences in the story and the number of proof steps in the proof.

Problem Setup. We trigger a model to: (1) given a story and query, generate a proof followed by
an answer, and (2) given a story, query, and a proof, generate an answer. In particular, we train
a Transformer-based decoder (Liu et al., 2018) with the language modeling objective on entire
sequences of “<STORY> [story] <QUERY> [query] <PROOF> [proof] <ANSWER> [answer]”:

L(θ) =
∑
i

logP (wi|w1, . . . , wi−1; θ)

This setup enables us to generate both the answer to a query and the proof to arrive at this answer,
given as input the family graph, expressed as a story and a question. Concretely, we inject sequences
of the story and query having delimiters “<STORY>” and “<QUERY>” to the language model and
trigger it to generate the corresponding proof and answer with tokens “<PROOF>” and “<ANSWER>”
respectively.

3.2 Proof resolution strategies

In our task, we turn language models into approximate proof generators. Specifically, we train
TLMs to generate proofs (as defined in Section 3.1). We do not explicitly perform inference on the
generated proofs, but reformulate the language generation objective to generate the inferred answer
after the proof sequence. Our task allows us to leverage TLMs to generate forward and backward
chaining resolution paths used in Inductive Logic Programming (ILP) (Evans and Grefenstette, 2018).
In our case, these resolution paths are expressed in natural language. To simulate approximate

4



ANON TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 16.28% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

73.08% 58.06% 52.75% 54.28% 50.93% 59.04% 56.92% 53.55% 52.17%

facts (A-r-B) 100% 100% 100% 100% 100% 100% 100% 100% 100%
entities (A) 100% 100% 100% 100% 100% 100% 100% 100% 100%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 3: Percentage of the test proof’s building blocks also present in the training set (composed of levels 2,
4, 6) for all levels. We colored all cells with a value of 100% to better visualize which building blocks were
entirely contained in the training set.

theorem generation, we introduce four different types of proof that can be used to derive the answer
given a story and query. An example of each of these can be seen in Table 2 and we describe each
setting below:
short-proof-rev (spr). In this setting, we use the backward-chaining resolution path provided by the
CLUTRR dataset, which is generated by recursive application of the kinship logical rules. This proof
strategy can be viewed as an explain-why scenario, where the first sentence in the proof contains the
answer (target relationship) and the subsequent sentences contain the intermediate steps required to
explain that answer. We refer the reader to Sinha et al. (2019) for further details on the generation of
this proof setting.
short-proof (sp). In this setup, we reverse the resolution chain provided by the CLUTRR dataset
by swapping all sentences from the short-proof-rev setting. Doing so, we arrive at a forward-
chaining inference path, in which the final proof step consists of the target relationship. Specifically,
the first sentence in the proof combines two facts from the given story to infer a new fact. In
subsequent proof steps, the inferred fact from the previous step is combined with a fact from the story,
to infer a new fact until the answer is found.
long-proof (lp). Forward-chaining inference technique in ILP consists of generating all possible new
facts from the starting facts, and evaluate each of them for the resolution of the target answer (Russell
and Norvig, 2020). In this setup, we extend the short-proof setup where we attempt to infer all
possible facts given the ones present in the input story. Each proof step combines any two previously
known facts to infer a new fact until the answer is found. Pseudo-code for generating this proof can
be found in Appendix 6.2.
long-proof-rev (lpr). This setting is the same as the previous one, but in reverse. It starts from
the answer and goes back to the facts originally given in the story. This resolution strategy can be
viewed as a backward-chaining strategy where all possible paths are considered. This proof strategy
is obtained by swapping all sentences from the long-proof setting.

We compare each strategy in our experiments to understand which form of logical resolution is
easier to learn for TLMs. In particular, we note that the reversed proof strategies (spr and lpr)
fall in the backward-chaining family of logical resolution, while the non-reversed strategies (sp and
lp) represent the forward-chaining resolutions. Backward-chaining family features the proof step
containing the answer at the beginning of the proof. On the other hand, forward-chaining type proofs
(sp and lp) feature the proof step containing the answer at the end of the proof.

3.3 Systematic generalization in proof generation

Now that we have defined the task and various proof generation strategies available in our setup, we
proceed to define the aspects of generalization we aim to test. Our original CLUTRR formulation
tests the generalization capacity of a model to new facts hence new proof_steps and new proofs,
after being trained on all entities and relations. Initial experiments on this setup showed that
Transformer language models fail to generalize to unseen facts. Indeed, due to the presence of a
large number of entities in CLUTRR, we end up with combinatorially large number of possible facts.
The model may thus not be able to learn how to represent each entity effectively, hence reducing its
chances to learn higher-order structures such as unseen facts. Experimental results on this original
setting are provided in Appendix 6.1.

5



We instead slightly simplify the generalization evaluation and allow the model to also be exposed
to all possible facts. This formulation tests a model capacity to generalize to new proof_steps
hence new proofs, after being trained on all entities, relations and facts. Since providing a
training corpus covering all possible facts would significantly increase the training data, we instead
reduce the number of entities in CLUTRR by replacing every entity by one of k1 randomly sampled
entity tokens, resulting in significantly fewer possible facts, and thus all facts being contained in the
training set (Table 3).

Interpolation and Extrapolation. Having access to the levels of difficulty of each test examples,
we evaluate both how Transformers can generalize to unseen proofs of the same difficulty as seen
during training (inductive generalization); and how they can generalize to unseen proofs of unseen
difficulty levels. In particular, we test interpolation in which the testing difficulty levels are not seen
during training and less than training levels; and extrapolation in which the test difficulty levels are
not seen during training and higher than training levels. This setup systematically tests the length
generalization capabilities of Transformer-based language model in logical theorem proving.

4 Experiments and Analysis

We aim to answer the following questions to analyze the proof generation capabilities of Transformer-
based language models (TLMs):

1. Are TLMs able to reason better after being trained to generate interpretable proofs expressed in
natural language?

2. Which type of proofs are easier to learn and generate for TLMs?
3. Which type of proofs are more useful for TLMs to generate accurate answers?

Setup. In all our experiments we used a Transformer decoder architecture (Liu et al., 2018) with
2.5M and 3.5M parameters with a vocabulary size of 90 and 1, 800 tokens for stories expressed
with the facts and amt template respectively. Detailed parameter settings for our models are given
in Appendix 6.3. We also ran preliminary experiments with a larger model (145M parameters)
(Appendix 6.4), with a GPT2 model (Radford et al., 2019) (Appendix 6.5), and with a more complex
network (an encoder-decoder transformer) (Appendix 6.6) but found similar conclusions or further
investigation being required. We generate 390, 000 CLUTRR examples of level 2 to 10. We train
the models on 300, 000 examples of levels 2, 4 and 6 and evaluate the model on a test set of 10, 000
examples for all levels from 2 to 10. Specifically, we test levels 3 and 5 for interpolation, levels 2, 4
and 6 for inductive generalization and levels 7, 8, 9 and 10 for extrapolation.

Evaluation Metrics. In the following experiments, we evaluate both the generated proof validity
and answer accuracy. The answer is defined as the first sentence after the “<ANSWER>” tag in the
generated sequence. Since all answers during training were expressed using the facts template, we
reverse this template to extract the (entity, relation, entity) triple from the generated answer. If the
extraction fails, we consider the generated answer wrong. We then compare the extracted triple to the
ground truth provided in the CLUTRR dataset. For comparison, in all experiments, we also report the
accuracy of the naive most-frequent-relation (MFR) baseline consisting of predicting the relation that
is the most frequent in the training set for the queried entity pair.

A proof is defined as the ordered sequence of all sentences generated between the “<PROOF>” and
“<ANSWER>” tokens. For validating a proof, since all proofs during training were expressed using
the facts template, we reverse this template to extract all (entity, relation, entity) triples from the
generated proof sentences. If the extraction process fails at any point, the entire proof is considered
invalid. The ordered sequence of each proof step is then evaluated against the transitivity rules defined
by the CLUTRR environment. In addition, we also check that all the facts necessary for the proof are
either given in the input story, or inferred from a previous proof step. If any of these condition fail,
we consider the proof invalid.

No proof setup. In addition to the four proof strategies defined in Section 3.2, we also compare in all
our experiments with a model that is trained to directly generate the answer after the story and query.
In particular, this no-proof model is trained on sequences of “<STORY> [story] <QUERY> [query]
<PROOF> none . <ANSWER> [answer]”. This allows us to estimate how important is the proof for our
models to be able to generalize.

1k = 20 in our case because we know that the maximum number of entities in a story is less than 20.

6



20.559%
15.843%

81.554%

38.876%

9.131%
4.965% 2.505%

89.140%

54.253%

20.493%

7.201%

85.578% 87.654% 89.952%

55.780%

25.327%

14.530%
8.524%

86.543% 88.388%
82.593%

39.035%

17.142%

4.767%

75.207%

48.845%

20.422%

8.275% 7.220% 8.115% 8.830% 10.728% 8.313% 7.410% 7.898%

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

sp

spr

lp

lpr

np

mfr

(a) stories expressed with the facts template.

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

amt / sp

amt / spr

amt / lp

amt / lpr

amt / np

mfr

(b) stories expressed with the amt template.

Figure 2: Answer accuracy for all test levels from 2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF>” and they generate the proof and answer. The models are
trained on levels 2, 4, 6 only. Different proof settings are evaluated: sp=short-proof, spr=short-
proof-reversed, lp=long-proof, lpr=long-proof-reversed, np=no-proof. We also report the naive
most-frequent-relation (mfr) baseline.

4.1 Answer Accuracy

We evaluate the answer accuracy of models trained with different proof settings on the test set
described earlier by Table 3. Each model is given as input a story, query, and the proof trigger token
(“<STORY> [story] <QUERY> [query] <PROOF>”), and we allow them to decode the next tokens, that
is, the proof followed by the answer.

Q: Are TLMs able to generalize to unseen proof steps? A: For simple language, yes in interpolation
and no in extrapolation. For complex language, No in both cases.

In Figure 2a we evaluate models trained wit stories expressed with the facts template. We observe
that in all proof setups, with the exception of short-proofs, TLMs are able to systematically generalize
to predict the correct answer inferred from unseen proof_steps and proofs, both in inductive
(levels 2, 4, 6) and for interpolation setup (levels 3 and 5). However, in all proof setups TLMs
still have difficulties to extrapolate to longer problems requiring a larger number of reasoning steps,
conforming to length generalization issues discovered in related tasks (Lake, 2019).
In Figure 2b we note that models trained on noisy amt stories fail to systematically generalize to
predict the correct answer. In addition, we can see a linear decrease in accuracy with the level of
difficulty. Having to de-noise the input stories to extract relevant kinship relations, in addition to
running logical inference, makes the task much more challenging for our network. We conjecture
that generalizing in this harder setting may require additional capacity added to the model, either in
terms of model size, model architecture, training data, or a combination of all the above. For instance,
we explore the benefit of fine-tuning GPT2 (Radford et al., 2019) in Section 6.5 as an initial step, but
leave room for further improvement in future work.

Q: Which reasoning strategy generalizes better? A: Backward-chaining is better than forward-
chaining, but no-proof can be better than both. Long-proofs are better than short-proofs.

We observe that backward proof strategies (spr, lpr) better help the model to answer accurately than
their respective forward strategies (sp, lp) (Figure 2), with the exception of long proofs in the amt story
template. This suggests that backward chaining is easier to learn, or easier to use, or both than forward
chaining for TLMs. We believe this effect is due to the position-dependent exploitation of TLMs,
where the answer is usually in the first generated proof-step in case of backward-chaining proofs. In
addition, we note in Figure 2 that long-proofs (lp, lpr) yield better generalization performance than
short-proofs (sp, spr) with the exception of reversed strategies in the facts story template.
It is also interesting to see that models trained to go directly to the answer by generating the “none”
token as a proof tend to perform better than all other models required to generate the proof in facts
stories (Figure 2a). One hypothesis is that the generated proof may be invalid most of the time and
hence the extra information given by the proof is actually deteriorating the model’s performance. To
see if that may be the case, we next look at the validity of the generated proofs for all models (except
the trivial no-proof).

7



51.263%

37.606%

76.912%

8.188%

15.491% 13.447%
7.100%

1.383%

20.472%

87.415%

1.839% 2.010% 1.478% 0.656%

65.039%

74.719%
77.913%

27.381%

13.311%

5.839%
2.737%

33.907%
39.843%

66.488%

9.206%
6.553%

3.310% 2.081%

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

sp

spr

lp

lpr

(a) stories expressed with the facts template.

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

amt / sp

amt / spr

amt / lp

amt / lpr

(b) stories expressed with the amt template.

Figure 3: Proof validity for all test levels from 2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF>” and they generate the proof and answer. The models are trained
on levels 2, 4, 6 only. Different proof settings are evaluated: sp=short-proof, spr=short-proof-
reversed, lp=long-proof, lpr=long-proof-reversed, np=no-proof.

4.2 Proof Validity

We evaluate the proof validity of models trained with different proof settings on the test set (previously
described by Table 3) in Figure 3. Similarly as above, each model is given as input a story and query
and we trigger the model to decode the proof and answer with the trigger tokens “<PROOF>” and
“<ANSWER>” respectively.

Q: Which reasoning strategy is easier to generate? A: forward-chaining is easier than backward-
chaining and long-proofs are easier than short-proofs.

From Figure 3a we observe that forward-chaining strategies (sp, lp) tend to be easier to generate
than their respective reversed strategies (spr, lpr). This is contrary to the previous observation where
backward-chaining strategies were easier for the models to understand. We believe that this is due
to the fact that the model has a higher chance of generating the first proof step correctly than the
final proof step. Since backward chaining proofs contain the answer in the first proof step, when
re-using that information to predict the answer, there is a higher chance that the answer will be correct.
This explains why the answer accuracy of such model is relatively high while their proof validity is
relatively low.
In addition, we observe that in both facts and amt stories (Figure 3), long proof strategies are easier
to generate than shorter ones. This was not expected at first since long sequences are usually harder
to model in language models. One hypothesis is that since long-proofs come from a systematic
construction (see Appendix 6.2) they are easier to generate than the more arbitrary short proofs.

Q: Are TLMs able to generate valid proofs of unseen lengths? A: No.

We observe that valid proofs are difficult to generate for TLMs in unseen difficulty levels, both in
interpolation and extrapolation setting (Figure 3a). This partially explains why the no-proof setting in
the previous section yielded better generalization performances. In addition, we note in Figure3b that
the generated proofs from models trained on noisy amt stories are mostly invalid. We believe that
this is due to the fact that models need to denoise the information from the input story in addition to
generating a valid proof, making the task much harder. To understand if models rely on the validity
of the proof, we next evaluate their answer accuracy when given the real proof as input rather than
the generated one.

4.3 Proof is given

To understand if models rely on the validity of the proof, we again evaluate the answer accuracy as in
Section 4.1, but this time the models are given as input the story, the query and the real proof followed
by the answer trigger token: “<STORY> [story] <QUERY> [query] <PROOF> [proof] <ANSWER>”.
We then let the language model decode the next tokens making up the answer. Note that the no-proof
model is given “none” as its “[proof]” so we don’t expect this model performance to change from
Section 4.1.

8



7.460%

0.023% 0.000% 0.000%

88.035% 88.082%

42.726%

18.630%

3.737%

59.886%

29.049%

15.180%

86.655%

52.238%

10.504%

75.230%

48.990%

20.129%

8.275% 7.220% 8.115% 8.830% 10.728% 8.313% 7.410% 7.898%

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

sp

spr

lp

lpr

np

mfr

(a) stories expressed with the facts template.

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

amt / sp

amt/ spr

amt / lp

amt / lpr

amt / np

mfr

(b) stories expressed with the amt template.

Figure 4: Answer accuracy for all levels from 2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF> [proof] <ANSWER>” and they generate the answer. The models
are trained on levels 2, 4, 6 only. Different proof settings are evaluated: sp=short-proof, spr=short-
proof-reversed, lp=long-proof, lpr=long-proof-reversed, np=no-proof. We also report the naive
most-frequent-relation (mfr) baseline.

Q: Are ground-truth proofs useful for TLMs to generalize systematically? A: Yes.

When the proof is provided in the input, all models outperform the no-proof model in inductive
and interpolation test cases (Figure 4). In extrapolation test cases, models trained on facts stories
(Figure 4a) benefit from the proof compared to Section 4.1, and models trained with amt stories
outperform the no-proof model (Figure 4b). This suggests that models do learn to use the correct
proof to better generalize during inference.
However, as the difficulty of the examples increase, the generalization performance of all models
decreases. Even when given the proof containing the correct answer, TLMs fail to copy the correct
information from sequences of greater length than seen during training. Our hypothesis for this is that
Transformers strongly rely on the position of the answer and have trouble learning simple tasks – such
as copying the answer from the proof – if the information for this task happens at unseen positions.

Q: Which reasoning strategy is easier to use when generating answers? A: backward-chaining is
easier to use than forward-chaining and long-proofs are easier to use than short-proofs.

Another interesting observation is that, in general, the reversed proofs (dotted lines in Figure 4) tend
to be more useful than forward strategies for our model in generating the correct answer, aligning
with our findings in Section 4.1. Similarly as above, we believe that this is due to the facts that
Transformers strongly rely on the position of the answer. Indeed, in reversed proofs (spr, lpr), the
answer is always in the first proof step, for which the position depends only on the story length;
whereas in sp and lp the answer is always in the last proof step, for which the position depends both
on the story length and on the proof length.
We also see that long, exhaustive proofs are easier to be used when generating the final answer,
compared to short-proof strategies. This suggests that while being a longer sequence of tokens to
encode, if a model was able to generate such proofs, it would ease its generalization capacities.

5 Conclusion

TLMs are state of the art models for a wide variety of natural language processing tasks. Given
their widespread use, it is important to understand the limits of their ability to reason on knowledge
expressed in natural language and to extrapolate learned inference procedures to unseen problem
instances. Our explorations reveal multiple insights. Firstly, TLMs suffer from length-generalization
issues in generating proofs. Secondly, TLMs get better at reasoning when trained with longer,
exhaustive proofs. In addition, the fact that backward-chaining proof models perform better than
forward-chaining ones makes us believe that backward-chaining strategies are easier to use albeit
being harder to generate. Moreover, we find that no-proof models perform better than those trained to
produce proofs. We conjecture that benefiting from naturally stated logical proof statements requires
more complex internal representations. Recent work on developing position-agnostic attention
mechanisms for Transformers (Dubois et al., 2020) can be useful as a future direction to develop

9



generalizable models. Furthermore, our results motivates the use of neuro-symbolic methods such
as Neural Theorem Provers (Rocktäschel and Riedel, 2017) as an alternative avenue to achieving
systems that systematically generalize on logical and compositional reasoning tasks. Combining
these approaches with large pre-trained language models is left as future research. We hope that this
work will inspire research on the systematic generalization capacity of language models and motivate
further study and the creation of neural models with greater reasoning capacity.

Broader Impact

Transformer based models have been very effective for various language understanding and generation
tasks. Thus, it is crucial to understand their limitations and issues in generalization to unseen data. In
this work, we rely on systematic tests to trigger Transformer-based models to generate an interpretable
proof in natural language, and then evaluate the robustness properties of that proof. This research
can help us understand the reasoning strategies employed by Transformer-based models for both
inference and generation. Using first-order logic based datasets, we explicitly test the logical validity
of such systems in practice, which can shed some light into developing more robust and systematic
models in the future.

Due to the recent success of Transformer-based models and large-scale pre-training, there is significant
interest in the applications of these models to real world scenarios such as: Dialogue, Question
Answering and text-classification. Failure of such systems could produce nonsensical, wrong or
racially-biased results (Henderson et al., 2018). As such, logical analysis of the generation capabilities
of Transformer-based models, such as in this work, could have an impact on building safer, more
robust and interpretable systems in these domains. However, the fact that proof free inference works
so well, may also imply that models which generate proofs, do so in a decoupled way from the
computations yielding the final answer. This could give a user a false sense of explainability, as proofs,
or explanations may be generated by a separate and decoupled computation within the Transformer
model.

Acknowledgments and Disclosure of Funding

The authors would like to acknowledge support from Element AI for providing computational
resources which were used to run the experiments in this work. We also acknowledge the help
provided by Sandeep Subramanian in sharing part of his experimental code. Nicolas is partially
funded by a scholarship from the Fonds de Recherche Quebec Nature et Technologie. We thank
CIFAR for their support through the CIFAR AI Chairs program. We also thank NSERC and PROMPT
for their support.

References
Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen, Harm de Vries, and

Aaron Courville. 2019a. Systematic generalization: What is required and can it be learned? In
Proceedings of the 2019 International Conference on Learning Representations.

Dzmitry Bahdanau, Harm de Vries, Timothy J O’Donnell, Shikhar Murty, Philippe Beaudoin, Yoshua
Bengio, and Aaron Courville. 2019b. CLOSURE: Assessing systematic generalization of CLEVR
models. arXiv preprint arXiv:1912.05783.

Marco Baroni. 2020. Linguistic generalization and compositionality in modern artificial neural
networks. Philosophical Transactions of the Royal Society, 375(1791).

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models
are few-shot learners. arXiv preprint arXiv:2005.14165.

Noam Chomsky. 1957. Logical structures in language. American Documentation, 8(4):284–291.

Peter Clark, Oyvind Tafjord, and Kyle Richardson. 2020. Transformers as soft reasoners over lan-
guage. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,

10

https://openreview.net/forum?id=HkezXnA9YX
https://doi.org/10.1002/asi.5090080406
https://doi.org/10.24963/ijcai.2020/537
https://doi.org/10.24963/ijcai.2020/537


IJCAI-20, pages 3882–3890. International Joint Conferences on Artificial Intelligence Organization.
Main track.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond a fixed-length context. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 2978–2988,
Florence, Italy. Association for Computational Linguistics.

Ishita Dasgupta, Demi Guo, Samuel J. Gershman, and Noah D. Goodman. 2019. Analyzing machine-
learned representations: A natural language case study. arXiv preprint arXiv:1909.05885.

Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. 2007. Problog: A probabilistic prolog and
its application in link discovery. In Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence, IJCAI-07, pages 2462–2467. International Joint Conferences on Artificial
Intelligence Organization.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics, pages 4171–4186,
Minneapolis, Minnesota. Association for Computational Linguistics.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. 2020. Location Attention for
Extrapolation to Longer Sequences. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 403–413, Online. Association for Computational Linguistics.

Richard Evans and Edward Grefenstette. 2018. Learning explanatory rules from noisy data (extended
abstract). In Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pages 5598–5602. International Joint Conferences on Artificial Intelligence
Organization.

Yoav Goldberg. 2019. Assessing bert’s syntactic abilities. arXiv preprint arXiv:1901.05287.

Emily Goodwin, Koustuv Sinha, and Timothy J. O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages
1958–1969, Online. Association for Computational Linguistics.

Peter Henderson, Koustuv Sinha, Nicolas Angelard-Gontier, Nan Rosemary Ke, Genevieve Fried,
Ryan Lowe, and Joelle Pineau. 2018. Ethical challenges in data-driven dialogue systems. In
Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pages 123–129.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao
Wang, Marc van Zee, and Olivier Bousquet. 2020. Measuring compositional generalization: A
comprehensive method on realistic data. In Proceedings of the 2020 International Conference on
Learning Representations.

Brenden M. Lake. 2019. Compositional generalization through meta sequence-to-sequence learning.
In Advances in Neural Information Processing Systems 32, pages 9791–9801. Curran Associates,
Inc.

Brenden M. Lake and Marco Baroni. 2018. Generalization without systematicity: On the composi-
tional skills of sequence-to-sequence recurrent networks. In ICML, pages 2879–2888.

Adam Liška, Germán Kruszewski, and Marco Baroni. 2018. Memorize or generalize? searching for
a compositional rnn in a haystack. arXiv preprint arXiv:1802.06467.

Peter J. Liu, Mohammad Saleh, Etienne Pot, Ben Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. 2018. Generating wikipedia by summarizing long sequences. In Proceedings of the 2018
International Conference on Learning Representations.

Pasquale Minervini, Matko Bosnjak, Tim Rocktäschel, Sebastian Riedel, and Edward Grefenstette.
2020. Differentiable reasoning on large knowledge bases and natural language. In Proceedings
of the Thirty-Fourth AAAI Conference on Artificial Intelligence, volume 34 no.4: AAAI Technical
Tracks Machine Learning, pages 5182–5190.

11

https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2020.acl-main.39
https://doi.org/10.18653/v1/2020.acl-main.39
https://doi.org/10.24963/ijcai.2018/792
https://doi.org/10.24963/ijcai.2018/792
https://doi.org/10.18653/v1/2020.acl-main.177
https://openreview.net/forum?id=SygcCnNKwr
https://openreview.net/forum?id=SygcCnNKwr
http://papers.nips.cc/paper/9172-compositional-generalization-through-meta-sequence-to-sequence-learning.pdf
http://proceedings.mlr.press/v80/lake18a.html
http://proceedings.mlr.press/v80/lake18a.html
https://openreview.net/forum?id=Hyg0vbWC-


Richard Montague. 1970. Universal grammar. Theoria, 36(3):373–398.

Matthew Peters, Mark Neumann, Luke Zettlemoyer, and Wen-tau Yih. 2018. Dissecting contextual
word embeddings: Architecture and representation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pages 1499–1509, Brussels, Belgium.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowledge bases? In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), pages 2463–2473, Hong Kong,
China. Association for Computational Linguistics.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language
understanding by generative pre-training. URL https://s3-us-west-2. amazonaws. com/openai-
assets/researchcovers/languageunsupervised/language understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask learners. OpenAI Blog, 1(8).

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of Machine Learning Research, 21(1).

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-end differentiable proving. In Advances in
Neural Information Processing Systems 30, pages 3788–3800. Curran Associates, Inc.

Stuart Russell and Peter Norvig. 2020. Artificial intelligence: a modern approach, fourth edition.
Pearson.

Taro Sekiyama, Akifumi Imanishi, and Kohei Suenaga. 2017. Towards proof synthesis guided by
neural machine translation for intuitionistic propositional logic. arXiv preprint arXiv:1706.06462.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning from text. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pages 4506–4515, Hong Kong, China.
Association for Computational Linguistics.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang, Adam Poliak, R Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Sam Bowman, Dipanjan Das, and Ellie Pavlick. 2019. What do you
learn from context? probing for sentence structure in contextualized word representations. In
Proceedings of the 2019 International Conference on Learning Representations.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In Advances in Neural Information
Processing Systems 30, pages 5998–6008. Curran Associates, Inc.

Leon Weber, Pasquale Minervini, Jannes Münchmeyer, Ulf Leser, and Tim Rocktäschel. 2019.
NLProlog: Reasoning with weak unification for question answering in natural language. In
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages
6151–6161, Florence, Italy. Association for Computational Linguistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv, abs/1910.03771.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in
Neural Information Processing Systems 32, pages 5753–5763. Curran Associates, Inc.

12

https://doi.org/10.1111/j.1755-2567.1970.tb00434.x
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D18-1179
https://doi.org/10.18653/v1/D19-1250
http://papers.nips.cc/paper/6969-end-to-end-differentiable-proving.pdf
https://arxiv.org/abs/1706.06462
https://arxiv.org/abs/1706.06462
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
https://doi.org/10.18653/v1/P19-1618
http://papers.nips.cc/paper/8812-xlnet-generalized-autoregressive-pretraining-for-language-understanding.pdf


6 Supplementary Material

6.1 Original CLUTRR evaluation

ORIGINAL TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 99.62% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

99.62% 0% 99.96% 0% 100% 0% 0% 0% 0%

facts (A-r-B) 100% 0.47% 100% 0.83% 100% 0.20% 0.20% 0.10% 0.42%
entities (A) 100% 23.81% 100% 35.72% 100% 26.19% 21.43% 30.95% 30.95%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 4: Percentage of the original test proof building blocks also present in the training set (composed of
levels 2, 4, 6) for all levels. We colored all cells with a value close to 100% to better visualize which building
blocks were entirely contained in the training set.

The original CLUTRR data generation framework made sure that each test proof is not in the
training set in order to test whether a model is able to generalize to unseen proofs. Initial results
on the original CLUTRR test sets resulted in strong model performance (∼ 99%) on levels seen
during training (2, 4, 6) but no generalization at all (∼ 0%) to other levels. After further analysis,
we noticed that due to the cloze style nature of CLUTRR tasks, the first names representing entities
were chosen arbitrarily. This resulted in level-k test set’s proof_steps and facts also being in the
level-k training set. In addition, level-k test set’s entities were mostly seen only in level-k training
set. This resulted in a big overlap between training and test sets for examples of the same level, but a
weak overlap on other levels as we can see in Table 4.

NAMED TEST lvl.2 lvl.3 lvl.4 lvl.5 lvl.6 lvl.7 lvl.8 lvl.9 lvl.10
proofs
(many proof steps) 2.13% 0% 0% 0% 0% 0% 0% 0% 0%

proof steps
(“since A-r1-B
and B-r2-C
then A-r3-C”)

2.13% 0% 1.33% 1.74% 1.42% 1.80% 1.38% 0.99% 1.40%

facts (A-r-B) 15.48% 5.52% 6.77% 10.92% 6.38% 9.63% 10.51% 10.33% 8.33%
entities (A) 100% 100% 100% 100% 100% 100% 100% 100% 100%
relations (r) 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5: Percentage of the Named test proof’s building blocks also present in the training set (composed of
levels 2, 4, 6) for all levels. We colored all cells with a value of 100% to better visualize which building blocks
were entirely contained in the training set

13.669%

3.988%

10.689% 9.921%
11.265%

20.119%

15.207%

6.942%

2.788%

30.110%

2.506%

14.178%

6.856%

11.891%

6.561%

1.147% 0.281% 0.333%

19.471%

4.297%

10.699%
9.071% 8.796%

10.410%

1.374%
0.208% 0.364%

9.059%

5.749%

8.999% 8.147% 8.898%

13.056%
11.743%

9.669%

14.564%

0.000
%

10.000
%

20.000
%

30.000
%

40.000
%

2 4 6 8 10

np

sp

lp

mfr

Figure 5: Answer accuracy on the Named test for
all levels from 2 to 10. The models are given
as input “<STORY> [story] <QUERY> [query]
<PROOF>” and asked to generate the proof and
answer. Models are trained on levels 2, 4, 6 only.
Different proof settings are evaluated: sp=short-
proof, lp=long-proof, np=no-proof. We also report
the naive most-frequent-relation (mfr) baseline.

In our case, the entity names are important to
evaluate systematic generalization. We want
to evaluate the capacity of a model to general-
ize to new facts, proof_steps, and proofs,
but keeping the entities and relations the
same. We thus modified the original CLUTRR
dataset to select test entities according to entities
present in the training set. We devise a test set
that uses all relations and entities from
the training set but new facts, proof_steps
and proofs for all levels. We call this dataset
the Named data: all entities are referred by their
original first name. Train and test overlap per-
centages between all building blocks are in Ta-
ble 5.

Given as input the story and the query followed
by the proof trigger token (“<STORY> [story]
<QUERY> [query] <PROOF>”) the model generated the corresponding proof ans answer. We report

13



33.752%

1.760% 0.503% 0.115% 0.250% 0.833% 0.727% 0.114%
2.394%0.865% 0.473% 0.084% 0.137% 0.000% 0.011% 0.000% 0.000%

0.000%

10.000%

20.000%

30.000%

40.000%

50.000%

2 4 6 8 10

sp

lp

(a) Proof validity on the Named test for all levels from
2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF>” and asked to
generate the proof and answer.

72.147%

9.041%

59.648%

31.412%

58.716%

0.106% 0.000% 0.000% 0.000%

26.499%

8.196%

32.107%

17.375%

24.215% 22.553%

4.634%
2.269% 0.970%

13.991%

4.098%

10.659% 10.026% 11.311%

20.212%

14.685%

6.911%
2.848%

9.059%
5.749%

8.999% 8.147% 8.898%
13.056% 11.743%

9.669%
14.564%

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

sp

lp

np

mfr

(b) Answer accuracy on the Named test for all levels
from 2 to 10. The models are given as input “<STORY>
[story] <QUERY> [query] <PROOF> [proof] <AN-
SWER>” and asked to generate the answer.

Figure 6: Evaluation of models trained on levels 2, 4, 6 only.

in Figure 5 the answer accuracy and in Figure 6a the proof validity of all our models. Similarly,
in Figure 6b we report the answer accuracy of our models when they are given as input the story,
the query and the real proof, followed by the answer trigger token (“<STORY> [story] <QUERY>
[query] <PROOF> [proof] <ANSWER>”).

Experiments on this setup show that Transformer language models fail to generalize to unseen facts.
Indeed, due to the presence of a large number of entities in CLUTRR, we end up with combinatorially
large number of possible facts. The model may thus not be able to learn how to represent each entity
effectively, hence reducing its chances to learn higher-order structures such as unseen facts.

6.2 Long Proof pseudo-code

def get_long_proof(story_facts, rules, query):
"""
:params story_facts: list of (e_1, r, e_2) facts
:params rules: list of composition rules. each rule is a dict

of the form {r1--r2: r3}
:params query: tuple of entities for which we must find a relation (src, tgt)
"""
proof = [] # list of proof steps to return

# get all known relations (original, and reversed)
all_facts = []
for (e1, r, e2) in story_facts:

inv_r = reverse_fact(e1, r, e2)
all_facts.append((e1, r, e2))
all_facts.append((e2, inv_r, e1))

# go through every possible pair of facts
for f1, f2 in itertools.combinations(all_facts, 2):

e11, r1, e12 = f1
e21, r2, e22 = f2
inv_r1 = reverse_fact(e11, r1, e12)
inv_r2 = reverse_fact(e21, r2, e22)

# find the possible AB+BC combination.
# there are 4 possible ways to combine 2 sentences with 2 entities each (1 in common):
if e11 == e21 and e12 != e11 and e12 != e22:

# AB+BC <=> inv_f1+f2
A, new_r1, B = e12, inv_r1, e11
B, new_r2, C = e21, r2, e22
inv_r1 = r1

elif e11 == e22 and e12 != e11 and e12 != e21:
# AB+BC <=> f2+f1

14



A, new_r1, B = e21, r2, e22
B, new_r2, C = e11, r1, e12
# swap inv_r1 and inv_r2
inv_r1, inv_r2 = inv_r2, inv_r1

elif e12 == e21 and e11 != e12 and e11 != e22:
# AB+BC <=> f1+f2
A, new_r1, B = e11, r1, e12
B, new_r2, C = e21, r2, e22

elif e12 == e22 and e11 != e12 and e11 != e21:
# AB+BC <=> f1+inv_f2
A, new_r1, B = e11, r1, e12
B, new_r2, C = e22, inv_r2, e21
inv_r2 = r2

else:
# invalid pair of facts
continue

# try to combine AB+BC
if new_r1--new_r2 in rules:

r3 = rules[new_r1--new_r2]
inv_r3 = reverse_fact(A, r3, C)
all_facts.append((A, r3, C))
all_facts.append((C, inv_r3, A))
proof.append(since A new_r1 B and B new_r2 C then A r3 C)

# try to combine CB+BA
elif inv_r2--inv_r1 in rules:

r3 = rules[inv_r2--inv_r1]
inv_r3 = reverse_fact(C, r3, A)
all_facts.append((C, r3, A))
all_facts.append((A, inv_r3, C))
proof.append(since C inv_r2 B and B inv_r1 A then C r3 A)

else:
# invalid pair of facts
continue

# check if we found the link between the two queried entities
(A, r, B) = all_facts[-1]
if A==query[0] and B==query[1]:

break
if A==query[1] and B==query[0]:

break

return proof

6.3 Experiments parameter settings

small large
patience 20 20
batch size 512 256
float precision 16 16
embedding dimension 192 768
number of layers 5 20
dropout 0.1 0.1
transformer mlp hidden size 768 3072
attention heads 3 12
max length 1, 024 512
activation gelu gelu
number of warmup steps 20, 000 20, 000
optimizer adam adam
total parameters ∼ 3, 000, 000 ∼ 145, 000, 000

Table 6: Parameter settings.

All experiments in the main
section of the paper were
run with the small model
size.

Additional experiments in
Section 6.4 were run with
the large model size.

15



6.4 More parameters

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

2.5M / np

2.5M / spr

145M / spr

mfr

Figure 7: Answer accuracy for all test levels from 2 to 10.
The models are given as input “<STORY> [story] <QUERY>
[query] <PROOF>” and they generate the proof and answer.
Models are trained on levels 2, 4, 6 only. Stories are ex-
pressed with the facts template. Different proof settings
are evaluated: np=no-proof and spr=short-proof-reversed.
We also report the naive most-frequent-relation (mfr) base-
line. Results on other proof settings with the 2.5M parameter
network can be found in Figure 2a.

In this section we report the answer
accuracy of a model trained with
∼145M parameters and compare its
generalization performance with our
initial smaller network (∼2.5M pa-
rameters). Models are trained on lev-
els 2, 4 and 6. Each model is given the
story and query as input, and triggered
to generate the proof and answer with
the “<PROOF>” and “<ANSWER>”
tokens respectively.

We observe in Figure 7 that the
generalization capacity of the larger
145M network is almost identical to
the smaller 2.5M parameter network
trained on the same data (facts sto-
ries and short-proof-reversed). In ad-
dition, we also observe that the 145M
model trained on reversed short proofs
(145M / spr) is not better than the
2.5M model trained without any proof
(2.5M / np). Overall, results show that model size improves only marginally the generalization
capacity in our task.

6.5 Fine-tuning GPT2

0.000%

20.000%

40.000%

60.000%

80.000%

2 4 6 8 10

amt / gpt2FS-sp

amt / gpt2FT-sp

amt / gpt2FS-spr

amt / gpt2FT-spr

amt / gpt2FS-np

amt / gpt2FT-np

Figure 8: Answer accuracy for all test levels from 2 to 10.
The models are given as input “<STORY> [story] <QUERY>
[query] <PROOF>” and they generate the proof and answer.
Models are fine-tuned on levels 2, 4, 6 only. Stories are
expressed with the amt template. Different proof settings are
evaluated: sp=short-proof, spr=short-proof-reversed, np=no-
proof. We compare the performance of models trained from
scratch (dotted lines; gtp2FS-) and of fine-tuned models
(solid lines; gpt2FT-).

In this section we report the an-
swer accuracy of GPT2 models (Rad-
ford et al., 2019) trained from-scratch
(gpt2FS-) on the CLUTRR dataset
and of pre-trained GPT2 models fine-
tuned (gpt2FT-) on the CLUTRR
dataset. We leverage the GPT2 im-
plementation from the huggingface
library (Wolf et al., 2019). The re-
sulting models have ∼125M param-
eters. In all experiments the models
are trained on stories expressed in the
amt template. Models are fine-tuned
on levels 2, 4 and 6. Each model is
given the story and query as input, and
triggered to generate the proof and an-
swer with the “<PROOF>” and “<AN-
SWER>” tokens respectively.

In Figure 8 we observe that in general,
fine-tuned models perform better than
the ones trained from scratch. We can
also see that reversed-proof strategies are better than their forward proof counterpart, which is in
accordance with what we discussed in Section 4.1. Although fine-tuning seems to improve the
generalization capacity of GPT2, it is also interesting to note that the benefit of fine-tuning GPT2 on
short-proofs (sp) is negligible compared to the benefits of fine-tuning GPT2 on short-proofs-reversed
(spr) or no-proof (np). This suggests that fine-tuning alone is not enough to yield strong generalization
performance, but the choice of proof strategy also influences greatly the answer accuracy.

16



6.6 Encoder-Decoder Network

0.000%

25.000%

50.000%

75.000%

100.000%

2 4 6 8 10

s2s-sp

s2s-lp

s2s-spr

s2s-lpr

s2s-np

mfr

Figure 9: Answer accuracy for all test levels from 2 to 10.
The models encodes the input “<STORY> [story] <QUERY>
[query]” and they decode the proof and answer. Models
are trained on levels 2, 4, 6 only. Stories are expressed
with the facts template. Different proof settings are eval-
uated: sp=short-proof, spr=short-proof-reversed, lp=long-
proof, lpr=long-proof-reversed, np=no-proof. We also re-
port the naive most-frequent-relation (mfr) baseline.

In this section we evaluate the answer
accuracy of sequence-to-sequence
models trained on facts templated
stories of level 2, 4 and 6. These mod-
els consist of a 5-layer Transformer
encoder and a 5-layer Transformer
decoder, each of them following the
same parameter settings than what is
described in the ‘small’ column of Ta-
ble 6. This resulted in 5.22M param-
eter models. Sequence-to-sequence
models are trained to encode the story
and question with the encoder, and
generate the proof and answer with
the decoder. Models trained on levels
2, 4 and 6. Each model is given the
story and query as input, and triggered
to generate the proof and answer with
the “<PROOF>” and “<ANSWER>”
tokens respectively.

In the results shown in Figure 9, we see that sequence-to-sequence models do not generalize well to
unseen difficulty levels, both in extrapolation settings (levels 7–10) but also in interpolation settings
(levels 3 and 5). This suggests that encoder-decoder architectures are more sensible to the sequence
length seen during training. On the other hand, it is important to note that the encoder network was
trained with the auto-regressive language modeling objective back-propagated from the decoder. It
would be interesting to see if pre-training the encoder with a more traditional objective, that is masked
language modeling (Devlin et al., 2019), would improve the generalization performance. We leave
this exercise as future work. In addition, we plan to explore pre-trained models such as T5 (Raffel
et al., 2020) in future work in order to improve performance with this type of architecture.

17


	Introduction
	Related Work
	Evaluating systematic generalization through interpretable reasoning
	The task
	Proof resolution strategies
	Systematic generalization in proof generation

	Experiments and Analysis
	Answer Accuracy
	Proof Validity
	Proof is given

	Conclusion
	Supplementary Material
	Original CLUTRR evaluation
	Long Proof pseudo-code
	Experiments parameter settings
	More parameters
	Fine-tuning GPT2
	Encoder-Decoder Network


