
Combining Deep Reinforcement Learning and Search
for Imperfect-Information Games

Noam Brown∗ Anton Bakhtin∗ Adam Lerer Qucheng Gong
Facebook AI Research

{noambrown,yolo,alerer,qucheng}@fb.com

Abstract
The combination of deep reinforcement learning and search at both training and test
time is a powerful paradigm that has led to a number of successes in single-agent
settings and perfect-information games, best exemplified by AlphaZero. However,
prior algorithms of this form cannot cope with imperfect-information games. This
paper presents ReBeL, a general framework for self-play reinforcement learning
and search that provably converges to a Nash equilibrium in any two-player zero-
sum game. In the simpler setting of perfect-information games, ReBeL reduces to
an algorithm similar to AlphaZero. Results in two different imperfect-information
games show ReBeL converges to an approximate Nash equilibrium. We also show
ReBeL achieves superhuman performance in heads-up no-limit Texas hold’em
poker, while using far less domain knowledge than any prior poker AI.

1 Introduction
Combining reinforcement learning with search at both training and test time (RL+Search) has led to
a number of major successes in AI in recent years. For example, the AlphaZero algorithm achieves
state-of-the-art performance in the perfect-information games of Go, chess, and shogi [55].

However, prior RL+Search algorithms do not work in imperfect-information games because they
make a number of assumptions that no longer hold in these settings. An example of this is illustrated
in Figure 1a, which shows a modified form of Rock-Paper-Scissors in which the winner receives two
points (and the loser loses two points) when either player chooses Scissors [15]. The figure shows the
game in a sequential form in which player 2 acts after player 1 but does not observe player 1’s action.

𝑷𝟏

𝑷𝟐 𝑷𝟐 𝑷𝟐

Pap
er 𝑃 = 0.4 𝑃 = 0.2 𝑃 = 0.4

Pap
er

0,0 -1,1 2,-2

Pap
er

1,-1 0,0 -2,2

Pap
er

-2,2 2,-2 0,0

(1a) Variant of Rock-Paper-Scissors in which the opti-
mal player 1 policy is (R=0.4, P=0.4, S=0.2). Terminal
values are color-coded. The dotted lines mean player 2
does not know which node they are in.

𝑷𝟏

Pap
er

0 0 0

(1b) The player 1 subgame when using perfect-
information one-ply search. Leaf values are deter-
mined by the full-game equilibrium. There is insuffi-
cient information for finding (R=0.4, P=0.4, S=0.2).

The optimal policy for both players in this modified version of the game is to choose Rock and Paper
with 40% probability, and Scissors with 20%. In that case, each action results in an expected value of
zero. However, as shown in Figure 1b, if player 1 were to conduct one-ply lookahead search as is

∗Equal contribution

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

done in perfect-information games (in which the equilibrium value of a state is substituted at a leaf
node), then there would not be enough information for player 1 to arrive at this optimal policy.

This illustrates a critical challenge of imperfect-information games: unlike perfect-information
games and single-agent settings, the value of an action may depend on the probability it is chosen.
Thus, a state defined only by the sequence of actions and observations does not have a unique
value and therefore existing RL+Search algorithms such as AlphaZero are not sound in imperfect-
information games. Recent AI breakthroughs in imperfect-information games have highlighted the
importance of search at test time [40, 12, 14, 37], but combining RL and search during training in
imperfect-information games has been an open problem.

This paper introduces ReBeL (Recursive Belief-based Learning), a general RL+Search framework
that converges to a Nash equilibrium in two-player zero-sum games. ReBeL builds on prior work in
which the notion of “state” is expanded to include the probabilistic belief distribution of all agents
about what state they may be in, based on common knowledge observations and policies for all
agents. Our algorithm trains a value network and a policy network for these expanded states through
self-play reinforcement learning. Additionally, the algorithm uses the value and policy network for
search during self play.

ReBeL provably converges to a Nash equilibrium in all two-player zero-sum games. In perfect-
information games, ReBeL simplifies to an algorithm similar to AlphaZero, with the major difference
being in the type of search algorithm used. Experimental results show that ReBeL is effective in
large-scale games and defeats a top human professional with statistical significance in the benchmark
game of heads-up no-limit Texas hold’em poker while using far less expert domain knowledge than
any previous poker AI. We also show that ReBeL approximates a Nash equilibrium in Liar’s Dice,
another benchmark imperfect-information game, and open source our implementation of it.2

2 Related Work
At a high level, ReBeL resembles past RL+Search algorithms used in perfect-information games [59,
56, 1, 55, 50]. These algorithms train a value network through self play. During training, a search
algorithm is used in which the values of leaf nodes are determined via the value function. Additionally,
a policy network may be used to guide search. These forms of RL+Search have been critical to
achieving superhuman performance in benchmark perfect-information games. For example, so far no
AI agent has achieved superhuman performance in Go without using search at both training and test
time. However, these RL+Search algorithms are not theoretically sound in imperfect-information
games and have not been shown to be successful in such settings.

A critical element of our imperfect-information RL+Search framework is to use an expanded notion of
“state”, which we refer to as a public belief state (PBS). PBSs are defined by a common-knowledge
belief distribution over states, determined by the public observations shared by all agents and the
policies of all agents. PBSs can be viewed as a multi-agent generalization of belief states used in
partially observable Markov decision processes (POMDPs) [31]. The concept of PBSs originated
in work on decentralized multi-agent POMDPs [43, 45, 19] and has been widely used since then in
imperfect-information games more broadly [40, 20, 53, 29].

ReBeL builds upon the idea of using a PBS value function during search, which was previously
used in the poker AI DeepStack [40]. However, DeepStack’s value function was trained not through
self-play RL, but rather by generating random PBSs, including random probability distributions, and
estimating their values using search. This would be like learning a value function for Go by randomly
placing stones on the board. This is not an efficient way of learning a value function because the vast
majority of randomly generated situations would not be relevant in actual play. DeepStack coped with
this by using handcrafted features to reduce the dimensionality of the public belief state space, by
sampling PBSs from a distribution based on expert domain knowledge, and by using domain-specific
abstractions to circumvent the need for a value network when close to the end of the game.

An alternative approach for depth-limited search in imperfect-information games that does not use
a value function for PBSs was used in the Pluribus poker AI to defeat elite humans in multiplayer
poker [15, 14]. This approach trains a population of “blueprint” policies without using search. At
test time, the approach conducts depth-limited search by allowing each agent to choose a blueprint
policy from the population at leaf nodes. The value of the leaf node is the expected value of each

2https://github.com/facebookresearch/rebel

2

https://github.com/facebookresearch/rebel

agent playing their chosen blueprint policy against all the other agents’ choice for the rest of the
game. While this approach has been successful in poker, it does not use search during training and
therefore requires strong blueprint policies to be computed without search. Also, the computational
cost of the search algorithm grows linearly with the number of blueprint policies.

3 Notation and Background
We assume that the rules of the game and the agents’ policies (including search algorithms) are
common knowledge [2].3 That is, they are known by all agents, all agents know they are known by
all agents, etc. However, the outcome of stochastic algorithms (i.e., the random seeds) are not known.
In Section 6 we show how to remove the assumption that we know another player’s policy.

Our notation is based on that of factored observation games [34] which is a modification of partially
observable stochastic games [26] that distinguishes between private and public observations. We
consider a game with N = {1, 2, ..., N} agents.

A world state w ∈ W is a state in the game. A = A1 ×A2 × ...×AN is the space of joint actions.
Ai(w) denotes the legal actions for agent i at w and a = (a1, a2, ..., aN) ∈ A denotes a joint action.
After a joint action a is chosen, a transition function T determines the next world state w′ drawn from
the probability distribution T (w, a) ∈ ∆W . After joint action a, agent i receives a rewardRi(w, a).

Upon transition from world state w to w′ via joint action a, agent i receives a private observation
from a function Opriv(i)(w, a,w

′). Additionally, all agents receive a public observation from a
function Opub(w, a,w′). Public observations may include observations of publicly taken actions by
agents. For example, in many recreational games, including poker, all betting actions are public.

A history (also called a trajectory) is a finite sequence of legal actions and world states, denoted
h = (w0, a0, w1, a1, ..., wt). An infostate (also called an action-observation history (AOH)) for
agent i is a sequence of an agent’s observations and actions si = (O0

i , a
0
i , O

1
i , a

1
i , ..., O

t
i) where

Oki =
(
Opriv(i)(w

k−1, ak−1, wk),Opub(wk−1, ak−1, wk)
)
. The unique infostate corresponding to a

history h for agent i is denoted si(h). The set of histories that correspond to si is denotedH(si).

A public state is a sequence spub = (O0
pub, O

1
pub, ..., O

t
pub) of public observations. The unique public

state corresponding to a history h and an infostate si is denoted spub(h) and spub(si), respectively.
The set of histories that match the sequence of public observation of spub is denotedH(spub).

For example, consider a game where two players roll two six-sided dice each. One die of each player
is publicly visible; the other die is only observed by the player who rolled it. Suppose player 1 rolls a
3 and a 4 (with 3 being the hidden die), and player 2 rolls a 5 and a 6 (with 5 being the hidden die).
The history (and world state) is h =

(
(3, 4), (5, 6)

)
. The set of histories corresponding to player 2’s

infostate is H(s2) =
{(

(x, 4), (5, 6)
)
| x ∈ {1, 2, 3, 4, 5, 6}

}
, so |H(s2)| = 6. The set of histories

corresponding to spub isH(spub) =
{(

(x, 4), (y, 6)
)
| x, y ∈ {1, 2, 3, 4, 5, 6}

}
, so |H(spub)| = 36 .

Public states provide an easy way to reason about common knowledge in a game. All agents observe
the same public sequence spub, and therefore it is common knowledge among all agents that the true
history is some h ∈ H(spub).4

An agent’s policy πi is a function mapping from an infostate to a probability distribution over actions.
A policy profile π is a tuple of policies (π1, π2, ..., πN). The expected sum of future rewards (also
called the expected value (EV)) for agent i in history h when all agents play policy profile π is
denoted vπi (h). The EV for the entire game is denoted vi(π). A Nash equilibrium is a policy profile
such that no agent can achieve a higher EV by switching to a different policy [42]. Formally, π∗ is
a Nash equilibrium if for every agent i, vi(π∗) = maxπi vi(πi, π

∗
−i) where π−i denotes the policy

of all agents other than i. A Nash equilibrium policy is a policy π∗i that is part of some Nash
equilibrium π∗.

A subgame is defined by a root history h in a perfect-information game and all histories that can
be reached going forward. In other words, it is identical to the original game except it starts at h.

3This is a common assumption in game theory. One argument for it is that in repeated play an adversary
would eventually determine an agent’s policy.

4As explained in [34], it may be possible for agents to infer common knowledge beyond just public
observations. However, doing this additional reasoning is inefficient both theoretically and practically.

3

A depth-limited subgame is a subgame that extends only for a limited number of actions into the
future. Histories at the bottom of a depth-limited subgame (i.e., histories that have no legal actions
in the depth-limited subgame) but that have at least one legal action in the full game are called leaf
nodes. In this paper, we assume for simplicity that search is performed over fixed-size depth-limited
subgame (as opposed to Monte Carlo Tree Search, which grows the subgame over time [23]).

A game is two-player zero-sum (2p0s) if there are exactly two players andR1(w, a) = −R2(w, a)
for every world state w and action a. In 2p0s perfect-information games, there always exists a Nash
equilibrium that depends only on the current world state w rather than the entire history h. Thus, in
2p0s perfect-information games a policy can be defined for world states and a subgame can be defined
as rooted at a world state. Additionally, in 2p0s perfect-information games every world state w has
a unique value vi(w) for each agent i, where v1(w) = −v2(w), defined by both agents playing a
Nash equilibrium in any subgame rooted at that world state. Our theoretical and empirical results are
limited to 2p0s games, though related techniques have been empirically successful in some settings
with more players [14]. A typical goal for RL in 2p0s perfect-information games is to learn vi. With
that value function, an agent can compute its optimal next move by solving a depth-limited subgame
that is rooted at its current world state and where the value of every leaf node z is set to vi(z) [54, 49].

4 From World States to Public Belief States
In this section we describe a mechanism for converting any imperfect-information game into a
continuous state (and action) space perfect-information game where the state description contains the
probabilistic belief distribution of all agents. In this way, techniques that have been applied to perfect-
information games can also be applied to imperfect-information games (with some modifications).

For intuition, consider a game in which one of 52 cards is privately dealt to each player. On each
turn, a player chooses between three actions: fold, call, and raise. Eventually the game ends and
players receive a reward. Now consider a modification of this game in which the players cannot see
their private cards; instead, their cards are seen by a “referee”. On a player’s turn, they announce the
probability they would take each action with each possible private card. The referee then samples an
action on the player’s behalf from the announced probability distribution for the player’s true private
card. When this game starts, each player’s belief distribution about their private card is uniform
random. However, after each action by the referee, players can update their belief distribution about
which card they are holding via Bayes’ Rule. Likewise, players can update their belief distribution
about the opponent’s private card through the same operation. Thus, the probability that each player
is holding each private card is common knowledge among all players at all times in this game.

A critical insight is that these two games are strategically identical, but the latter contains no private
information and is instead a continuous state (and action) space perfect-information game. While
players do not announce their action probabilities for each possible card in the first game, we assume
(as stated in Section 3) that all players’ policies are common knowledge, and therefore the probability
that a player would choose each action for each possible card is indeed known by all players. Of
course, at test time (e.g., when our agent actually plays against a human opponent) the opponent does
not actually announce their entire policy and therefore our agent does not know the true probability
distribution over opponent cards. We later address this problem in Section 6.

We refer to the first game as the discrete representation and the second game as the belief repre-
sentation. In the example above, a history in the belief representation, which we refer to as a public
belief state (PBS), is described by the sequence of public observations and 104 probabilities (the
probability that each player holds each of the 52 possible private card); an “action” is described by
156 probabilities (one per discrete action per private card). In general terms, a PBS is described by a
joint probability distribution over the agents’ possible infostates [43, 45, 19].5 Formally, let Si(spub)
be the set of infostates that player i may be in given a public state spub and let ∆S1(spub) denote a
probability distribution over the elements of S1(spub). Then PBS β = (∆S1(spub), ...,∆SN (spub)).6
In perfect-information games, the discrete representation and belief representation are identical.

5One could alternatively define a PBS as a probability distribution over histories inH(spub) for public state
spub. However, it is proven that any PBS that can arise in play can always be described by a joint probability
distribution over the agents’ possible infostates [45, 52], so we use this latter definition for simplicity.

6Frequently, a PBS can be compactly summarized by discarding parts of the history that are no longer
relevant. For example, in poker we do not need to track the entire history of actions, but just the amount of
money each player has in the pot, the public board cards, and whether there were any bets in the current round.

4

Since a PBS is a history of the perfect-information belief-representation game, a subgame can be
rooted at a PBS.7 The discrete-representation interpretation of such a subgame is that at the start of
the subgame a history is sampled from the joint probability distribution of the PBS, and then the
game proceeds as it would in the original game. The value for agent i of PBS β when all players play
policy profile π is V πi (β) =

∑
h∈H(spub(β)) (p(h|β)vπi (h)). Just as world states have unique values in

2p0s perfect-information games, in 2p0s games (both perfect-information and imperfect-information)
every PBS β has a unique value Vi(β) for each agent i, where V1(β) = −V2(β), defined by both
players playing a Nash equilibrium in the subgame rooted at the PBS.

Since any imperfect-information game can be viewed as a perfect-information game consisting of
PBSs (i.e., the belief representation), in theory we could approximate a solution of any 2p0s imperfect-
information game by running a perfect-information RL+Search algorithm on a discretization of the
belief representation. However, as shown in the example above, belief representations can be very
high-dimensional continuous spaces, so conducting search (i.e., approximating the optimal policy in a
depth-limited subgame) as is done in perfect-information games would be intractable. Fortunately, in
2p0s games, these high-dimensional belief representations are convex optimization problems. ReBeL
leverages this fact by conducting search via an iterative gradient-ascent-like algorithm.

ReBeL’s search algorithm operates on supergradients (the equivalent of subgradients but for concave
functions) of the PBS value function at leaf nodes, rather than on PBS values directly. Specifically,
the search algorithms require the values of infostates for PBSs [16, 40]. In a 2p0sum game, the value
of infostate si in β assuming all other players play Nash equilibrium π∗ is the maximum value that
player i could obtain for si through any policy in the subgame rooted at β. Formally,

vπ
∗

i (si|β) = max
πi

∑
h∈H(si)

p(h|si, β−i)v
〈πi,π∗−i〉
i (h) (1)

where p(h|si, β−i) is the probability of being in history h assuming si is reached and the joint
probability distribution over infostates for players other than i is β−i. Theorem 1 proves that infostate
values can be interpreted as a supergradient of the PBS value function in 2p0s games.

Theorem 1. For any PBS β = (β1, β2) (for the beliefs over player 1 and 2 infostates respectively)
and any policy π∗ that is a Nash equilibrium of the subgame rooted at β,

vπ
∗

1 (s1|β) = V1(β) + ḡ · ŝ1 (2)

where ḡ is a supergradient of an extension of V1(β) to unnormalized belief distributions and ŝ1 is the
unit vector in direction s1.

All proofs are presented in the appendix.

Since ReBeL’s search algorithm uses infostate values, so rather than learn a PBS value function
ReBeL instead learns an infostate-value function v̂ : B → R|S1|+|S2| that directly approximates for
each si the average of the sampled vπ

∗

i (si|β) values produced by ReBeL at β.8

5 Self Play Reinforcement Learning and Search for Public Belief States
In this section we describe ReBeL and prove that it approximates a Nash equilibrium in 2p0s games.
At the start of the game, a depth-limited subgame rooted at the initial PBS βr is generated. This
subgame is solved (i.e., a Nash equilibrium is approximated) by running T iterations of an iterative
equilibrium-finding algorithm in the discrete representation of the game, but using the learned value
network v̂ to approximate leaf values on every iteration. During training, the infostate values at βr
computed during search are added as training examples for v̂ and (optionally) the subgame policies
are added as training examples for the policy network. Next, a leaf node z is sampled and the process
repeats with the PBS at z being the new subgame root. Appendix B shows detailed pseudocode.

7Past work defines a subgame to be rooted at a public state [16, 8, 41, 40, 11, 33, 57, 52]. However,
imperfect-information subgames rooted at a public state do not have well-defined values.

8Unlike the PBS value Vi(β), the infostate values may not be unique and may depend on which Nash
equilibrium is played in the subgame. Nevertheless, any linear combination of supergradients is itself a
supergradient since the set of all supergradients is a convex set [48].

5

Algorithm 1 ReBeL: RL and Search for Imperfect-Information Games

function SELFPLAY(βr, θv, θπ, Dv, Dπ) . βr is the current PBS
while !ISTERMINAL(βr) do

G← CONSTRUCTSUBGAME(βr)
π̄, πtwarm ← INITIALIZEPOLICY(G, θπ) . twarm = 0 and π0 is uniform if no warm start
G← SETLEAFVALUES(G, π̄, πtwarm , θv)
v(βr)← COMPUTEEV(G, πtwarm)
tsample ∼ unif{twarm + 1, T} . Sample an iteration
for t = (twarm + 1)..T do

if t = tsample then
β′r ← SAMPLELEAF(G, πt−1) . Sample one or multiple leaf PBSs

πt ← UPDATEPOLICY(G, πt−1)
π̄ ← t

t+1 π̄ + 1
t+1π

t

G← SETLEAFVALUES(G, π̄, πt, θv)
v(βr)← t

t+1v(βr) + 1
t+1 COMPUTEEV(G, πt)

Add {βr, v(βr)} to Dv . Add to value net training data
for β ∈ G do . Loop over the PBS at every public state in G

Add {β, π̄(β)} to Dπ . Add to policy net training data (optional)
βr ← β′r

5.1 Search in a depth-limited imperfect-information subgame
In this section we describe the search algorithm ReBeL uses to solve depth-limited subgames. We
assume for simplicity that the depth of the subgame is pre-determined and fixed. The subgame is
solved in the discrete representation and the solution is then converted to the belief representation.
There exist a number of iterative algorithms for solving imperfect-information games [5, 61, 28,
36, 35]. We describe ReBeL assuming the counterfactual regret minimization - decomposition
(CFR-D) algorithm is used [61, 16, 40]. CFR is the most popular equilibrium-finding algorithm for
imperfect-information games, and CFR-D is an algorithm that solves depth-limited subgames via
CFR. However, ReBeL is flexible with respect to the choice of search algorithm and in Section 8 we
also show experimental results for fictitious play (FP) [5].

On each iteration t, CFR-D determines a policy profile πt in the subgame. Next, the value of every
discrete representation leaf node z is set to v̂(si(z)|βπ

t

z), where βπ
t

z denotes the PBS at z when
agents play according to πt. This means that the value of a leaf node during search is conditional
on πt. Thus, the leaf node values change every iteration. Given πt and the leaf node values, each
infostate in βr has a well-defined value. This vector of values, denoted vπ

t

(βr), is stored. Next,
CFR-D chooses a new policy profile πt+1, and the process repeats for T iterations.

When using CFR-D, the average policy profile π̄T converges to a Nash equilibrium as T →∞, rather
than the policy on the final iteration. Therefore, after running CFR-D for T iterations in the subgame
rooted at PBS βr, the value vector (

∑T
t=1 v

πt(βr))/T is added to the training data for v̂(βr).

Appendix I introduces CFR-AVG, a modification of CFR-D that sets the value of leaf node z to
v̂(si(z)|βπ̄

t

z) rather than v̂(si(z)|βπ
t

z), where π̄t denotes the average policy profile up to iteration t.
CFR-AVG addresses some weaknesses of CFR-D.

5.2 Self-play reinforcement learning
We now explain how ReBeL trains a PBS value network through self play. After solving a subgame
rooted at PBS βr via search (as described in Section 5.1), the value vector for the root infostates is
added to the training dataset for v̂. Next, a leaf PBS β′r is sampled and a new subgame rooted at β′r is
solved. This process repeats until the game ends.

Since the subgames are solved using an iterative algorithm, we want v̂ to be accurate for leaf PBSs
on every iteration. Therefore, a leaf node z is sampled according to πt on a random iteration
t ∼ unif{0, T −1}, where T is the number of iterations of the search algorithm.9 To ensure sufficient

9For FP, we pick a random agent i and sample according to (πt
i , π̄

t
−i) to reflect the search operation.

6

exploration, one agent samples random actions with probabilility ε > 0.10 In CFR-D β′r = βπ
t

z ,
while in CFR-AVG and FP β′r = βπ̄

t

z .

Theorem 2 states that, with perfect function approximation, running Algorithm 1 will produce a
value network whose error is bounded by O(1√

T
) for any PBS that could be encountered during play,

where T is the number of CFR iterations being run in subgames.
Theorem 2. Consider an idealized value approximator that returns the most recent sample of the
value for sampled PBSs, and 0 otherwise. Running Algorithm 1 with T iterations of CFR in each
subgame will produce a value approximator that has error of at most C√

T
for any PBS that could be

encountered during play, where C is a game-dependent constant.

ReBeL as described so far trains the value network through bootstrapping. One could alternatively
train the value network using rewards actually received over the course of the game when the agents do
not go off-policy. There is a trade-off between bias and variance between these two approaches [51].

5.3 Adding a policy network
Algorithm 1 will result in v̂ converging correctly even if a policy network is not used. However,
initializing the subgame policy via a policy network may reduce the number of iterations needed
to closely approximate a Nash equilibrium. Additionally, it may improve the accuracy of the value
network by allowing the value network to focus on predicting PBS values over a more narrow domain.

Algorithm 1 can train a policy network Π̂ : β → (∆A)|S1|+|S2| by adding π̄T (β) for each PBS β in
the subgame to a training dataset each time a subgame is solved (i.e., T iterations of CFR have been
run in the subgame). Appendix J describes a technique, based on [10], for warm starting equilibrium
finding given the initial policy from the policy network.

6 Playing According to an Equilibrium at Test Time
This section proves that running Algorithm 1 at test time with an accurately trained PBS value
network will result in playing a Nash equilibrium policy in expectation even if we do not know the
opponent’s policy. During self play training we assumed, as stated in Section 3, that both players’
policies are common knowledge. This allows us to exactly compute the PBS we are in. However, at
test time we do not know our opponent’s entire policy, and therefore we do not know the PBS. This is
a problem for conducting search, because search is always rooted at a PBS. For example, consider
again the game of modified Rock-Paper-Scissors illustrated in Figure 1a. For simplicity, assume that
v̂ is perfect. Suppose that we are player 2 and player 1 has just acted. In order to now conduct search
as player 2, our algorithm requires a root PBS. What should this PBS be?

An intuitive choice, referred to as unsafe search [25, 22], is to first run CFR for T iterations for
player 1’s first move (for some large T), which results in a player 1 policy such as (R = 0.4001, P =
0.3999, S = 0.2). Unsafe search passes down the beliefs resulting from that policy, and then
computes our optimal policy as player 2. This would result in a policy of (R = 0, P = 1, S = 0) for
player 2. Clearly, this is not a Nash equilibrium. Moreover, if our opponent knew we would end up
playing this policy (which we assume they would know since we assume they know the algorithm we
run to generate the policy), then they could exploit us by playing (R = 0, P = 0, S = 1).

This problem demonstrates the need for safe search, which is a search algorithm that ensures we
play a Nash equilibrium policy in expectation. Importantly, it is not necessary for the policy that the
algorithm outputs to always be a Nash equilibrium. It is only necessary that the algorithm outputs a
Nash equilibrium policy in expectation. For example, in modified Rock-Paper-Scissors it is fine for
an algorithm to output a policy of 100% Rock, so long as the probability it outputs that policy is 40%.

All past safe search approaches introduce additional constraints to the search algorithm [16, 41, 11,
57]. Those additional constraints hurt performance in practice compared to unsafe search [16, 11]
and greatly complicate search, so they were never fully used in any competitive agent. Instead,
all previous search-based imperfect-information game agents used unsafe search either partially or
entirely [40, 12, 15, 14, 53]. Moreover, using prior safe search techniques at test time may result in
the agent encountering PBSs that were not encountered during self-play training and therefore may
result in poor approximations from the value and policy network.

10The algorithm is still correct if all agents sample random actions with probability ε, but that is less efficient
because the value of a leaf node that can only be reached if both agents go off policy is irrelevant.

7

We now prove that safe search can be achieved without any additional constraints by simply running
the same algorithm at test time that we described for training. This result applies regardless of
how the value network was trained and so can be applied to prior algorithms that use PBS value
functions [40, 53]. Specifically, when conducting search at test time we pick a random iteration and
assume all players’ policies match the policies on that iteration. Theorem 3, the proof of which is in
Section G, states that once a value network is trained according to Theorem 2, using Algorithm 1 at
test time (without off-policy exploration) will approximate a Nash equilibrium.
Theorem 3. If Algorithm 1 is run at test time with no off-policy exploration, a value network with
error at most δ for any leaf PBS that was trained to convergence as described in Theorem 2, and with
T iterations of CFR being used to solve subgames, then the algorithm plays a (δC1 + δC2√

T
)-Nash

equilibrium, where C1, C2 are game-specific constants.

Since a random iteration is selected, we may select a very early iteration, or even the first iteration,
in which the policy is extremely poor. This can be mitigated by using modern equilibrium-finding
algorithms, such as Linear CFR [13], that assign little or no weight to the early iterations.

7 Experimental Setup
We measure exploitability of a policy π∗, which is

∑
i∈N maxπ vi(π, π

∗
−i)/|N |. All CFR experi-

ments use alternating-updates Linear CFR [13]. All FP experiments use alternating-updates Linear
Optimistic FP, which is a novel variant we present in Appendix H.

We evaluate on the benchmark imperfect-information games of heads-up no-limit Texas hold’em
poker (HUNL) and Liar’s Dice. The rules for both games are provided in Appendix C. We also
evaluate our techniques on turn endgame hold’em (TEH), a variant of no-limit Texas hold’em in
which both players automatically check/call for the first two of the four betting rounds in the game.

In HUNL and TEH, we reduce the action space to at most nine actions using domain knowledge of
typical bet sizes. However, our agent responds to any “off-tree” action at test time by adding the
action to the subgame [15, 14]. The bet sizes and stack sizes are randomized during training. For
TEH we train on the full game and measure exploitability on the case of both players having $20,000,
unperturbed bet sizes, and the first four board cards being 3♠7♥T♦K♠. For HUNL, our agent uses
far less domain knowledge than any prior competitive AI agent. Appendix D discusses the poker
domain knowledge we leveraged in ReBeL.

We approximate the value and policy functions using artificial neural networks. Both networks are
MLPs with GeLU [27] activation functions and LayerNorm [3]. Both networks are trained with
Adam [32]. We use pointwise Huber loss as the criterion for the value function and mean squared
error (MSE) over probabilities for the policy. In preliminary experiments we found MSE for the value
network and cross entropy for the policy network did worse. See Appendix E for the hyperparameters.

We use PyTorch [46] to train the networks. We found data generation to be the bottleneck due to the
sequential nature of the FP and CFR algorithms and the evaluation of all leaf nodes on each iteration.
For this reason we use a single machine for training and up to 128 machines with 8 GPUs each for
data generation.

8 Experimental Results
Figure 2 shows ReBeL reaches a level of exploitability in TEH equivalent to running about 125
iterations of full-game tabular CFR. For context, top poker agents typically use between 100 and
1,000 tabular CFR iterations [4, 40, 12, 15, 14]. Our self-play algorithm is key to this success;
Figure 2 shows a value network trained on random PBSs fails to learn anything valuable.

Table 1 shows results for ReBeL in HUNL. We compare ReBeL to BabyTartanian8 [9] and Slumbot,
prior champions of the Computer Poker Competition, and to the local best response (LBR) [39]
algorithm. We also present results against Dong Kim, a top human HUNL expert that did best among
the four top humans that played against Libratus. Kim played 7,500 hands. Variance was reduced
by using AIVAT [17]. ReBeL played faster than 2 seconds per hand and never needed more than 5
seconds for a decision.

Beyond just poker, Table 2 shows ReBeL also converges to an approximate Nash in several versions
of Liar’s Dice. Of course, tabular CFR does better than ReBeL when using the same number of CFR
iterations, but tabular CFR quickly becomes intractable to run as the game grows in size.

8

0 50 100 150 200 250
Search Iterations

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

Random Beliefs Value Net
Full Game
Perfect Value Net
Self-Play Value Net
Self-Play Value/Policy Net

0 50 100 150 200 250 300
Training Epochs

Self-Play Value Net (250 Search Iterations)

Figure 2: Convergence of different techniques in TEH. All subgames are solved using CFR-AVG. Perfect Value
Net uses an oracle function to return the exact value of leaf nodes on each iteration. Self-Play Value Net uses a
value function trained through self play. Self-Play Value/Policy Net additionally uses a policy network to warm
start CFR. Random Beliefs trains the value net by sampling PBSs at random.

Bot Name Slumbot BabyTartanian8 [9] LBR [39] Top Humans
DeepStack [40] - - 383± 112 -

Libratus [12] - 63 ± 14 - 147 ± 39

Modicum [15] 11 ± 5 6 ± 3 - -

ReBeL (Ours) 45 ± 5 9 ± 4 881 ± 94 165 ± 69

Table 1: Head-to-head results of our agent against benchmark bots BabyTartanian8 and Slumbot, as well as top
human expert Dong Kim, measured in thousandths of a big blind per game. We also show performance against
LBR [39] where the LBR agent must call for the first two betting rounds, and can either fold, call, bet 1× pot, or
bet all-in on the last two rounds. The ± shows one standard deviation. For Libratus, we list the score against all
top humans in aggregate; Libratus beat Dong Kim by 29 with an estimated ± of 78.

Algorithm 1x4f 1x5f 1x6f 2x3f
Full-game FP 0.012 0.024 0.039 0.057
Full-game CFR 0.001 0.001 0.002 0.002

ReBeL FP 0.041 0.020 0.040 0.020
ReBeL CFR-D 0.017 0.015 0.024 0.017

Table 2: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces and 2 dice
with 3 faces. The top two rows represent baseline numbers when a tabular version of the algorithms is run on the
entire game for 1,024 iterations. The bottom 2 lines show the performance of ReBeL operating on subgames of
depth 2 with 1,024 search iterations. For exploitability computation of the bottom two rows, we averaged the
policies of 1,024 playthroughs and thus the numbers are upper bounds on exploitability.

9 Conclusions

We present ReBeL, an algorithm that generalizes the paradigm of self-play reinforcement learning
and search to imperfect-information games. We prove that ReBeL computes an approximate Nash
equilibrium in two-player zero-sum games, demonstrate convergence in Liar’s Dice, and demonstrate
that it produces superhuman performance in the benchmark game of heads-up no-limit Texas hold’em.

ReBeL has some limitations that present avenues for future research. Most prominently, the input to
its value and policy functions currently grows linearly with the number of infostates in a public state.
This is intractable in games such as Recon Chess [44] that have strategic depth but very little common
knowledge. ReBeL’s theoretical guarantees are also limited only to two-player zero-sum games.

Nevertheless, ReBeL achieves low exploitability in benchmark games and superhuman performance
in heads-up no-limit Texas hold’em while leveraging far less expert knowledge than any prior bot.
We view this as a major step toward developing universal techniques for multi-agent interactions.

9

Broader Impact
We believe ReBeL is a major step toward general equilibrium-finding algorithms that can be deployed
in large-scale multi-agent settings while requiring relatively little domain knowledge. There are
numerous potential future applications of this work, including auctions, negotiations, cybersecurity,
and autonomous vehicle navigation, all of which are imperfect-information multi-agent interactions.

The most immediate risk posed by this work is its potential for cheating in recreational games such as
poker. While AI algorithms already exist that can achieve superhuman performance in poker, these
algorithms generally assume that participants have a certain number of chips or use certain bet sizes.
Retraining the algorithms to account for arbitrary chip stacks or unanticipated bet sizes requires more
computation than is feasible in real time. However, ReBeL can compute a policy for arbitrary stack
sizes and arbitrary bet sizes in seconds.

Partly for this reason, we have decided not to release the code for poker. We instead open source our
implementation for Liar’s Dice, a recreational game that is not played as competitively by humans.
The implementation in Liar’s Dice is also easier to understand and the size of Liar’s Dice can be more
easily adjusted, which we believe makes the game more suitable as a domain for research.

References
[1] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learning

and tree search. In Advances in Neural Information Processing Systems, pages 5360–5370,
2017.

[2] Robert J Aumann. Agreeing to disagree. The annals of statistics, pages 1236–1239, 1976.

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[4] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, 2015.

[5] George W Brown. Iterative solution of games by fictitious play. Activity analysis of production
and allocation, 13(1):374–376, 1951.

[6] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, distributed
equilibrium computation, and post-processing, with application to a champion no-limit texas
hold’em agent. In Proceedings of the 2015 International Conference on Autonomous Agents
and Multiagent Systems, pages 7–15. International Foundation for Autonomous Agents and
Multiagent Systems, 2015.

[7] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual regret
minimization. In International Conference on Machine Learning, pages 793–802, 2019.

[8] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding in
games. In Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[9] Noam Brown and Tuomas Sandholm. Baby tartanian8: Winning agent from the 2016 annual
computer poker competition. In IJCAI, pages 4238–4239, 2016.

[10] Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimization in
games. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

[11] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-
information games. In Advances in neural information processing systems, pages 689–699,
2017.

[12] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Libratus
beats top professionals. Science, page eaao1733, 2017.

[13] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via discounted re-
gret minimization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 1829–1836, 2019.

10

[14] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science, page
eaay2400, 2019.

[15] Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for imperfect-
information games. In Advances in Neural Information Processing Systems, pages 7663–7674,
2018.

[16] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information games
using decomposition. In Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[17] Neil Burch, Martin Schmid, Matej Moravcik, Dustin Morill, and Michael Bowling. Aivat:
A new variance reduction technique for agent evaluation in imperfect information games. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[18] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin,
and Shenghuo Zhu. Online optimization with gradual variations. In Conference on Learning
Theory, pages 6–1, 2012.

[19] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Optimally
solving dec-pomdps as continuous-state mdps. Journal of Artificial Intelligence Research,
55:443–497, 2016.

[20] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon Whiteson,
Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-agent
reinforcement learning. In International Conference on Machine Learning, pages 1942–1951,
2019.

[21] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with earth
mover’s distance in imperfect-information games. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, pages 682–690, 2014.

[22] Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information games.
In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems, pages 37–45. International Foundation for Autonomous Agents and Multiagent Systems,
2015.

[23] Sylvain Gelly and David Silver. Combining online and offline knowledge in uct. In Proceedings
of the 24th international conference on Machine learning, pages 273–280, 2007.

[24] Andrew Gilpin and Tuomas Sandholm. Optimal rhode island hold’em poker. In Proceedings of
the 20th national conference on Artificial intelligence-Volume 4, pages 1684–1685, 2005.

[25] Andrew Gilpin and Tuomas Sandholm. A competitive texas hold’em poker player via automated
abstraction and real-time equilibrium computation. In Proceedings of the National Conference
on Artificial Intelligence, volume 21, page 1007. Menlo Park, CA; Cambridge, MA; London;
AAAI Press; MIT Press; 1999, 2006.

[26] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, volume 4, pages 709–715, 2004.

[27] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[28] Samid Hoda, Andrew Gilpin, Javier Pena, and Tuomas Sandholm. Smoothing techniques
for computing nash equilibria of sequential games. Mathematics of Operations Research,
35(2):494–512, 2010.

[29] Karel Horák and Branislav Bošanskỳ. Solving partially observable stochastic games with public
observations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 2029–2036, 2019.

[30] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal abstract
strategies in extensive-form games. In Proceedings of the Twenty-Sixth AAAI Conference on
Artificial Intelligence, pages 1371–1379, 2012.

11

[31] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in
partially observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

[32] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[33] Vojtěch Kovařík and Viliam Lisỳ. Problems with the efg formalism: a solution attempt using
observations. arXiv preprint arXiv:1906.06291, 2019.

[34] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisỳ. Re-
thinking formal models of partially observable multiagent decision making. arXiv preprint
arXiv:1906.11110, 2019.

[35] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Solving large sequential games with
the excessive gap technique. In Advances in Neural Information Processing Systems, pages
864–874, 2018.

[36] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming, pages 1–33, 2018.

[37] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via search in
cooperative partially observable games. In AAAI Conference on Artificial Intelligence, 2020.

[38] David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and
Economic Behavior, 56(2):285–298, 2006.

[39] Viliam Lisy and Michael Bowling. Eqilibrium approximation quality of current no-limit poker
bots. In Workshops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[40] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level
artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

[41] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen J Gaukrodger. Refining
subgames in large imperfect information games. In Thirtieth AAAI Conference on Artificial
Intelligence, 2016.

[42] John Nash. Non-cooperative games. Annals of mathematics, pages 286–295, 1951.

[43] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentralized stochastic
control with partial history sharing: A common information approach. IEEE Transactions on
Automatic Control, 58(7):1644–1658, 2013.

[44] Andrew J Newman, Casey L Richardson, Sean M Kain, Paul G Stankiewicz, Paul R Guseman,
Blake A Schreurs, and Jeffrey A Dunne. Reconnaissance blind multi-chess: an experimen-
tation platform for isr sensor fusion and resource management. In Signal Processing, Sen-
sor/Information Fusion, and Target Recognition XXV, volume 9842, page 984209. International
Society for Optics and Photonics, 2016.

[45] Frans Adriaan Oliehoek. Sufficient plan-time statistics for decentralized pomdps. In Twenty-
Third International Joint Conference on Artificial Intelligence, 2013.

[46] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. In Advances in neural information processing
systems, pages 8026–8037, 2019.

[47] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. 2013.

[48] R Tyrrell Rockafellar. Convex analysis. Number 28. Princeton university press, 1970.

[49] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM Journal
of research and development, 3(3):210–229, 1959.

12

[50] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Si-
mon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering
atari, go, chess and shogi by planning with a learned model. arXiv preprint arXiv:1911.08265,
2019.

[51] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations (ICLR), 2016.

[52] Dominik Seitz, Vojtech Kovarík, Viliam Lisỳ, Jan Rudolf, Shuo Sun, and Karel Ha. Value
functions for depth-limited solving in imperfect-information games beyond poker. arXiv preprint
arXiv:1906.06412, 2019.

[53] Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding friend
and foe in multi-agent games. In Advances in Neural Information Processing Systems, pages
1249–1259, 2019.

[54] Claude E Shannon. Programming a computer for playing chess. The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950.

[55] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general
reinforcement learning algorithm that masters chess, shogi, and go through self-play. Science,
362(6419):1140–1144, 2018.

[56] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
go without human knowledge. Nature, 550(7676):354, 2017.

[57] Michal Šustr, Vojtěch Kovařík, and Viliam Lisỳ. Monte carlo continual resolving for online
strategy computation in imperfect information games. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, pages 224–232. International
Foundation for Autonomous Agents and Multiagent Systems, 2019.

[58] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. In Advances in Neural Information Processing Systems, pages
2989–2997, 2015.

[59] Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural computation, 6(2):215–219, 1994.

[60] Ben Van der Genugten. A weakened form of fictitious play in two-person zero-sum games.
International Game Theory Review, 2(04):307–328, 2000.

[61] Martin Zinkevich, Michael Johanson, Michael Bowling, and Carmelo Piccione. Regret mini-
mization in games with incomplete information. In Advances in neural information processing
systems, pages 1729–1736, 2008.

13

A List of contributions

This paper makes several contributions, which we summarize here.

• RL+Search in two-player zero-sum imperfect-information games. Prior work has de-
veloped RL+Search for two-player zero-sum perfect-information games. There has also
been prior work on learning value functions in fully cooperative imperfect-information
games [19] and limited subsets of zero-sum imperfect-information games [29]. However,
we are not aware of any prior RL+Search algorithms for two-player zero-sum games in
general. We view this as the central contribution of this paper.

• Alternative to safe search techniques. Theorem 3 proves that, when doing search at test
time with an accurate PBS value function, one can empirically play according to a Nash
equilibrium by sampling a random iteration and passing down the beliefs produced by that
iteration’s policy. This result applies regardless of how the value function was trained and
therefore applies to earlier techniques that use a PBS value function, such as DeepStack [40].

• Subgame decomposition via CFR-AVG. We describe the CFR-AVG algorithm in Ap-
pendix I. CFR-D [16] is a way to conduct depth-limited solving of a subgame with CFR
when given a value function for PBSs. CFR-D is theoretically sound but has certain proper-
ties that may reduce performance in a self-play setting. CFR-AVG is a theoretically sound
alternative to CFR-D that does not have these weaknesses. However, in order to implement
CFR-AVG efficiently, in our experiments we modify the algorithm in a way that is not
theoretically sound but empirically performs well in poker. Whether or not this modified
form of CFR-AVG is theoretically sound remains an open question.

• Connection between PBS gradients and infostate values. Theorem 1 proves that all of
the algorithms described in this paper can in theory be conducted using only V1, not v̂ (that
is, a value function that outputs a single value for a PBS, rather than a vector of values
for the infostates in the PBS). While this connection does not have immediate practical
consequences, it does point toward a way of deploying the ideas in this paper to settings
with billions or more infostates per PBS.

• Fictitious Linear Optimistic Play (FLOP). Section H introduces FLOP, a novel variant
of Fictitious Play that is inspired by recent work on regret minimization algorithms [13].
We show that FLOP empirically achieves near-O(1

T) convergence in the limit in both poker
and Liar’s Dice, does far better than any previous variant of FP, and in some domains is a
reasonable alternative to CFR.

B Pseudocode for ReBeL

Algorithm 2 presents ReBeL in more detail.

We define the average of two policies to be the policy that is, in expectation, identical to picking one
of the two policies and playing that policy for the entire game. Formally, if π = απ1 + (1− α)π2,

then π(si) =
(xπ1i (si)α)π1(si)+(xπ2i (si)(1−α))π2(si)

x
π1
i (si)α+x

π2
i (si)(1−α)

where xπ1
i (si) is the product of the probabilities

for all agent i actions leading to si. Formally, xπi (si) of infostate si = (O0
i , a

0
i , O

1
i , a

1
i , ..., O

t
i) is

xπi (si) = Πt(a
t
i).

C Description of Games used for Evaluation

C.1 Heads-up no-limit Texas hold’em poker (HUNL)

HUNL is the two-player version of no-limit Texas hold’em poker, which is the most popular variant
of poker in the world. For each “hand” (game) of poker, each player has some number of chips (the
stack) in front of them. In our experiments, stack size varies during training between $5,000 and
$25,000 but during testing is always $20,000, as is standard in the AI research community. Before
play begins, Player 1 commits a small blind of $50 to the pot and Player 2 commits a big blind of
$100 to the pot.

14

Algorithm 2 ReBeL

function REBEL-LINEAR-CFR-D(βr, θv, θπ, Dv, Dπ) . βr is the current PBS
while !ISTERMINAL(βr) do

G← CONSTRUCTSUBGAME(βr)
π̄, πtwarm ← INITIALIZEPOLICY(G, θπ) . twarm = 0 and π0 is uniform if no warm start
G← SETLEAFVALUES(βr, πtwarm , θv)
v(βr)← COMPUTEEV(G, πtwarm)
tsample ∼ linear{twarm + 1, T} . Probability of sampling iteration t is proportional to t
for t = (twarm + 1)..T do

if t = tsample then
β′r ← SAMPLELEAF(G, πt−1) . Sample one or multiple leaf PBSs

πt ← UPDATEPOLICY(G, πt−1)
π̄ ← t

t+2 π̄ + 2
t+2π

t

G← SETLEAFVALUES(βr, πt, θv)
v(βr)← t

t+2v(βr) + 2
t+2 COMPUTEEV(G, πt)

Add {βr, v(βr)} to Dv . Add to value net training data
for β ∈ G do . Loop over the PBS at every public state in G

Add {β, π̄(β)} to Dπ . Add to policy net training data (optional)
βr ← β′r

function SETLEAFVALUES(β, π, θv)
if ISLEAF(β) then

for si ∈ β do . For each infostate si corresponding to β
v(si) = v̂(si|β, θv)

else
for a ∈ A(β) do

SETLEAFVALUES(T (β, π, a), π, θv)

function SAMPLELEAF(G, π)
i∗ ∼ unif{1, N}, h ∼ βr . Sample a history randomly from the root PBS and a random player
while !ISLEAF(h) do

c ∼ unif[0, 1]
for i = 1..N do

if i == i∗ and c < ε then . we set ε = 0.25 during training, ε = 0 at test time
sample an action ai uniform random

else
sample an action ai according to πi(si(h))

h ∼ τ(h, a)

return βh . Return the PBS corresponding to leaf node h

15

Once players commit their blinds, they receive two private cards from a standard 52-card deck. The
first of four rounds of betting then occurs. On each round of betting, players take turns deciding
whether to fold, call, or raise. If a player folds, the other player receives the money in the pot and the
hand immediately ends. If a player calls, that player matches the opponent’s number of chips in the
pot. If a player raises, that player adds more chips to the pot than the opponent. The initial raise of
the round must be at least $100, and every subsequent raise on the round must be at least as large as
the previous raise. A player cannot raise more than either player’s stack size. A round ends when
both players have acted in the round and the most recent player to act has called. Player 1 acts first on
the first round. On every subsequent round, player 2 acts first.

Upon completion of the first round of betting, three community cards are publicly revealed. Upon
completion of the second betting round, another community card is revealed, and upon completion of
the third betting round a final fifth community card is revealed. After the fourth betting round, if no
player has folded, then the player with the best five-card poker hand, formed from the player’s two
private cards and the five community cards, is the winner and takes the money in the pot. In case of a
tie, the money is split.

C.2 Turn endgame hold’em (TEH)

TEH is identical to HUNL except both players automatically call for the first two betting rounds, and
there is an initial $1,000 per player in the pot at the start of the third betting round. We randomize the
stack sizes during training to be between $5,000 and $50,000 per player. The action space of TEH is
reduced to at most three raise sizes (0.5× pot, 1× pot, or all-in for the first raise in a round, and 0.75×
pot or all-in for subsequent raises), but the raise sizes for non-all-in raises are randomly perturbed by
up to ±0.1× pot each game during training. Although we train on randomized stack sizes, bet sizes,
and board cards, we measure exploitability on the case of both players having $20,000, unperturbed
bet sizes, and the first four board cards being 3♠7♥T♦K♠. In this way we can train on a massive
game while still measuring NashConv tractably. Even without the randomized stack and bet sizes,
TEH has roughly 2 · 1011 infostates.

C.3 Liar’s Dice

Liar’s Dice is a two-player zero-sum game in our experiments, though in general it can be played
with more than two players. At the beginning of a game each player privately rolls d dice with f
faces each. After that a betting stage starts where players take turns trying to predict how many dice
of a specific kind there are among all the players, e.g., 4 dice with face 5. A player’s bid must either
be for more dice than the previous player’s bid, or the same number of dice but a higher face. The
round ends when a player challenges the previous bid (a call of liar). If all players together have at
least as many dice of the specified face as was predicted by the last bid, then the player who made the
bid wins. Otherwise the player who challenged the bid wins. We use the highest face as a wild face,
i.e., dice with this face count towards a bid for any face.

D Domain Knowledge Leveraged in our Poker AI Agent

The most prominent form of domain knowledge in our ReBeL poker agent is the simplification of the
action space during self play so that there are at most 8 actions at each decision point. The bet sizes
are hand-chosen based on conventional poker wisdom and are fixed fractions of the pot, though each
bet size is perturbed by ±0.1× pot during training to ensure diversity in the training data.

We specifically chose not to leverage domain knowledge that has been widely used in previous poker
AI agents:

• All prior top poker agents, including DeepStack [40], Libratus [12], and Pluribus [14], have
used information abstraction to bucket similar infostates together based on domain-specific
features [30, 21, 6]. Even when computing an exact policy, such as during search or when
solving a poker game in its entirety [24, 4], past agents have used lossless abstraction in
which strategically identical infostates are bucketed together. For example, a flush of spades
may be strategically identical to a flush of hearts.
Our agent does not use any information abstraction, whether lossy or lossless. The agent
computes a unique policy for each infostate. The agent’s input to its value and policy

16

network is a probability distribution over pairs of cards for each player, as well as all public
board cards, the amount of money in the pot relative to the stacks of the players, and a flag
for whether a bet has occurred on this betting round yet.

• DeepStack trained its value network on random PBSs. In addition to reducing the dimension-
ality of its value network input by using information abstraction, DeepStack also sampled
PBSs according to a handcrafted algorithm that would sample more realistic PBSs compared
to sampling uniform random. We show in Section 8 that training on PBSs sampled uniformly
randomly without information abstraction results in extremely poor performance in a value
network.
Our agent collects training data purely from self play without any additional heuristics
guiding which PBSs are sampled, other than an exploration hyperparameter that was set to
ε = 0.25 in all experiments.

• In cases where both players bet all their chips before all board cards are revealed, past poker
AIs compute the exact expected value of all possible remaining board card outcomes. This
is expensive to do in real time on earlier rounds, so past agents pre-compute this expected
value and look it up during training and testing. Using the exact expected value reduces
variance and makes learning easier.
Our agent does not use this shortcut. Instead, the agent learns these “all-in” expected values
on its own. When both agents have bet all their chips, the game proceeds as normal except
neither player is allowed to bet.

• The search space in DeepStack [40] extends to the start of the next betting round, except
for the third betting round (out of four) where it instead extends to the end of the game.
Searching to the end of the game on the third betting round was made tractable by using
information abstraction on the fourth betting round (see above). Similarly, Libratus [11],
Modicum [15], and Pluribus [14] all search to the end of the game when on the third betting
round. Searching to the end of the game has the major benefit of not requiring the value
network to learn values for the end of the third betting round. Thus, instead of the game being
three “levels” deep, it is only two levels deep. This reduces the potential for propogation of
errors.
Our agent always solves to the end of the current betting round, regardless of which round it
is on.

• The depth-limited subgames in DeepStack extended to the start of the next betting round on
the second betting round. On the first betting round, it extended to the end of the first betting
round for most of training and to the start of the next betting round for the last several CFR
iterations. Searching to the start of the next betting round was only tractable due to the
abstractions mentioned previously and due to careful optimizations, such as implementing
CFR on a GPU.
Our agent always solves to the end of the current betting round regardless of which round it
is on. We implement CFR only on a single-thread CPU and avoid any abstractions. Since a
subgame starts at the beginning of a betting round and ends at the start of the next betting
round, our agent must learn six “layers” of values (end of first round, start of second round,
end of second round, start of third round, end of third round, start of fourth round) compared
to three for DeepStack (end of first round, start of second round, start of third round).

• DeepStack used a separate value network for each of the three “layers” of values (end of first
round, start of second round, start of third round). Our agent uses a single value network for
all situations.

E Hyper parameters

In this section we provide details of the value and policy networks and the training procedures.

We approximate the value and policy functions using artificial neural networks. The input to the value
network consists of three components for both games: agent index, representation of the public state,
and a probability distribution over infostates for both agents. For poker, the public state representation
consists of the board cards and the common pot size divided by stack size; for Liar’s Dice it is the last
bid and the acting agent. The output of the network is a vector of values for each possible infostate of
the indexed agent, e.g., each possible poker hand she can hold.

17

We trained a policy network only for poker. The policy network state representation additionally
contains pot size fractions for both agents separately as well as a flag for whether there have been
any bets so far in the round. The output is a probability distribution over the legal actions for each
infostate.

As explained in section 7 we use Multilayer perceptron with GeLU [27] activation functions and
LayerNorm [3] for both value and policy networks.

For poker we represent the public state as a concatenation of a vector of indices of the board cards,
current pot size relative to the stack sizes, and binary flag for the acting player. The size of the full
input is

1(agent index) + 1(acting agent) + 1(pot) + 5(board) + 2× 1326(infostate beliefs)

We use card embedding for the board cards similar to [7] and then apply MLP. Both the value and
the policy networks contain 6 hidden layers with 1536 layers each. For all experiments we set the
probability to explore a random action to ε = 25% (see Section 5.2). To store the training data we
use a simple circular buffer of size 12M and sample uniformly. Since our action abstraction contains
at most 9 legal actions, the size of the target vector for the policy network is 9 times bigger than one
used for the value network. In order to make it manageable, we apply linear quantization to the policy
values. As initial data is produced with a random value network, we remove half of the data from the
replay buffer after 20 epochs.

For the full game we train the network with Adam optimizer with learning rate 3× 10−4 and halved
the learning rate every 800 epochs. One epoch is 2,560,000 examples and the batch size 1024. We
used 90 DGX-1 machines, each with 8 × 32GB Nvidia V100 GPUs for data generation. We report
results after 1,750 epochs. For TEH experiments we use higher initial learning rate 4× 10−4, but
halve it every 100 epochs. We report results after 300 epochs.

For Liar’s Dice we represent the state as a concatenation of a one hot vector for the last bid and binary
flag for the acting player. The size of the full input is

1(agent index) + 1(acting agent) + ndicenfaces(last bid) + 2nfaces
ndice(infostate beliefs).

The value network contains 2 hidden layers with 256 layers each. We train the network with Adam
optimizer with learning rate 3 × 10−4 and halved the learning rate every 400 epochs. One epoch
is 25,600 examples and the batch size 512. During both training and evaluation we run the search
algorithm for 1024 iterations. We use single GPU for training and 60 CPU threads for data generation.
We trained the network for 1000 epochs. To reduce the variance in RL+Search results, we evaluated
the three last checkpoints and reported averages in table 2.

E.1 Human Experiments for HUNL

We evaluated our HUNL agent against Dong Kim, a top human professional specializing in HUNL.
Kim was one of four humans that played against Libratus [12] in the man-machine competition which
Libratus won. Kim lost the least to Libratus. However, due to high variance, it is impossible to
statistically compare the performance of the individual humans that participated in the competition.

A total of 7,500 hands were played between Kim and the bot. Kim was able to play from home at
his own pace on any schedule he wanted. He was also able to play up to four games simultaneously
against the bot. To incentivize strong play, Kim was offered a base compensation of $1 ± $0.05x
for each hand played, where x signifies his average win/loss rate in terms of big blinds per hundred
hands played. Kim was guaranteed a minimum of $0.75 per hand and could earn no more than $2 per
hand. Since final compensation was based on the variance-reduced score rather than the raw score,
Kim was not aware of his precise performance during the experiment.

The bot played at an extremely fast pace. No decision required more than 5 seconds, and the bot
on average plays faster than 2 seconds per hand in self play. To speed up play even further, the bot
cached subgames it encountered on the preflop. When the same subgame was encountered again, it
would simply reuse the solution it had already computed previously.

Kim’s variance-reduced score, which we report in Section 8, was a loss of 165 ± 69 where the ±
indicates one standard error. His raw score was a loss of 358± 188.

18

F Proof Related to Value Functions (Theorem 1)

We start by proving some preliminary Lemmas. For simplicity, we will sometimes prove results for
only one player, but the results hold WLOG for both players.

For some policy profile π = (π1, π2), let vπi (β) : B → R|Si| be a function that takes as input a PBS
and outputs infostate values for player i.
Lemma 1. Let V π2

1 (β) be player 1’s value at β assuming that player 2 plays π2 in a 2p0s game.
V π2

1 (β) is linear in β1.

Proof. This follows directly from the definition of vπi (si|β) along with the definition of V1,

V π2
1 (β) =

∑
s1∈S1(spub)

β1(s1)v1(s1|β, (BR(π2), π2))

Lemma 2. V1(β) = minπ2
V π2

1 (β), and the set of π2 that attain V1(β) at β0 are precisely the Nash
equilibrium policies at β0. This also implies that V1(β) is concave.

Proof. By definition, the Nash equilibrium at β is the minimum among all choices of π2 of the value
to player 1 of her best response to π2. Any π2 that achieves this Nash equilibrium value when playing
a best response is a Nash equilibrium policy.

From Lemma 1, we know that each V π2
1 (β) is linear, which implies that V1(β) is concave since any

function that is the minimum of linear functions is concave.

Figure 3: Illustration of Lemma 2. In this simple example, the subgame begins with some probability β(heads)
of a coin being heads-up, which player 1 observes. Player 2 then guesses if the coin is heads or tails, and wins if
he guesses correctly. The payoffs for Player 2’s pure strategies are shown as the lines marked πheads

2 and πtails
2 .

The payoffs for a mixed strategy is a linear combination of the pure strategies. The value for player 1 is the
minimum among all the lines corresponding to player 2 strategies, denoted by the solid lines.

Now we can turn to proving the Theorem.

Consider a function Ṽ1 that is an extension of V1 to unnormalized probability distributions over
S1 and S2; i.e. Ṽi((spub, b1, b2)) = Vi((spub, b1/|b1|1, b2/|b2|1)). Ṽi = Vi on the simplex of valid
beliefs, but we extend it in this way to R|s1|≥0 \~0 so that we can consider gradients w.r.t. p(s1).

We will use the term ‘supergradient’ to be the equivalent of the subgradient for concave functions.
Formally, g is a supergradient of concave function F at x0 iff for any x in the domain of F ,

F (x)− F (x0) ≤ g · (x− x0).

Also, superg(F) = −subg(−F).

19

Theorem (Restatement of Theorem 1). For any belief β = (β1, β2) (for the beliefs over player 1 and
2 infostates respectively) and any policy π∗ that is a Nash equilibrium of the subgame rooted at β,

vπ
∗

1 (s1|β) = V1(β) + ḡ · ŝ1 (3)
for some supergradient ḡ of Ṽ1(β) with respect to β1, where ŝ1 is the unit vector in direction s1.

Proof. Lemma 2 shows that V1(β) is a concave function in β1, and its extension Ṽ off the simplex is
constant perpendicular to the simplex, so Ṽ is concave as well. Therefore the notion of a supergradient
is well-defined.

Now, consider some policy profile π∗ = (π∗1 , π
∗
2) that is a Nash equilibrium of G(β0). V π

∗
2

1 is a linear
function and tangent to V1 at β0; therefore, its gradient is a supergradient of V1 at β0. Its gradient is

∇β1
V
π∗2
1 (β) = ∇β1

∑
s1∈S1(spub)

β1(s1)v
π∗2
1 (s1|β) (4)

=
∑

s1∈S1(spub)

ŝ1v
π∗2
1 (s1|β) + β(s1)∇β1v

π∗2 (s1|β) (5)

=
∑

s1∈S1(spub)

ŝ1v
π∗2
1 (s1|β) (6)

Equation 6 follows from the fact that for a fixed opponent policy π∗2 , each player 1 infostate s1 is
an independent MDP whose value vπ

∗
2

1 (s1|β) doesn’t depend on the probabilities β1 of being in the
different infostates (although it might depend on β2 since player 1 doesn’t observe these).

Note also that the gradient of V π
∗
2

1 is correct even when some infostates s1 have probability 0, due
to the fact that we defined vπ2

1 (s1|β) as the value of player 1 playing a best response to π2 at each
infostate s1 (rather than just playing the equilibrium policy π∗1 , which may play arbitrarily at unvisited
infostates).

Finally, let’s compute g · ŝ1 at some β1 on the simplex (i.e. |β1|1 = 1).

g = ∇β1/|β1|1V
π∗

1 (spub, β1/|β1|, β2) · d

dβ1

(
β1

|β1|1

)
(chain rule) (7)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (|β1|1 − β1)/(|β1|1)2 (Eq. 4) (8)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (1− β1) (since |β1|1 = 1) (9)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)−
∑

s′1∈S1(spub)

β1(s′1)vπ
∗

1 (s′1|β) (10)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)− V1(β) (11)

g · ŝ1 = vπ
∗

1 (s1|β)− V1(β) (12)

And we’re done.

G Proofs Related to Subgame Solving (Theorems 2 and 3)

Lemma 3. Running Algorithm 1 for N → ∞ times in a depth-limited subgame rooted at PBS βr
will compute an infostate value vector vπ

∗

i (βr) corresponding to the values of the infostates when π∗

20

is played in the (not depth-limited) subgame rooted at βr, where π∗ is a C√
T

-Nash equilibrium for
some constant C.

Proof. A key part of our proof is the insight that Algorithm 1 resembles the CFR-D algorithm
from [16] if Algorithm 1 were modified such that there was no random sampling and every call to the
value network was replaced with a recursive call to the CFR-D algorithm.

Suppose the subgame rooted at βr extends to the end of the game and therefore there are no calls to
the neural network. Then CFR is proven to compute a C√

T
-Nash equilibrium [61], which we will call

π∗, and Algorithm 1 will indeed learn a value vector vπ
∗

i (βr) for βr corresponding to the infostate
values of βr when π∗ is played in the subgame. Thus, the base case for the inductive proof holds.

Now suppose we have a depth-limited subgame rooted at βr. Assume that for every leaf PBS βπ
t

z for
iterations t ≤ T , where πt is the policy in the subgame on iteration t, that we have already computed
an infostate value vector vπ

∗

i (βπ
t

z) corresponding to the values of the infostates in βπ
t

z when π∗

is played in the subgame rooted at βπ
t

z , where π∗ is a C√
T

-Nash equilibrium for some constant C.

Assume also that Lemma 3 holds for all leaf PBSs βπ
T+1

z .

First, for leaf PBSs that neither player reaches with positive probability, the values for the leaf PBS
have no affect on CFR or the values computed for the root infostates because CFR weights the values
by the probability the player reaches the PBS [61].

Now consider a leaf PBS βπ
T+1

z that some player reaches with positive probability. Since vπ
∗

i (βπ
t

z)

has already been computed for all βπ
t

z and since we are running a deterministic algorithm, so vπ
∗

i (βπ
t

z)

will not change with subsequent calls of Algorithm 1 on βπ
t

z for all t ≤ T . Thus, πt will be the same
for all t ≤ T . Since Algorithm 1 samples a random CFR iteration, and since the leaf PBS βπ

T+1

z is
sampled with positive probability for some player when iteration T + 1 is sampled, so the algorithm
will sample βπ

T+1

z N ′ times, where N ′ → ∞ as N → ∞. Since Lemma 3 holds for βπ
T+1

z , so
eventually vπ

∗

i (βπ
T+1

z) will be computed for βπ
T+1

z . Therefore, due to CFR-D [16], Lemma 3 will
hold for βr and the inductive step is proven.

Theorem (Restatement of Theorem 2). Consider an idealized value approximator that returns the
most recent sample of the value for sampled PBSs, and 0 otherwise. Running Algorithm 1 with T
iterations of CFR in each subgame will produce a value approximator that produces values that
correspond to a C√

T
-equilibrium policy for any PBS that could be encountered during play, where C

is a game-dependent constant.

Proof. Since we run Algorithm 1 for N → ∞ times at the root of the game, so by Lemma 3,
Theorem 2 is true.

Theorem (Restatement of Theorem 3). If Algorithm 1 is run at test time with no off-policy exploration,
a value network that has error at most δ for any leaf PBS, and with T iterations of CFR being used
to solve subgames, then the algorithm plays a (δC1 + δC2√

T
)-Nash equilibrium, where C1, C2 are

game-specific constants.

Proof. We prove the theorem inductively. Consider first a subgame near the end of the game that is
not depth-limited. I.e., it has no leaf nodes. Clearly, the policy π∗ that Algorithm 1 using CFR plays
in expectation is a k1√

T
-Nash equilibrium for game-specific constant k1 in this subgame.

Rather than play the average policy over all T iterations π̄T , one can equivalently pick a random
iteration t ∼ uniform{1, T} and play according to πt, the policy on iteration t. This algorithm is
also a k1√

T
-Nash equilibrium in expectation.

Next, consider a depth-limited subgame G such that for any leaf PBS βt on any CFR iteration t, the
policy that Algorithm 1 plays in the subgame rooted at βt is in expectation a δ-Nash equilibrium in
the subgame. If one computes a policy for G using tabular CFR-D [16] (or, as discussed in Section I,
using CFR-AVG), then by Theorem 2 in [16], the average policy over all iterations is k2δ+ k3√

T
-Nash

equilibrium.

21

Just as before, rather than play according to this average policy π̄T , one can equivalently pick a
random iteration t ∼ uniform{1, T} and play according to πt. Doing so would also result in a
k2δ + k3√

T
-Nash equilibrium in expectation. This is exactly what Algorithm 1 does.

Since there are a finite number of “levels” in a game, which is a game-specific constant, Algorithm 1
plays according to a δC1 + δC2√

T
-Nash equilibrium.

H Fictitious Linear Optimistic Play

Fictitious Play (FP) [5] is an extremely simple iterative algorithm that is proven to converge to a Nash
equilibrium in two-player zero-sum games. However, in practice it does so at an extremely slow rate.
On the first iteration, all agents choose a uniform policy π0

i and the average policy π̄0
i is set identically.

On each subsequent iteration t, agents compute a best response to the other agents’ average policy
πti = argmaxπi vi(πi, π̄

t−1
−i) and update their average policies to be π̄ti = t−1

t π̄
t−1
i + 1

tπ
t
i . As

t→∞, π̄t converges to a Nash equilibrium in two-player zero-sum games.

It has also been proven that a family of algorithms similar to FP known as generalized weak-
ened fictitious play (GWFP) also converge to a Nash equilibrium so long as they satisfy certain
properties [60, 38], mostly notably that in the limit the policies on each iteration converge to best
responses.

In this section we introduce a novel variant of FP we call Fictitious Linear Optimistic Play (FLOP)
which is a form of GWFP. FLOP is inspired by related variants in CFR, in particular Linear CFR [13].
FLOP converges to a Nash equilibrium much faster than FP while still being an extremely simple
algorithm. However, variants of CFR such as Linear CFR and Discounted CFR [13] still converge
much faster in most large-scale games.

In FLOP, the initial policy π0
i is uniform. On each subsequent iteration t, agents compute a best

response to an optimistic [18, 47, 58] form of the opponent’s average policy in which πt−1
−i is given

extra weight: πti = argmaxπi vi(πi,
t
t+2 π̄

t−1
−i + 2

t+2π
t−1
−i). The average policy is updated to be

π̄ti = t−1
t+1 π̄

t−1
i + 2

t+1π
t
i . Theorem 4 proves that FLOP is a form of GWFP and therefore converges

to a Nash equilibrium as t→∞.
Theorem 4. FLOP is a form of Generalized Weakened Fictitious Play.

Proof. Assume that the range of payoffs in the game is M . Since πti = argmaxπi vi(πi,
t
t+2 π̄

t−1
−i +

2
t+2π

t−1
−i), so πti is an εt-best response to π̄t−1

−i where εt < M 2
t+2 and εt → 0 as t → ∞. Thus,

FLOP is a form of GWFP with αt = 2
t .

I CFR-AVG: CFR Decomposition using Average Strategy

On each iteration t of CFR-D, the value of every leaf node z is set to v̂(si(z)|βπ
t

z). Other than
changing the values of leaf nodes every iteration, CFR-D is otherwise identical to CFR. If T iterations
of CFR-D are conducted with a value network that has error at most δ for each infostate value, then
π̄T has exploitability of at most k1δ + k2/

√
T where k1 and k2 are game-specific constants [40].

Since it is the average policy profile π̄t, not πt, that converges to a Nash equilibrium as t→∞, and
since the leaf PBSs are set based on πt, the input to the value network v̂ may span the entire domain
of inputs even as t→∞. For example, suppose in a Nash equilibrium π∗ the probability distribution
at βπ

∗

z was uniform. Then the probability distribution at βπ
t

z for any individual iteration t could be
anything, because regardless of what the probability distribution is, the average over all iterations
could still be uniform in the end. Thus, v̂ may need to be accurate over the entire domain of inputs
rather than just the subspace near βπ

∗

z .

In CFR-AVG, leaf values are instead set according to the average policy π̄t on iteration t. When a
leaf PBS is sampled, the leaf node is sampled with probability determined by πt, but the PBS itself is
defined using π̄t.

22

64 128 256 512 1024 2048 4096 8192 16384

10 4

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

1x4f
FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384

1x5f
FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384
Search Iterations

10 4

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

1x6f

FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384
Search Iterations

2x3f

FP
Linear FP
FLOP
Linear CFR

Figure 4: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces and 2 dice
with 3 faces. For all games FLOP outperforms Linear FP, but does not match the convergence of Linear CFR.

10 15 22 33 49 73 109 163 244 366 549 823 1234
Search Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

Non-alternating FP
FP
Optimistic FP
Linear FP
Linear Optimistic FP (FLOP)
Linear CFR

Figure 5: Exploitability of different algorithms for Turn Endgame Hold’em.

We first describe the tabular form of CFR-D [16]. Consider a game G′ and a depth-limited subgame
G, where both G′ and G share a root but G extends only a limited number of actions into the future.
Suppose that T iterations of a modified form of CFR are conducted in G′. On each iteration t ≤ T ,
the policy π(si) is set according to CFR for each si ∈ G. However, for every infostate s′i ∈ G′ \G,
the policy is set differently than what CFR would call for. At each leaf public state s′pub of G, we
solve a subgame rooted at βπ

t

s′pub
by running T ′ iterations of CFR. For each s′i in the subgame rooted

at βπ
t

s′pub
, we set πt(s′i) = π̄T (s′i) (where πt(s′i) is the policy for the infostate in G and π̄T (s′i) is

the policy for the infostate in the subgame rooted at βπ
t

s′pub
). It is proven that as T ′ → ∞, CFR-D

converges to a O(1√
T

)-Nash equilibrium [16].

CFR-AVG is identical to CFR-D, except the subgames that are solved on each iteration t are rooted
at βπ̄

t

s′pub
rather than βπ

t

s′pub
. Theorem 5 proves that CFR-AVG achieves the same bound on convergence

to a Nash equilibrium as CFR-D.

Theorem 5. Suppose that T iterations of CFR-AVG are run in a depth-limited subgame, where on
each iteration t ≤ T the subgame rooted at each leaf PBS βπ̄

t

s′pub
is solved completely. Then π̄T is a

C√
T

-Nash equilibrium for a game-specific constant C.

23

CFR-AVG has a number of potential benefits over CFR-D:

• Since π̄t converges to a Nash equilibrium as t→∞, CFR-AVG allows v̂ to focus on being
accurate over a more narrow subspace of inputs.

• When combined with a policy network (as introduced in Section 5.3), CFR-AVG may allow
v̂ to focus on an even more narrow subspace of inputs.

• Since π̄t+1 is much closer to π̄t than πt+1 is to πt, in practice as t becomes large one can
avoid querying the value network on every iteration and instead recycle the values from a
previous iteration. This may be particularly valuable for Monte Carlo versions of CFR.

While CFR-AVG is theoretically sound, we modify its implementation in our experiments to make it
more efficient in a way that has not been proven to be theoretically sound. The reason for this is that
while the input to the value network is βπ̄

t

s′pub
(i.e., the leaf PBS corresponding to π̄t being played in G,

the output needs to be the value of each infostate si given that πt is played in G. Thus, unlike CFR-D
and FP, in CFR-AVG there is a mismatch between the input policy and the output policy.

One way to cope with this is to have the input consist of both βπ̄
t

s′pub
and βπ

t

s′pub
. However, we found this

performed relatively poorly in preliminary experiments when trained through self play.

Instead, on iteration t − 1 we store the output from v̂(si|βπ̄
t−1

s′pub
) for each si and on iteration t we

set vt(si) to be tv̂(si|βπ̄
t

s′pub
) − (t − 1)v̂(si|βπ̄

t−1

s′pub
) (in vanilla CFR). The motivation for this is that

πt = tπ̄t− (t−1)π̄t−1. If vt(h) = vt−1(h) for each history h in the leaf PBS, then this modification
of CFR-AVG is sound. Since vt(h) = vt−1(h) when h is a full-game terminal node (i.e., it has no
actions), this modified form of CFR-AVG is identical to CFR in a non-depth-limited game. However,
that is not the case in a depth-limited subgame, and it remains an open question whether this modified
form of CFR-AVG is theoretically sound in depth-limited subgames. Empirically, however, we found
that it converges to a Nash equilibrium in turn endgame hold’em for every set of parameters (e.g., bet
sizes, stack sizes, and initial beliefs) that we tested.

Figure 6 shows the performance of CFR-D, CFR-AVG, our modified form of CFR-AVG, and FP
in TEH when using an oracle function for the value network. It also shows the performance of
CFR-D, our modified form of CFR-AVG, and FP in TEH when using a value network trained through
self-play. Surprisingly, the theoretically sound form of CFR-AVG does worse than CFR-D when
using an oracle function. However, the modified form of CFR-AVG does better than CFR-D when
using an oracle function and also when trained through self play.

0 50 100 150 200 250
Search Iterations

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

CFR-D Oracle Value Net
CFR-AVG Oracle Value Net
Modified CFR-AVG Oracle Value Net
FP Oracle Value Net

0 50 100 150 200 250
Search Iterations

CFR-D Self-Play Value Net
Modified CFR-AVG Self-Play Value Net
FP Self-Play Value Net

Figure 6: Left: comparison of CFR-D, CFR-AVG, modified CFR-AVG, and FP using an oracle value network
which returns exact values for leaf PBSs. Right: comparison of CFR-D, modified CFR-AVG, and FP using a
value network learned through 300 epochs of self play.

We also trained a model on HUNL with training parameters that were identical to the one reported in
Section 8, but using CFR-D rather than CFR-AVG. That model lost to BabyTartanian8 by 10 ± 3
whereas the CFR-AVG model won by 9± 4. The CFR-D model also beat Slumbot by 39± 6 whereas
the CFR-AVG model won by 45± 5.

I.1 Proof of Theorem 5

Our proof closely follows from [16] and [40].

24

Proof. Let Rt(si) be the (cumulative) regret of infostates si on iteration t. We show that the regrets
of all infostates in G′ are bounded by O(

√
T) and therefore the regret of the entire game is bounded

by O(
√
T).

First, consider the infostates in G. Since their policies are chosen according to CFR each iteration,
their regrets are bounded by O(

√
T) regardless of the policies played in descendant infostates.

Next consider an infostate si ∈ G′ \G. We prove inductively that Rt(si) ≤ 0. Let βπ
t

be the PBS
at the root of the subgame containing si in CFR-D, and βπ̄

t

be the PBS at the root of the subgame
containing si in CFR-AVG. On the first iteration, βπ

t

= βπ̄
t

. Since we assume CFR-AVG computes
an exact equilibrium in the subgame rooted at βπ̄

t

= βπ
t

, so Rt(si) = 0 on the first iteration.

Next, we prove Rt+1(si) ≤ Rt(si). We define a∗,t as

a∗,ti = argmax
ai

t∑
t′=0

vt
′
(si, ai) (13)

By definition of regret,

Rt+1(si) =

t+1∑
t′=0

(
vt
′
(si, a

∗,t+1
i)− vt

′
(si)
)

(14)

Separating iteration t+ 1 from the summation we get

Rt+1(si) =

t∑
t′=0

(
vt
′
(si, a

∗,t+1
i)− vt

′
(si)
)

+
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(15)

By definition of a∗,ti we know
∑t
t′=0 v

t′(si, a
∗,t+1
i) ≤

∑t
t′=0 v

t′(si, a
∗,t
i), so

Rt+1(si) ≤
t∑

t′=0

(
vt
′
(si, a

∗,t
i)− vt

′
(si)
)

+
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(16)

Since
∑t
t′=0

(
vt
′
(si, a

∗,t
i)− vt′(si)

)
is the definition of Rt(si) we get

Rt+1(si) ≤ Rt(si) +
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(17)

Since πt+1 = π∗,t+1 in the subgame where π∗,t+1 is an exact equilibrium of the subgame rooted at
βπ̄

t+1

, so πt+1 is a best response to π̄t+1 in the subgame and therefore vt+1(si, a
∗,t+1
i) = vt+1(si).

Thus,
Rt+1(si) ≤ Rt(si) (18)

J CFR Warm Start Algorithm Used

Our warm start technique for CFR is based on [10], which requires only a policy profile to warm start
CFR soundly. That techniques computes a “soft” best response to the policy profile, which results in
instantaneous regrets for each infostate. Those instantaneous regrets are scaled up to be equivalent
to some number of CFR iterations. However, that technique requires careful parameter tuning to
achieve good performance in practice.

We instead use a simplified warm start technique in which an exact best response to the policy profile
is computed. That best response results in instantaneous regrets at each infostate. Those regrets are
scaled up by a factor of 15 to imitate 15 CFR iterations. Similarly, the average policy effectively
assumes that the warm start policy was played for the first 15 iterations of CFR. CFR then proceeds
as if 15 iterations have already occurred.

25

	Introduction
	Related Work
	Notation and Background
	From World States to Public Belief States
	Self Play Reinforcement Learning and Search for Public Belief States
	Search in a depth-limited imperfect-information subgame
	Self-play reinforcement learning
	Adding a policy network

	Playing According to an Equilibrium at Test Time
	Experimental Setup
	Experimental Results
	Conclusions
	List of contributions
	Pseudocode for ReBeL
	Description of Games used for Evaluation
	Heads-up no-limit Texas hold'em poker (HUNL)
	Turn endgame hold'em (TEH)
	Liar's Dice

	Domain Knowledge Leveraged in our Poker AI Agent
	Hyper parameters
	Human Experiments for HUNL

	Proof Related to Value Functions (Theorem 1)
	Proofs Related to Subgame Solving (Theorems 2 and 3)
	Fictitious Linear Optimistic Play
	CFR-AVG: CFR Decomposition using Average Strategy
	Proof of Theorem 5

	CFR Warm Start Algorithm Used

