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Abstract. In this paper we introduce the Ad Types Problem, a general-
ization of the traditional positional auction model for ad allocation that
better captures some of the challenges that arise when ads of different
types need to be interspersed within a user feed of organic content.
The Ad Types problem (without gap rules) is a special case of the assign-
ment problem in which there are k types of nodes on one side (the ads),
and an ordered set of nodes on the other side (the slots). The edge weight
of an ad i of type θ to slot j is vi · αθj where vi is an advertiser-specific

value and each ad type θ has a discount curve α
(θ)
1 ≥ α(θ)

2 ≥ ... ≥ 0 over
the slots that is common for ads of type θ. We present two contribu-
tions for this problem: 1) we give an algorithm that finds the maximum
weight matching that runs in O(n2(k+ logn)) time for n slots and n ads
of each type—cf. O(kn3) when using the Hungarian algorithm—, and 2)
we show how to apply reserve prices in total time O(n3(k + logn)).
The Ad Types Problem (with gap rules) includes a matrix G such that
after we show an ad of type θi, the next Gij slots cannot show an ad
of type θj . We show that the problem is hard to approximate within
k1−ε for any ε > 0 (even without discount curves) by reduction from
Maximum Independent Set. On the positive side, we show a Dynamic
Program formulation that solves the problem (including discount curves)
optimally and runs in O(k · n2k+1) time.

1 Introduction

Feeds aggregate a variety of content into a one-stop source of information. In
order to present content in a way that maximizes engagement, state-of-the-art
feeds like Facebook’s News Feed, reddit, and Apple News must consider not only
the users independent interest in each item but also the position in the feed and
the relative order of items. Optimizing ad placement in these platforms presents
similar challenges; to capture some of them, we introduce a generalization of the
canonical position auction known as the Ad Types Problem.

Position auction [39, 11] is the default mechanism for simultaneously selecting
multiple ads. A standard position auction is simple: rank ads according to their
expected advertising value and rank slots according to their prominence (position
in the feed); the highest-value ad then appears in the most prominent slot and
so on until all slots are filled. Formally, the auction maximizes value using a



separable value model that combines baseline value for each ad with a position
discount for each slot 1 ≥ α1 ≥ .. ≥ 0 capturing the decay in value associated
with lower-prominence.

Content feeds bring two important complexities that violate the simple sepa-
rable model: ads are not homogeneous, and spacing matters. Firstly, in the same
way that a feed aggregates many types of content, a feed may simultaneously
include ads in many formats, including text, images, and video. Advertisers may
also have different objectives – some advertisers only want users to see a static
image, while other advertisers want users to finish a video or visit their site and
make a purchase. Prominence impacts every type differently – for example, a
user who has already scrolled deep into a content feed will still see an image
ad but may be less likely to watch a video ad to completion. Secondly, spacing
matters, since a user who (say) sees two video ads in a row may be less likely to
view the second video ad (or simply be annoyed).

Given these complexities, näıvely implementing a position auction using a
traditional separable model will be suboptimal. The following example illustrates
the problem when the probability of a user watching a video ad decays differently
than a link-click ad:

Example 1. Suppose we have a setting with 2 ad types, link-click ads and video
ads, two ad slots, and we have discount curve α1 = 1

2 , α2 = 1
4 . These discounts

are accurate for link-click ads (i.e. α
(link)
1 = 1

2 , α
(link)
2 = 1

4 ), but for video ads,
the user is more likely to watch the video in the second slot than they are to

click a link in that slot: α
(video)
1 = 1

2 , α
(video)
2 = 1

3 .
Consider a video ad with bid $12 and a link-click ad with bid $10. The optimal

allocation assuming that discount curve α is accurate for both ads would assign
the video ad to slot 1 and the link-click ad to slot 2 for total value 1

2 ·$12+ 1
4 ·$10 =

$8.50. However, switching the ads yields total value 1
2 ·$10+ 1

3 ·$12 = $9 > $8.50.4

In this paper we propose a new theoretical model for online advertising that
addresses these issues. It captures the position auction as a special case, but
can handle discount curves for multiple types and intersperse advertising with
organic content in a dynamic manner.5 An Ad Types Problem instance has k ad
types6, that each have their own discount curve over n slots, i.e. all ads of type θ

4 Note that this example also implies that VCG prices w.r.t. α would not be incentive
compatible.

5 While our motivation for studying this problem comes from online advertising in
content streams, it captures many other interesting settings that are unrelated to
online advertising. For example, the setting without gap rules can model a worker
with different time slots and jobs of different types that need to be done; jobs are most
valuable when completed early and delays for jobs of the same type are discounted
similarly. Adding gap rules can model the cost of moving between locations (in the
physical world) or context-switching (in the digital world).

6 In economics literature, “type” sometimes refers to private information. That’s not
the case here: type represents the content type, e.g. video or link-click, and is publicly
known.



have discount curve α
(θ)
1 ≥ α(θ)

2 ≥ . . . ≥ α(θ)
n ≥ 0 that represents the slot-specific

action-rates. All ad types agree on the order of the slots. Gap rules are modeled
by a k× k matrix G, which indicates for each pair of ad types (θi, θj), that after
showing an ad of type θi, the next Gij stories cannot be of type θj .

We first focus on the special case where G = 0, i.e. different ad types have
different discount curves but there are no constraints on the gaps between ads.
In this setting, the Ad Types Problem is a special case of the maximum-weight
bipartite matching problem (also known as the assignment problem), so we could
find an optimal allocation using the Hungarian algorithm in O(kn3) time [36]
(where k is the number of types, n the number of slots, and we have n ads
per type). Our first result is an algorithm that finds the optimal allocation in
O(n2(k+ log n)) time, saving a linear factor. We also show that we can compute
incentive-compatible prices with advertiser-specific reserve prices for all ads in
O(n3(k + log n)) time.

Next we consider the more general Ad Types problem with both discount
curves and gap rules (where G 6= 0). We show that the problem is hard to
approximate within k1−ε for any ε > 0 (even without discount curves) by reduc-
tion from Maximum Independent Set. On the positive side, we show a Dynamic
Program formulation that solves the problem (including discount curves) opti-
mally and runs in O(k ·n2k+1) time, which is a significant improvement over the
brute-force running time of O(kn) since typically k � n.

1.1 Related Work

Assignment Problem. The maximum-weight bipartite matching problem, also
known as the assignment problem, is a classical problem in operations research.
Let (A,B,E) be a complete bipartite graph with edge weights v : E → R+, and
V = A ∪B the set of nodes; the goal is to find a matching M of maximal total
weight

∑
e∈M v(e). Kuhn [28] proposed an algorithm for this problem—which

he called the Hungarian algorithm—based on ideas by Kőnig and Egerváry,
though he only proved that the algorithm would terminate, not what the time
complexity is. Munkres [31] showed that the time complexity of the Hungarian
algorithm is O(|V |4). Edmonds and Karp [12] gave an O(|V |3) time algorithm for
balanced graphs, and Ramshaw and Tarjan [36] more recently gave an algorithm
for unbalanced graphs (without loss of generality, assume |A| < |B|) that runs in
O(|E||A|+|A|2 log |A|). Since the seminal work on the assignment problem, there
has been active research into relevant special cases. In particular there is a line
of work on convex bipartite graphs, where the right side of the graph is ordered,
and nodes on the left can only be connected to a single contiguous block of nodes
on the right. For the unweighted case, a line of work starting with Glover [21, 29,
16] shows that the problem can be solved in time linear in the number of nodes
O(|V |). General weights are not considered, though early work on vertex-weighted
bipartite graphs (where each node i has an associated weight wi and the weight of
an edge from i to j is wij = wi+wj) yield an O(|E|+ |B| log |A|) time algorithm
[25]. More recently, Plaxton [34, 35] showed that Two-Directional Orthogonal



Ray Graphs (a generalization of convex graphs) admit an O(|V | log |V |) time
algorithm.

Sharathkumar and Agarwal [38] consider a more general set of edge weights,
where nodes are embedded in d-dimensional space, and the weights of the com-
plete bipartite graph are all either the L1 or L∞ metric. They give an algorithm
to solve maximum weight bipartite matching in O(|V |3/2 logd+O(1)(|V |) log∆),
where ∆ is the diameter of the space that contains the points.

None of the results on specializations cover The Ad Types Problem setting
(even without gap rules).

Ad Auctions. The simple separable model for position auctions appears in Varian
[39] and Edelman et al. [11]. One body of related work relaxes the assumption
that action rates are separable. One common theme is to model externalities
between ads (also related to our gap rules) [26, 18, 20, 3, 2, 22, 19, 14, 17]. Of note,
[26, 18, 13, 2] study algorithms for computing allocations in models where the
user’s attention cascades and prove hardness results. A different generalization
is to allow arbitrary action rates that are still independent between ads [1, 6, 5],
which corresponds to the Ad Type Problem (without gap rules) where each ad
has a unique type.

Another generalization of the basic position auction allows ads to be placed
in complex ways. A few papers study mechanisms that permit presentation con-
straints and/or ads with variable presentation [24, 4, 23, 32, 8]. Mahdian et al.
study auctions for ads displayed on maps along with organic results [30] (since
places of interest are connected to a physical location, this imposes constraints
on where ads can be placed).

Finally, the connections between ad auctions and max-weight matching (and
the Hungarian algorithm) have been studied before as well [9, 5, 27, 10].

1.2 Contributions

This paper presents three main contributions:

– Optimal Allocation. Firstly, we give an algorithm to optimally solve the
Ad Types problem without gap rules. This setting is a special case of the
assignment problem with applications beyond ad auctions. Our algorithm
is a specialization of the Hungarian algorithm to find the maximum-weight
matching in the bipartite graph that uses the structure of the Ad Types
Problem to run in O(n2(k + log n)) time (compared to O(kn3) for running
the Hungarian algorithm on the instance; Theorem 1).

– Pricing. Secondly, we show that we can do incentive-compatible pricing in
this setting with minimal overhead. First, we show that we can apply reserve
prices (and in fact in all single-parameter environments) without a change-
point algorithm [33, 37]. For our case, this yields an O(n3(k + log n)) time
algorithm. We also confirm that—similar to the general bipartite matching
case—the dual variables in our algorithm for the Ad Types setting (without



reserves) can be used to recover VCG prices without increasing the asymp-
totic running time. This yields VCG prices in O(n2(k + log n)). Due to lack
of space these results are deferred to the full verison of this paper [7].

– Gap Rules. Finally, we consider the more general Ad Types problem with
both discount curves and gap rules (where G 6= 0). We show that the prob-
lem is hard to approximate within k1−ε for any ε > 0 (even without dis-
count curves) by reduction from Maximum Independent Set (Theorem 2).
On the positive side, we give a Dynamic Program formulation that solves
the problem (including discount curves) optimally and runs in O(k · n2k+1)
time (Theorem 3) which is a significant improvement over the brute-force
running time of O(kn) since typically k � n.

2 Preliminaries

In this section we give a formal definition of the Ad Types problems and with
it, the notation that we will be using throughout the paper. Our results build
on the known results from Auction Theory and the Hungarian Algorithm for
solving the assignment problem.

The Ad Types Problem involves computing an allocation of a set of N ads to
n ≤ N slots. Ads come in one of k different ad types θl, for l ∈ {1, ..., k}. We let

the ads of type θl be a
(θl)
i for i ∈ 1, . . . , nl, where nl represents the number of ads

of type θl. There are three main components to the definition of the problem:

– Valuations. Ad i of type θ has a value-per-conversion (a.k.a. value-per-

action) v
(θ)
i . Ads of different types have different conversion events, e.g. for a

display ad the conversion event is a view, for a link ad the conversion event
is a link click, and for a video ad the conversion event is the user watching
video ad. For each ad type θ, we index the ads in non-increasing order of

valuation, i.e. v
(θ)
1 ≥ v(θ)2 ≥ . . . ≥ v(θ)nl ≥ 0.

– Discount curves. We assume a separable model for discount curves where
we can write

Pr[conversion on ad i (of type θ) in slot j] = αθj · βi

where αθj is the slot effect for a particular ad type θ (e.g., the probability
that a user will watch a video ad if it is shown in the jth slot) and βi is the
advertiser quality (this separable model is also standard in position auctions
[39, 11]). In the remainder of the paper we assume without loss of generality
that the advertiser effect has already been included in the advertiser’s value,
i.e., if the value-per-conversion of the advertiser is v′i, then vi = βi · v′i. We
further abuse notation to let vij = αθj · vi for ad i of type θ in slot j.
Discounts are monotonically non-increasing, and all ad types agree on the

order of slots, i.e. for each ad type θ, we have α
(θ)
1 ≥ α(θ)

2 ≥ . . . ≥ α(θ)
n ≥ 0.

– Gap rules. When ads are interspersed with organic content, there must be
some way to control how many ads are shown. In the simplest case, where



there’s only one type of ad, this can be implemented by a gap rule g, which
states that two ads must be at least g slots apart from each other. When
there are multiple ad types, there is a k × k matrix G, which indicates for
each pair of ad types (θi, θj), that after showing an ad of type θi, the next
Gij stories cannot be of type θj .

The Ad Types Problem is to find a social welfare maximizing allocation that
obeys the gap rules.

2.1 The Hungarian Algorithm

The Hungarian Algorithm [28, 31] is a classical algorithm for computing a maxi-
mum weight matching in a bipartite graph. Starting from a trivial primal solution
(empty matching) and a trivial dual solution, the algorithm iteratively increases
the cardinality of the matching while improving the value of the dual solution
until the value of the primal solution equals that of the dual.

Let (U, V,E) be a complete bipartite graph with edge weights v : E → R+.
The primal/dual pair of linear programs capturing the problem are as follows.

maximize
∑

(i,j)∈E vijxij

subject to
∑
j xij ≤ 1 ∀i ∈ U∑
i xij ≤ 1 ∀j ∈ V
xij ≥ 0 ∀(i, j) ∈ E

minimize
∑
i∈U ui +

∑
j∈V pj

subject to ui + pj ≥ vij ∀(i, j) ∈ E
ui ≥ 0 ∀i ∈ U
pj ≥ 0 ∀j ∈ V

The algorithm starts from an empty primal solution M = ∅, and a trivial
feasible dual solution ui = 0 for all i ∈ U and pj = max(i,j)∈E vij for all j ∈ V .
In each iteration, the algorithm identifies the set of tight edges T = {(i, j) ∈ E :
ui + pj = vij} and builds an alternating BFS tree B (also known as Hungarian
tree) in (U, V, T ) out of the free vertices in V . If the alternating tree contains
an augmenting path A, we augment M with A thus increasing its cardinality; if
no such path is available, we can update the dual solution by reducing the dual
value of V ∩B and increasing the dual value of U ∩B by the same amount until
a new edge becomes tight. This update maintains feasibility while reducing the
value of the dual solution and makes at least one new edge tight, which in turn
allows us to grow the alternating tree further.

Throughout the execution of the algorithm we maintain the invariants that
the dual solution is feasible and that the edges in the matching M are tight. As
a result, at the end of the algorithm we have a matching whose weight equals the
value of the dual feasible solution, which acts as a certificate of its optimality.



Using the right data structures, it is possible to implement the algorithm so
that the amount of work done between each update to M is O(|E|+ |U | log |U |).
Therefore, if we let M∗ be a maximum weight matching, then the Hungarian
algorithm can be implemented to run in O(|M∗|(|E|+ |U | log |U |)) time [15].

Algorithm 1 provides the full pseudo-code of the Hungarian Algorithm ap-
plied to the Ad Types problems.

Algorithm 1 Hungarian algorithm for the Ad Types problem.

Input: Values v
(θ)
1 > v

(θ)
2 > ... > 0, and

discounts α
(θ)
1 > α

(θ)
2 > ... > 0 for each ad type θ.

Output: Matching M that maximizes
∑

(i,j)∈M vij .
1: Initialize the dual solution so that

◦ ui ← 0 for all ads i,
◦ pj ← max vi′,j′ for all slots j.

2: Let M ← ∅ be the matching.
3: for slot j in descending order do
4: Let B ← {j} be an alternating BFS tree
5: Let P be an empty priority queue
6: P ← UpdatePossibleNewEdges(P, v, α,M, j)
7: while B does not contain an augmenting path do
8: (i′, j′)← remove from P next tight edge
9: ∆← vi′j′ − ui′ − pj′ // note that ∆ could be 0

10: Implicitly update the dual solution so that
◦ ui′′ ← ui′′ +∆ for all ads i′′ ∈ B,
◦ pj′′ ← pj′′ −∆ for all slots j′′ ∈ B.

11: if i′ is matched in M then
12: B ← B ∪ {(i′, j′), (i′,M(i′))}
13: UpdatePossibleNewEdges(P, v, α,M(i′))
14: else
15: B ← B ∪ {(i′, j′)} // now an augmenting path exits
16: end if
17: end while
18: A← augmenting path in B
19: M ← AugmentMatching(M,A).
20: explicitly update the dual solution (u, p)
21: end for

3 Ad Types Problem without Gap Rules

In this section we consider the ad types problem with discount curves but no
gap rules. In this model we have k ad types, and each ad type has its own

monotonically decreasing discount curve α
(θl)
j for l ∈ 1, 2, . . . , k. Without gap

rules, the problem becomes a simple maximum weight bipartite assignment on
a complete graph with N vertices (ads) on one side of the bipartition and n



vertices (slots) on the other side of the bipartition, with n < N . Therefore, the
Hungarian algorithm can solve this problem in O(Nn2) time. We will assume
throughout there are exactly n ads of each type7, hence the Hungarian algorithm
runs in O(kn3) time.

In this section we start by giving an algorithm that finds the maximum-
weight bipartite matching in O(n2(k + log n)) time (Section 3.1). We show that
in some sense the dependency on k unavoidable: namely if k = n, we show that
the Ad Types problem reduces to the assignment problem (i.e. monotonicity and
a common order of the slots does not improve the running time; see Section 3.2).

3.1 Finding the Optimal Allocation

We present an adaptation of the Hungarian algorithm [28, 31] that exploits the
special structure of the Ad Types problem. In the following we use the language
of markets to describe the Hungarian algorithm: the dual variable of a slot j
corresponds to a price pj , while a dual variable of an advertiser i corresponds to
the utility ui of the advertiser if they get an item out of their demand set (given
the prices) [10]. Moreover, the instance is a complete bipartite graph with ads
on one side and slots on the other side where the weight of the edge (i, j) is vij .
The maximum-weight matching in the bipartite graph corresponds to the social-
welfare maximizing allocation of ads to slots. For ease of exposition, we assume
that values and discounts are monotonically strictly decreasing, this restriction
can be lifted by consistent tie-breaking.

Algorithm 1 in the preliminaries shows how to compute the optimal allocation
in an Ad Types instance using the Hungarian Algorithm. Our approach is to
implement more efficiently how we maintain the set of possible new edges in
Lines 6 and 13. The algorithm initializes the dual solution (u, p) to be feasible,
and starts with an empty matching M . Algorithm considers slots in descending
order in each iteration of the for loop in Line 3; we call each such iteration a
phase.

During each phase we iteratively update the dual variables until we find an
augmenting path to increase the size of the matching M by one. In each of these
iterations within a phase we explore a tight edge leading to a matched edge
and both edges are added to our alternating tree. Every time we add a new
matched slot j′ to the alternating tree we explore the edges incident on j′ using
the routine UpdatePossibleNewEdges, which scans the edges incident on j′

and works out which edges are tight and when the remaining edges will become
tight. All these new edges are stored in a priority queue for later retrieval.

High-level analysis approach. Even though the algorithm is not fully defined yet
(the implement of UpdatePossibleNewEdges is given in the next subsection),
still we can say something about the running time of the algorithm.

7 If an ad type has fewer than n ads, we can append ads with value 0, if there are
more than n ads of a type, with loss of generality we can restrict attention to the n
highest-value ads.



Each phase is implemented using a priority queue P over some of the ads
not in B. For each ad i′ in P we keep track of the next edge (i′, j′) that would
become tight given the current structure of B. The priority of i′ captures when
this next edge becomes tight, the smaller the priority the sooner it becomes
tight; similarly, if i′ already has a tight edge incident on itself then it should
have the smallest priority in the queue.

In the normal implementation of the Hungarian Algorithm, the procedure
UpdatePossibleNewEdges(P, v, α, j′) iterates over all edges (i′, j′) incident
on j′. If i′ ∈ B we can ignore the edge as i′ has already been discovered and
its slack vi′,j′ − pj′ − ui′ will not change with future updates (since now both i′

and j′ belong to B). If i′ /∈ B then we compute its current slack vi′,j′ − pj′ − ui′
to work out when it will become tight and compare this against the time of the
current next tight edge incident on i′, which we may need to update.

Without making any assumptions on the structure of the valuations, in the
worst case in each iteration of the while loop in Line 7 we perform O(nk +
log nk) = O(nk) work (assuming a Fibonacci heap implementation for P ) since
there are kn ads in total and kn edges incident on j′ (one per ad). In each itera-
tion be grow B by adding one new matched edge, so we have at most j iterations
of the while loop. Therefore, the overall running time is O(

∑n
j=1 jnk) = O(n3k).

However, as we shall see shortly, we can come up with a more efficient imple-
mentation of UpdatePossibleNewEdges(P, v, α, j′) that exploits the special
structure of our valuation function so that P holds at most n+ k ads and only
O(k) edges incident on j′ need to be scanned without sacrificing the overall
correctness of the algorithm. With this improvement in performance, each it-
eration of the while loop in Line 7 takes at most O(log n + k) work. Again,
since in each iteration be grow B by adding one new matched edge, we have
at most j iterations of the while loop. Therefore, the overall running time is
O(

∑n
j=1 j(k + log n)) = O(n2(k + log n)).

Theorem 1. Given an input with k ad types and n slots, Algorithm 1 can be
implemented to run in time O(n2(k + log n)).

Our goal for the the rest of this section is to provide an efficient implemen-
tation of UpdatePossibleNewEdges(P, v, α, j′) where the size of P is always
at most n+ k and only O(k) edges are considered in each invocation of the rou-
tine. Key to our analysis is the observation that tight edges cannot cross is the
following sense: Given two ads i < i′ of the same type θ, and two slots j < j′,
then we cannot have the edge from ad i to slot j′ be tight, and simultaneously
have the edge from ad i′ to j be tight.

Lemma 1 (Non-crossing lemma). Given two ads i < i′ of the same type θ,

and two slots j < j′, if vi > vi′ and α
(θ)
j > α

(θ)
j′ then in any feasible dual solution

we cannot have the edge from ad i to slot j′ be tight, and simultaneously have
the edge from ad i′ to j be tight.



Proof. We prove by contradiction. If the edges between i and j′ and i′ and j are
both tight, then we must have dual variables ui, ui′ , pj , pj′ such that

α
(θ)
j′ · vi = ui + pj′ and α

(θ)
j · vi′ = ui′ + pj .

At the same time, due to the slackness constraints, we must have that

α
(θ)
j · vi ≤ ui + pj and α

(θ)
j′ · vi′ ≤ ui′ + pj′ .

We can combine these and obtain

α
(θ)
j′ · vi + α

(θ)
j · vi′ = ui + pj′ + ui′ + pj ≥ α(θ)

j · vi + α
(θ)
j′ · vi′ .

Which is false due to the standard exchange argument. We give the argument

for completeness: Rearranging we have (α
(θ)
j −α

(θ)
j′ ) · (vi−vi′) ≤ 0; however, due

to strict monotonicity α
(θ)
j > α

(θ)
j′ and vi > vi′ , so have reached a contradiction.

ut

UpdatePossibleNewEdges The goal of UpdatePossibleNewEdges(P, v, α, j′)
is to iterate over the edges incident on j′ that are tight or that can potentially
become tight later in the execution of the current phase. For each such edge
(i′, j′) we compare its slack with the priority associated with i′ and update the
entry for i′ in P accordingly if needed.

The exact definition of the edges inspected is given by Algorithm 2. Before we
describe how this works, let us make some observations about the set of edges
that can potentially become tight, and then we shall see that the Algorithm
indeed considers all these edges.

For each ad type θ we first consider the edges of the form (a
(θ)
i , j′) where a

(θ)
i

is matched and M(a
(θ)
i ) < j′. We claim that we only need to consider the largest

such i. Recall that all the edges in M are tight and remain tight throughout the

execution of the phase; in particular, (a
(θ)
i ,M(a

(θ)
i )) is tight and remains tight.

Thus, any edge (a
(θ)
i′ , j

′) with i′ < i) is not tight and will never become tight

due the Non-crossing Lemma 1 and the fact that i′ < i and M(a
(θ)
i ) < j′.

Now consider the edges of the form (a
(θ)
i , j′) where a

(θ)
i is matched and

M(a
(θ)
i ) > j′. We claim that we only need to consider the smallest such i.

Recall that all the edges in M are tight and remain tight throughout the execu-

tion of the phase; in particular, (a
(θ)
i ,M(a

(θ)
i )) is tight and remains tight. Thus,

any edge (a
(θ)
i′ , j

′) with i′ > i is not tight and will never become tight due the

Non-crossing Lemma 1 and the fact that i′ > i and M(a
(θ)
i ) > j′.

Finally, we need to consider edges of the form (a
(θ)
i , j′) where a

(θ)
i is un-

matched. We claim that we only need to consider the smallest such i available8.

8 It is worth noting that even this case can be ignored if there exists a matched a
(θ)
i

such that M(a
(θ)
i ) > j′; however, for ease of presentation we add the slot to X even

if such a
(θ)
i exists.



Indeed, for any other i′ > i note that v
(θ)
i > v

(θ)
i′ and since the u variable of both

ads is 0 (only slots that are part of an alternating tree get their dual variables

increased and those are always matched) the slack of (a
(θ)
i , j′) will always be

smaller than the slack of (a
(θ)
i′ , j

′) since v
(θ)
i α

(θ)
j′ − pj′ < v

(θ)
i′ α

(θ)
j′ − pj′ . Further-

more, notice that if the edge (a
(θ)
i , j′) become tight, then we immediately have

an augmenting path in B, which concludes the phase.

These three cases are precisely those covered by Algorithm 2.

Algorithm 2 UpdatePossibleNewEdges

Input: P, v, α,M, j′

1: X ← ∅
2: for ad type θ do
3: let a

(θ)
i be the unmatched ad of type θ with smallest i

4: add a
(θ)
i to X

5: if exists matched ad a
(θ)
i such that M(a

(θ)
i ) < j′ then

6: let a
(θ)
i be such an ad with largest i

7: add a
(θ)
i to X

8: end if
9: if exists matched ad a

(θ)
i such that M(a

(θ)
i ) > j′ then

10: let a
(θ)
i be such an ad with smallest i

11: add a
(θ)
i to X

12: end if
13: end for
14: for i′ ∈ X do
15: if i′ /∈ B and either i′ /∈ P or i′’ current slack in P is > (vi′,j′ −ui′ −pj′) then
16: update the priority of i′ using (i′, j′) or set if i′ /∈ P
17: end if
18: end for

Lemma 2. There can be at most n+ k ads in P at any given point in time.

Proof. Notice that the the only edges (i′, j′) that we consider in Line 16 are
either to a matched node in M or to the highest unmatched ad of each type.
There are exactly j < n matched ads in phase j and there are k ad types, so the
lemma follows. ut

Lemma 3. UpdatePossibleNewEdges considers only O(k) edges when up-
dating P and these are the only edges we need to look at. Furthermore, these
edges can be identified in O(k) time provided we carry out O(nk) pre-processing
every time the matching M is augmented in Line 19 of Algorithm 1.

Proof. For each ad type we need to consider at most three edges incident on
j′ (namely, those consider the for loop in Line 14) so the algorithm inspects at



most 3k edges. The reason why we can focus just on these edges has already been
explained in the description of the algorithm UpdatePossibleNewEdges.

In order to identify these edges efficiently, we maintain an array of length k

where for each ad type θ we store the smallest index i such that a
(θ)
i is unmatched.

In addition to this, we maintain a k × n array where for each ad type θ and

position j′ we store the largest index i such that M(a
(θ)
i ) < j′ and the smallest

index i such that M(a
(θ)
i ) > j′.

It is easy to see that that constructing these data structures can be done
in O(kn) time given M and that given these data structures we can execute
Algorithm 2 in O(k) time. ut

Notice that the pre-processing needed for executing Algorithm 2 efficiently,
does not add to the time complexity of the algorithm since the matching is
updated at most n times, so the overall time spent on the pre-processing step
alluded in Lemma 3 is O(kn2).

Similar to the general bipartite matching case, the dual variables in our
algorithm for the Ad Types setting can be used to recover VCG prices without
increasing the asymptotic running time. This yields VCG prices in O(n2(k +
log n)) time.

3.2 Large Number of Ad Types

When each ad has its own type (so k = n) the running time from Theorem 1
becomes O(n3), meaning that it is no faster than running the standard Hun-
garian algorithm. The following lemma shows that this is to be expected as any
instance of the assignment problem can be reduced to an instance where all ads
agree on the order of the slots.

Lemma 4. With k = n ad types, the Ad Types problem is no easier to solve
than the assignment problem, even with monotone discount curves.

Due to lack of space this proof is deferred to the full verison of the paper.

4 The Ad Types Problem with Gap Rules

In this section we switch our attention to the full version of the Ad Types problem
where we do have gap rules. This problem is much harder if we do not place any
restriction on the instances

Theorem 2. The Ad Types problem with Gap Rules is hard to approximate
better than k1−ε for any ε > 0, unless P = NP, even when the discount curves
of all the ad types are identically equal to 1.

Due to lack of space, the proofs in the section are given in the full version.
On the positive side, we show that the problem is tractable if the number of
ad types is very small. Note that this running time still represents a significant
improvement over the brute-force approach yielding a O(kn) running time.

Theorem 3. The Ad Types Problem with Gap Rules can solved optimally in
O(k · n2k+1) time.
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