
Fast Succinct Retrieval and
Approximate Membership using Ribbon
Peter C. Dillinger
Meta
peterd@fb.com

Lorenz Hübschle-Schneider
Karlsruhe Institute of Technology, Germany
huebschle@4z2.de

Peter Sanders
Karlsruhe Institute of Technology, Germany
sanders@kit.edu

Stefan Walzer
Cologne University
walzer@cs.uni-koeln.de

Abstract
A retrieval data structure for a static function f : S → {0, 1}r supports queries that return
f(x) for any x ∈ S. Retrieval data structures can be used to implement a static approximate
membership query data structure (AMQ), i.e., a Bloom filter alternative, with false positive rate 2−r.
The information-theoretic lower bound for both tasks is r|S| bits. While succinct theoretical
constructions using (1 + o(1))r|S| bits were known, these could not achieve very small overheads in
practice because they have an unfavorable space–time tradeoff hidden in the asymptotic costs or
because small overheads would only be reached for physically impossible input sizes. With bumped
ribbon retrieval (BuRR), we present the first practical succinct retrieval data structure. In an
extensive experimental evaluation BuRR achieves space overheads well below 1% while being faster
than most previously used retrieval data structures (typically with space overheads at least an order
of magnitude larger) and faster than classical Bloom filters (with space overhead ≥ 44 %). This
efficiency, including favorable constants, stems from a combination of simplicity, word parallelism,
and high locality.

We additionally describe homogeneous ribbon filter AMQs, which are even simpler and faster at
the price of slightly larger space overhead.
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1 Introduction

A retrieval data structure (sometimes called “static function”) represents a function f : S →
{0, 1}r for a set S ⊆ U of n keys from a universe U and r ∈ N. A query for x ∈ S must
return f(x), but a query for x ∈ U \ S may return any value from {0, 1}r.

The information-theoretic lower bound for the space needed by such a data structure is
nr bits in the general case.1 This significantly undercuts the Ω((log |U|+ r)n) bits2 needed
by a dictionary, which must return “None” for x ∈ U \ S. The intuition is that dictionaries
have to store f ⊆ U × {0, 1}r as a set of key-value pairs while retrieval data structures,
surprisingly, need not store the keys. We say a retrieval data structure using s bits has
(space) overhead s

nr − 1.
The starting point for our contribution is a compact retrieval data structure from [20], i.e.

one with overhead O(1). After minor improvements, we first obtain standard ribbon retrieval.
All theoretical analysis assumes computation on a word RAM with word size Ω(logn) and
that hash functions behave like random functions.3 The ribbon width w is a parameter that
also plays a role in following variants.

I Theorem 1 (similar to [20]). For any ε > 0, an r-bit standard ribbon retrieval data structure
with ribbon width w = log n

ε has construction time O(n/ε2), query time O(r/ε) and overhead
O(ε).

We then combine standard ribbon retrieval with the idea of bumping, i.e., a convenient subset
S′ ⊆ S of keys is handled in the first layer of the data structure and the small rest is bumped
to recursively constructed subsequent layers. The resulting bumped ribbon retrieval (BuRR)
data structure has much smaller overhead for any given ribbon width w.

I Theorem 2. An r-bit BuRR data structure with ribbon width w = O(logn) and r = O(w)
has expected construction time O(nw), space overhead O( log w

rw2 ), and query time O(1 + rw
log n ).

In particular, BuRR can be configured to be succinct, i.e., can be configured to have
an overhead of o(1) while retaining constant access time for small r. Construction time is
slightly superlinear. Note that succinct retrieval data structures were known before, even
with asymptotically optimal construction and query times of O(n) and O(1), respectively
[40, 4]. Seeing the advantages of BuRR requires a closer look. Details are given in Section 5,
but the gist can be seen from Table 1: Among the previous succinct retrieval data structures
(overheads set in bold font), only [18] can achieve small overhead in a tunable way, i.e.,
independently of n using an appropriate tuning parameter C = ω(logn). However, this
approach suffers from comparatively high constructions times. [40] and [4] are not tunable
and only barely succinct with significant overhead in practice. A quick calculation to illustrate:
Neglecting the factors hidden by O-notation, the overheads are log log n√

log n
and log2 log n

r log n , which
is at least 75% and 7% for r = 8 and any n ≤ 264. A similar estimation for BuRR with
w = Θ(logn) suggests an overhead of log log n

r log2 n
≈ 0.1% already for r = 8 and n = 224. Moreover,

by tuning the ribbon width w, a wide range of trade-offs between small overhead and fast
running times can be achieved.

Overall, we believe that asymptotic analyses struggle to tell the full story due to the
extremely slow decay of some “o(1)” terms. We therefore accompany the theoretical account

1 If f has low entropy then compressed static functions [31, 4, 28] can do better and even machine learning
techniques might help; see e.g. [42].

2 This lower bound holds when |U| = Ω(n1+δ) for δ > 0. The general bound is log
(|U|
n

)
+ nr bits.

3 This is a standard assumption in many papers and can also be justified by standard constructions [17].
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Year tconstruct tquery
multiplicative

overhead shard size Solver

[34] 2001 O(n log k) O(log k)† 1
k

– peeling
[40] 2009 O(n) O(1) O( log log n

(log n)1/2 )
√

logn lookup table
[9] 2013 O(n) O(1) 0.2218 – peeling
[4] 2013 O(n) O(1) O( log2 log n

r log n
) O( log2 logn

r logn ) –
[39] 2014 O(n) O(1) Ω(1/r) O(1) sorting/sharding
[27] 2016 O(nC2) O(1) 0.024 +O( logn

C
) C structured Gauss

St
an

da
rd

R
ib

bo
n

[20] 2019 O(n/ε2) O(r/ε) ε – Gauss
[20] 2019 O(n/ε) O(r) ε+O( logn

nε ) nε Gauss
[18] 2019 O(nC2) O(r) O( log n

C
) C structured Gauss

[44] 2021 O(nk) O(k) (1 + ok(1))e−k – peeling

BuRR O(nw) O(1 + rw
logn ) O( log w

rw2 ) – on-the-fly Gauss
↪→ with w = Θ(logn): O(n logn) O(r) O( log log n

r log2 n
) – on-the-fly Gauss

† Expected query time. Worst case query time is O(D).
Table 1 Performance of various r-bit retrieval data structures with r = O(logn). Bold overhead

indicates that the data structure is (or can be configured to be) succinct. The parameters k ∈ N and
ε > 0 are constants with respect to n. The parameter C ∈ N is typically nα for constant α ∈ (0, 1).

with experiments comparing BuRR to other efficient (compact or succinct) retrieval data
structures. We do this in the use case of data structures for approximate membership and
also invite competitors not based on retrieval into the ring such as (blocked) Bloom filters
and Cuckoo filters.
Data structures for approximate membership. Retrieval data structures are an
important basic tool for building compressed data structures. Perhaps the most widely used
application is associating an r-bit fingerprint with each key from a set S ⊆ U , which allows
implementing an approximate membership query data structure (AMQ, aka Bloom filter
replacement or simply filter) that supports membership queries for S with false positive rate
ϕ = 2−r. A membership query for a key x ∈ U will simply compare the fingerprint of x with
the result returned by the retrieval data structure for x. The values will be the same if x ∈ S.
Otherwise, they are the same only with probability 2−r.

In addition to the AMQs following from standard ribbon retrieval and BuRR, we also
present homogeneous ribbon filters, which are not directly based on retrieval.

I Theorem 3. Let r ∈ N and ε ∈ (0, 1
2 ]. There is w ∈ N with w

max(r,log w) = O(1/ε) such
that the homogeneous ribbon filter with ribbon width w has false positive rate ϕ ≤ (1 + ε2)2−r

and space overhead O(ε). On a word RAM with word size ≥ w expected construction time is
O(n/ε) and query time is O(r).

Experiments. Figure 1 shows some of the results explained in detail later in the paper. In
the depicted parallel setting, ribbon-based AMQs (blue) are the fastest static AMQs when an
overhead less than ≈ 44% is desired (where “fastest” considers a somewhat arbitrary weighting
of construction and query times). The advantage is less pronounced in the sequential setting.
Why care about space? Especially in AMQ applications, retrieval data structures occupy
a considerable fraction of RAM in large server farms continuously drawing many megawatts
of power. Even small reductions (say 10%) in their space consumption thus translate into
considerable cost savings. Whether or not these space savings should be pursued at the
price of increased access costs depends on the number of queries per second. The lower the
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Figure 1 Performance–overhead trade-off for measured false-positive rate in 0.003–0.01 (i.e.,
r ≈ 8), for different AMQs and inputs. Ribbon-based data structures are in blue. For each category
of approaches, only variants are shown that are not Pareto-dominated by variants in the same
category. Sequential benchmarks use a single filter of size n while the parallel benchmark uses 1280
filters of size n and utilizes 64 cores. Logarithmic vertical axis above 1200 ns.

access frequency, the more worthwhile it is to occasionally spend increased access costs for a
permanently lowered memory budget. Since the false-positive rate also has an associated
cost (e.g. additional accesses to disk or flash) it is also subject to tuning. The entire set of
Pareto-optimal variants with respect to tradeoffs between space, access time, and FP rate
is relevant for applications. For instance, sophisticated implementations of LSM-trees use
multiple variants of AMQs at once based on known access frequencies [14]. Similar ideas
have been used in compressed data bases [38].
Outline. The paper is organized as follows (section numbers in parentheses). After important
preliminaries (2), we explain our data structures and algorithms in broad strokes (3) and
summarize our experimental findings (4). We then summarize related work (5). In the full
paper [21] we give a detailed theoretical analysis, extensively describe the design space of
BuRR, and discuss additional experiments.

2 Linear Algebra Based Retrieval Data Structures and SGAUSS

A simple, elegant and highly successful approach for compact and succinct retrieval uses
linear algebra over the finite field Z2 = {0, 1} [16, 27, 1, 40, 12, 9, 18, 20]. Refer to Section 5
for a discussion of alternative and complementary techniques.

The train of thought is this: A natural idea would be to have a hash function point
to a location where the key’s information is stored while the key itself need not be stored.
This fails because of hash collisions. We therefore allow the information for each key to be
dispersed over several locations. Formally we store a table Z ∈ {0, 1}m×r with m ≥ n entries
of r bits each and to define f(x) as the bit-wise xor of a set of table entries whose positions
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h(x) ⊆ [m] are determined by a hash function h.4 This can be viewed as the matrix product
~h(x)Z where ~h(x) ∈ {0, 1}m is the characteristic (row)-vector of h(x). For given h, the main
task in building the data structure is to find the right table entries such that ~h(x)Z = f(x)
holds for every key x. This is equivalent to solving a system of linear equations AZ = b
where A = (~h(x))x∈S ∈ {0, 1}n×m and b = (f(x))x∈S ∈ {0, 1}n×r. Note that rows in the
constraint matrix A correspond to keys in the input set S. In the following, we will thus
switch between the terms “row” and “key” depending on which one is more natural in the
given context.

An encouraging observation is that even for m = n, the system AZ = b is solvable with
constant probability if the rows of A are chosen uniformly at random [13, 40]. With linear
query time and cubic construction time, we can thus achieve optimal space consumption.
For a practically useful approach, however, we want the 1-entries in ~h(x) to be sparse and
highly localized to allow cache-efficient queries in (near) constant time and we want a (near)
linear time algorithm for solving AZ = b. This is possible if m > n.

A particularly promising approach in this regard is SGAUSS from [20] that chooses the
1-entries within a narrow range. Specifically, it chooses w random bits c(x) ∈ {0, 1}w and
a random starting position s(x) ∈ [m − w − 1], i.e., ~h(x) = 0s(x)−1c(x)0m−s(x)−w+1. For
m = (1 + ε)n some value w = O(log(n)/ε) suffices to make the system AZ = b solvable
with high probability. We call w the ribbon width because after sorting the rows of A by
s(x) we obtain a matrix which is not technically a band matrix, but which likely has all
1-entries within a narrow ribbon close to the diagonal. The solution Z can then be found
in time O

(
n/ε2) using Gaussian elimination [20] and bit-parallel row operations; see also

Figure 2 (a).

3 Ribbon Retrieval and Ribbon Filters

We advance the linear algebra approach to the point where space overhead is almost eliminated
while keeping or improving the running times of previous constructions.
Ribbon solving. Our first contribution is a simple algorithm we could not resist to also
call ribbon as in Rapid Incremental Boolean Banding ON the fly. It maintains a system
of linear equations in row echelon form as shown in Figure 2 (b). It does so on-the-fly, i.e.
while equations arrive one by one in arbitrary order. For each index i of a column there
may be at most one equation that has its leftmost one in column i. When an equation with
row vector a arrives and its slot is already taken by a row a′, then ribbon performs the row
operation a← a⊕ a′, which eliminates the 1 in position i, and continues with the modified
row. An invariant is that rows have all their nonzeroes in a range of size w, which allows to
process rows with a small number of bit-parallel word operations. This insertion process is
incremental in that insertions do not modify existing rows. This improves performance and
allows to cheaply roll back the most recent insertions which will be exploited below. It is a
non-trivial insight that the order in which equations are added does not significantly affect
the expected number of row operations. This is made precise and proved in the full paper.

When all rows are processed we perform back-substitution to compute the solution matrix
Z. At least for small r, interleaved representation of Z works well, where blocks of size w× r
of Z are stored column-wise. A query for x can then retrieve one bit of f(x) at a time by
applying a population count instruction to pieces of rows retrieved from at most two of

4 In this paper, [k] can stand for {0, . . . , k − 1} or {1, . . . , k} (depending on the context), and a..b stands
for {a, . . . , b}.
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(a) (b)
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⊕
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f(x)

Figure 2 (a) Typical shape of the random matrix A with rows (~h(x))x∈S sorted by starting
positions. The shaded “ribbon” region contains random bits. Gaussian elimination never causes any
fill-in outside of the ribbon.
(b) Shape of the linear system M in row echelon form maintained using Boolean banding on the fly.
In gray we visualize the insertion of a key x where (i) ~h(x) has its left-most 1 in position s(x) = 2,
(ii) after xoring the second row of M to ~h(x), the left-most 1 is in position 5 and (iii) xoring the fifth
row as well, the left-most 1 is in position 6. The resulting row fills the previously empty sixth row of
M and f(x)⊕ b2 ⊕ b5 is added as right hand side.

these blocks. This is particularly advantageous for negative queries to AMQs (i.e. queries
of elements not in the set), where only two of r bits need to be retrieved on average. More
details are given in the full paper.

3.1 Standard Ribbon
When employing no further tricks, we obtain standard ribbon retrieval, which is essentially
the same data structure as in [20] except with a different solver that is faster by noticeable
constant factors. A problem is that w becomes prohibitively large when n is large and ε is
small. For example, experiments show that for ε ≤ 3.5% and construction success rate ≥ 50%,
standard word size w = 64 only scales to around n ≤ 104 and more expensive w = 128 only
scales to around n ≤ 106. To some degree this can be mitigated by sharding techniques [43],
but in this paper we pursue a more ambitious route.

3.2 Bumped Ribbon Retrieval
Our main contribution is bumped ribbon retrieval (BuRR), which reduces the required ribbon
width to a constant that only depends on the targeted space efficiency. BuRR is based on
two ideas.
Bumping. The ribbon solving approach manages to insert most rows (representing most
keys of S) even when w is small. Thus, by eliminating those rows/keys that cause a linear
dependency, we obtain a compact retrieval data structure for a large subset of S. The
remaining keys are bumped, meaning they are handled by a fallback data structure which,
by recursion, can be a BuRR data structure again. We show that only O( n log w

w ) keys need
to be bumped in expectation. Thus, after a constant number of layers (we use 4), a less
ambitious retrieval data structure can be used to handle the few remaining keys without
bumping.

The main challenge is that we need additional metadata to encode which keys are bumped.
The basic bumped retrieval approach is adopted from the updateable retrieval data structure
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filtered retrieval (FiRe) [39]. To shrink the input size by a moderate constant factor, FiRe
needs a constant number of bits per key (around 4). This leads to very high space overhead
for small r. A crucial observation for BuRR is that bumping can be done with granularity
much coarser than per-key. We will bump keys based on their starting position and say
position i is bumped to indicate that all keys with s(x) = i are bumped. Bumping by
position is sufficient because linear dependencies in A are largely unrelated to the actual bit
patterns c(x) but mostly caused by fluctuations in the number of keys mapped to different
parts of the matrix A. By selectively bumping ranges of positions in overloaded parts of
the system, we can obtain a solvable system. Furthermore, our analysis shows that we can
drastically limit the spectrum of possible bumping ranges; see below.
Overloading. Besides metadata, space overhead results from the m− n+ nb excess slots of
the table where nb is the number of bumped keys. Trying out possible values of ε = m−n

n > 0
one sees that the overhead due to excess slots is always Ω(1/w) and will thus dominate the
overhead due to metadata. However, we show that by choosing ε < 0 (of order −ε = O( log w

w )),
i.e., by overloading the table, we can almost completely eliminate excess table slots so that
the minuscule amount of metadata becomes the dominant remaining overhead. There are
many ways to decide and encode which keys are bumped. Here, we outline a simple variant
that achieves very good performance in practice and is a generalization of the theoretically
analyzed approach. We expand on the much larger design space of BuRR in the full paper.
Deciding what to bump. We subdivide the possible starting positions into buckets of
width b = O

(
w2/ logw

)
and allow to bump a single initial range of each bucket. The keys

(or more precisely pairs of hashes and the value to be retrieved) are sorted according to the
bucket addressed by the starting position s(x). We use a fast in-place integer sorter for this
purpose [2]. Then buckets are processed one after the other from left to right. Within a
bucket, however, keys are inserted into the row echelon form from right to left. The reason
for this is that insertions of the previous bucket may have “spilled over” causing additional
load on the left of the bucket – an issue we wish to confront as late as possible. See also
Figure 3.
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Figure 3 Illustration of BuRR construction with n = 11 keys, m = 2b + w − 1 = 15 table
positions, ribbon width w = 4 and bucket size b = 6. Keys of the first bucket were successfully
inserted (from right to left) into row echelon form with two insertions “overflowing” into the second
bucket. Insertions of the second bucket’s rows will be attempted next, in the indicated order.

If all keys of a bucket can be successfully inserted, no keys of the bucket are bumped.
Otherwise, suppose the first failed insertion for a bucket [i, i + b) concerns a key where
s(x) = i+ k is the k-th position of the bucket. We could decide to bump all keys x′ of the
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bucket with s(x′) ≤ i+ k, which would require storing the threshold k using O(logw) bits
and which would yield an overhead of O(log2(w)/w2) due to metadata. Instead, to reduce
this overhead to O(log(w)/w2), we only allow a constant number of threshold values. This
means that we find the smallest threshold value t with t ≥ k representable by metadata and
bump all keys x′ with s(x′) ≤ i+ t. This requires rolling back the insertions of keys x′ with
s(x′) ∈ [k, t] by clearing the most recently populated rows from the row echelon form. One
good compromise between space and speed stores 2 bits per bucket encoding the threshold
values {0, `, u, b}, for suitable ` and u. The special case ` = u = 3

8w is used in our analysis.
Another slightly more compact variant “1+-bit” stores one bit encoding threshold values
from the set {0, t}, for a suitable t, and additionally stores a hash table of exceptions for
thresholds > t.
Running times. With these ingredients we obtain Theorem 2 stated on page 2. It implies
constant query time5 if rw = O(logn) and linear construction time if w ∈ O(1). For
wider ribbons, construction time is slightly superlinear. However, in practice this does not
necessarily mean that BuRR is slower than other approaches with asymptotically better
bounds as the factor w involves operations with very high locality. An analysis in the external
memory model reveals that BuRR construction is possible with a single scan of the input
and integer sorting of n objects of size O(logn) bits; see the full paper for details.

3.3 Homogeneous Ribbon Filter
For the application of ribbon to AMQs, we can also compute a uniformly random solution of
the homogeneous equation system AZ = 0, i.e., we compute a retrieval data structure that
will retrieve 0r for all keys of S but is unlikely to produce 0r for other inputs. Since AZ = 0
is always solvable, there is no need for bumping. The crux is that the false positive rate is
no longer 2−r but higher. In the full paper we show that with table size m = (1 + ε)n and
ε = Ω( max(r,log w)

w ) the difference is negligible, thereby showing Theorem 3. Homogeneous
ribbon AMQs are simpler and faster than BuRR but have higher space overhead. Our
experiments indicate that together, BuRR and homogeneous ribbon AMQs cover a large
part of the best tradeoffs for static AMQs.

3.4 Analysis outline
To get an intuition for the relevant linear systems, it is useful to consider two simplifications.
First, assume that ~h(x) contains a block of w uniformly random real numbers from [0, 1]
rather than w random bits. Secondly, assume that we sort the rows by starting position and
use Gaussian elimination rather than ribbon to produce a row echelon form. In Figure 4 (a)
we illustrate for such a matrix with ×-marks where the pivots would be placed and in yellow
the entries that are eliminated (with one row operation each); both with probability 1, i.e.
barring coincidences where a row operation eliminates more than one entry. The ×-marks
trace a diagonal through the matrix except that the green column and the red row are skipped
because the end of the (gray) area of nonzeroes is reached. “Column failures” correspond to
free variables and therefore unused space. “Row failures” correspond to linearly dependent
equations and therefore failed insertions. This view remains largely intact when handling
Boolean equations in arbitrary order except that the ribbon diagonal, which we introduce as

5 It should be noted that the proof invokes a lookup table in one case to speed up the computation
of a matrix vector product. In Section 5, we argue that lookup tables should be avoided in practice.
Technically, our implementation using interleaved representation has a query time of O(r).
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an analogue to the trace of pivot positions, has a more abstract meaning and probabilistically
suffers from row and column failures depending on its distance to the ribbon border.

(a) (b)

E −→

Figure 4 (a) The simplified ribbon diagonal (made up of ×-marks) passing through A.
(b) The idea of BuRR: When starting with an “overloaded” linear system and removing sets of rows
strategically, we can often ensure that the ribbon diagonal does not collide with the ribbon border
(except possibly in the beginning and the end).

The idea of standard ribbon is to give the gray ribbon area an expected slope of less
than 1 such that row failures are unlikely. BuRR, as illustrated in Figure 4 (b) largely
avoids both failure types by using a slope bigger than 1 but removing ranges of rows in
strategic positions. Homogeneous ribbon filters, despite being the simplest approach, have
the most subtle analysis as both failure types are allowed to occur. While row failures cannot
cause outright construction failure, they are linked to a compromised false positive rate in a
non-trivial way. Our proofs involve mostly simple techniques as would be used in the analysis
of linear probing, which is unsurprising given that [20] has already established a connection
to Robin Hood hashing. We also profit from queuing theory via results we import from [20].

3.5 Further results
We have several further results around variants of BuRR that we summarize here. See the
full paper for detail.

Perhaps most interesting is bump-once ribbon retrieval (Bu1RR), which improves the
worst-case query time by guaranteeing that each key can be retrieved from one out of two
layers – its primary layer or the next one. The primary layer of the keys is now distributed
over all layers (except for the last). When building a layer, the keys bumped from the
previous layer are inserted into the row echelon form first. The layer sizes have to be chosen
in such a way that no bumping is needed for these keys with high probability. Only then are
the keys with the current layer as their primary layer inserted – now allowing bumping.

For building large retrieval data structures, parallel construction is important. Doing
this directly is difficult for ribbon retrieval since there is no efficient way to parallelize back-
substitutions. However, we can partition the equation system into parts that can be solved
independently by bumping w consecutive positions. Note that this can be done transparently
to the query algorithm by using the bumping mechanism that is present anyway.

For large r, we accelerate queries by working with sparse bit patterns that set only a
small fraction of the w bits in the window used for BuRR. In some sense, we are covering
here the middle ground between ribbon and spatial coupling [44]. Experiments indicate that
setting 8 out of 64 bits indeed speeds up queries for r ∈ {8, 16} at the price of increased
(but still small) overhead. Analysis and further exploration of this middle ground may be an
interesting area for future work.
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4 Summary of Experimental Findings

We performed extensive experiments to evaluate our ribbon-based data structures and
competitors. We summarize our findings here with details provided in the full paper.
Implementation Details. We implemented BuRR in C++ using template parameters that
allow us to navigate a large part of the design space mapped in the full paper. (Recall that r
is the retrieval width, ε the overloading factor, w the ribbon width, and b the bucket width;
t, `, and u are bumping thresholds.) Input keys themselves are only hashed once to a 64-bit
master-hash-code (MHC) that is subsequently used when further hash values are needed. For
this, fast linear congruential mapping is used. The table is stored in an interleaved fashion,
i.e., it is organized as rm/w words of w bits each where word i represents bit i mod r of w
subsequent table entries. This organization allows the extraction of one retrieved bit from
two adjoining machine words using population-count instructions. Interleaved representation
is advantageous for uses of BuRR as an AMQ data structure since a negative query only
has to extract two bits in expectation. Moreover, the implementation directly works for any
value of r. The default data structure has four layers, the last of which uses w′ := min(w, 64)
and ε ≥ 0, where ε is increased in increments of 0.05 until no keys are bumped. For 1+-bit,
we choose t := d−2εb +

√
b/(1 + ε)/2e and ε := −2/3 · w/(4b + w). For 2-bit, parameter

tuning showed that ` := d(0.13− ε/2)be , u := d(0.3− ε/2)be, and ε := −3/w work well for
w = 32; for w ≥ 64, we use ` = d(0.09− 3ε/4)be, u = d(0.22− 1.3ε)be, and ε := −4/w.

In addition, there is a prototypical implementation of Bu1RR from [22]. Both BuRR and
Bu1RR build on the same software for ribbon solving from [22]. For validation we extend the
experimental setup used for Cuckoo and Xor filters [29], with our code and scripts available
at github.com/lorenzhs/fastfilter_cpp and github.com/lorenzhs/BuRR.
Experimental Setup. All experiments were run on a machine with an AMD EPYC 7702
processor with 64 cores, a base clock speed of 2.0GHz, and a maximum boost clock speed
of 3.35GHz. The machine is equipped with 1TiB of DDR4-3200 main memory and runs
Ubuntu 20.04. We use clang++ 11.0 with optimization flags -O3 -march=native. During
sequential experiments, only a single core was used at any time to minimize interference.

We looked at different input sizes n ∈
{

106, 107, 108}. Like most studies in this area, we
first look at a sequential workload on a powerful processor with a considerable number of
cores. However, this seems unrealistic since in most applications, one would not let most
cores lay bare but use them. Unless these cores have a workload with very high locality this
would have a considerable effect on the performance of the AMQs. We therefore also look at
a scenario that might be the opposite extreme to a sequential unloaded setting. We run the
benchmarks on all available hardware threads in parallel. Construction builds many AMQs
of size n in parallel. Queries select AMQs randomly. This emulates a large AMQ that is
parallelized using sharding and puts very high load on the memory system.
Experimental Results. Two preliminary remarks are in order: Firstly, since every retrieval
data structure can be used as a filter but not vice versa, our experiments are for filters, which
admits a larger number of competitors. Secondly, to reduce complexity (for now), our speed
ranking considers the sum of construction time per key and three query times.6

Space Overhead of BuRR Figure 5 plots the fraction e of empty slots of BuRR
for w = 64 and several combinations of bucket size b and different threshold compression

6 Queries measured in three settings: Positive keys, negative keys and a mixed data set (50% chance
of being positive). The latter is not an average of the first two due to branch mispredictions. In the
appendix, we also measure the individual operations resulting in similar conclusions.

https://github.com/lorenzhs/fastfilter_cpp
https://github.com/lorenzhs/BuRR
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Figure 5 Fraction of empty slots for various configurations of bumped ribbon retrieval with
w = 64, depending on the overloading factor −ε.

schemes. Similar plots are given in the full paper for w = 32, w = 128, and for w = 64
with sparse coefficients. Note that (for an infinite number of layers), the overhead is about
o = e+µ/(rb(1−e)) where r is the number of retrieved bits and µ is the number of metadata
bits per bucket. Hence, at least when µ is constant, the overhead is a monotonic function in
e and thus minimizing e also minimizes overhead.

We see that for small |ε|, e decreases exponentially. For sufficiently small b, e can get
almost arbitrarily small. For fixed b > w, e eventually reaches a local minimum because with
threshold-based compression, a large overload enforces large thresholds (> w) and thus empty
regions of buckets. Which actual configuration to choose depends primarily on r. Roughly,
for larger r, more and more metadata bits (i.e., small b, higher resolution of threshold values)
can be invested to reduce e. For fixed b and threshold compression schemes, one can choose
ε to minimize e. One can often choose a larger ε to get slightly better performance due to
less bumping with little impact on o. Perhaps the most delicate tuning parameters are the
thresholds to use for 2-bit and 1+-bit compression. Indeed, in Figure 5 1+-bit compression
has lower e than 2-bit compression for b = 64 but higher e for b = 128. We expect that 2-bit
compression could always achieve smaller e than 1+-bit compression, but we have not found
choices for the threshold values that always ensure this.
Ribbon yields the fastest static AMQs for overhead < 44%. Consider Figure 1 on
page 4, where we show the tradeoff between space overhead and computation cost for a range
of AMQs for false positive rate ϕ ≈ 2−8 (i.e., r = 8 for BuRR) and large inputs.7 In the

7 Small deviations of parameters are necessary because not all filters support arbitrary parameter choices.
Also note that different filters have different functionality: (Blocked) Bloom allows dynamic insertion,
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Figure 6 Fastest AMQ category for different choices of overhead and false-positive rate ϕ =
2−r. Shaded regions indicates a dependency on the input type. Ranking metric: construction
time per key plus time for three queries, of which one is positive, one negative, and one mixed
(50% chance of either).

parallel workload on the right all cores access many AMQs randomly.
Only three AMQs have Pareto-optimal configurations for this case: BuRR for space

overhead below 5% (actually achieving between 1.4% and 0.2% for a narrow time range of
830–890 ns), homogeneous ribbon for space overhead below 44% (actually achieving between
20% and 10% for a narrow time range 580–660 ns), and blocked Bloom filters [41] with time
around 400 ns at the price of space overhead of around 50%. All other tried AMQs are
dominated by homogeneous ribbon and BuRR. Somewhat surprisingly, this even includes
plain Bloom filters [6] which are slow because they incur several cache faults for each insertion
and positive query. Since plain Bloom filters are extensively used in practice (often in cases
where a static interface suffices), we conclude that homogeneous ribbon and BuRR are fast
enough for a wide range of applications, opening the way for substantial space savings in
those settings. BuRR is at least twice as fast as all tried retrieval data structures.8 The
filter data structures that support counting and deletion (Cuckoo filters [24] and the related
Morton filters [10] as well as the quotient filters QF [35] and CQF [5]) are slower than the
best static AMQs.

The situation changes slightly when going to a sequential workload with large inputs as
shown on the left of Figure 1. Blocked Bloom and BuRR are still the best filters for large and
small overhead, respectively. But now homogeneous ribbon and (variants of) the hypergraph
peeling based Xor filters [30, 19] share the middle-ground of the Pareto curve between them.
Also, plain Bloom filters are almost dominated by Xor filters with half the overhead. The
reason is that modern CPUs can handle several main memory accesses in parallel. This is
very helpful for Bloom and Xor, whose queries do little else than computing the logical (x)or
of a small number of randomly chosen memory cells. Nevertheless, the faster variants of
BuRR are only moderately slower than Bloom and Xor filters while having at least an order

Cuckoo, Morton and Quotient additionally allow deletion and counting. Xor [9, 19, 30, 37], Coupled
[44], LMSS [34] and all ribbon variants are static retrieval data structures.

8 FiRe [39] is likely to be faster but has two orders of magnitude higher overhead; see the full paper for
more details.
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of magnitude smaller overheads.
Further Results. Other claims supported by our data are:

Good ribbon widths are w = 32 and w = 64. Ribbon widths as small as w = 16 can
achieve small overhead but at least on 64-bit processors, w ∈ {32, 64} seems most sensible.
The case w = 32 is only 15–20% faster than w = 64 while the latter has about four times
less overhead. Thus the case w = 64 seems the most favorable one. This confirms that
the linear dependence of the construction time on w is to some extent hidden behind the
cache faults which are similar for both values of w (this is in line with our analysis in the
external memory model).
Bu1RR is slower than BuRR by about 20%, which may be a reasonable price for
better worst-case query time in some real-time applications.9
The 1+-bit variant of BuRR is smaller but slower than the variant with 2-bit
metadata per bucket, as expected, though not by a large margin.
Smaller inputs and smaller r change little. For inputs that fit into cache, the
Pareto curve is still dominated by blocked Bloom, homogeneous ribbon, and BuRR, but
the performance penalty for achieving low overhead increases. For r = 1 we have data
for additional competitors. GOV [28], which relies on structured Gaussian elimination,
is several times slower than BuRR and exhibits an unfavorable time–overhead tradeoff.
2-block [18] uses two small dense blocks of nonzeroes and can achieve very small overhead
at the cost of prohibitively expensive construction.
For large r, Xor filters and Cuckoo filters come into play. Figure 6 shows the
fastest AMQ depending on overhead and false positive rate ϕ = 2−r up to r = 16. While
blocked Bloom, homogeneous ribbon, and BuRR cover most of the area, they lose ground
for large r because their running time depends on r. Here Xor filters and Cuckoo filters
make an appearance.
Bloom filters and Ribbon filters are fast for negative queries where, on average,
only two bits need to be retrieved to prove that a key is not in the set. This improves
the relative standing of plain Bloom filters on large and parallel workloads with mostly
negative queries.
Xor filters [30] and Coupled [44] have fast queries since they can exploit parallelism
in memory accesses. They suffer, however, from slow construction on large sequential
inputs due to poor locality, and exhibit poor query performance when accessed from many
threads in parallel. For small n, large r, and overhead between 8% and 20%, Coupled
becomes the fastest AMQ.

5 Related Results and Techniques

We now take the time to review some related work on retrieval including all approaches listed
in Table 1.
Related Problems. An important application of retrieval besides AMQs is encoding perfect
hash functions (PHF), i.e. an injective function p : S → [(1+ε)|S|] for given S ⊆ U . Objectives
for p are compact encoding, fast evaluation and small ε ≥ 0. Consider a result from cuckoo
hashing [25, 26, 33], namely that given four hash functions h1, h2, h3, h4 : S → [1.024|S|]
there exists, with high probability, a choice function f : S → [4] such that x 7→ hf(x)(x)
is injective. A 2-bit retrieval data structure for f therefore gives rise to a perfect hash

9 Part of the performance difference might be due to implementation details; see the full paper.
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function [9]; see also [12]. Retrieval data structures can also be used to directly store compact
names of objects, e.g., in column-oriented databases [39]. This takes more space than perfect
hashing but allows to encode the ordering of the keys into the names.

In retrieval for AMQs and PHFs the stored values f(x) ∈ {0, 1}r are uniformly random.
However, some authors consider applications where f(x) has a skewed distribution and the
overhead of the retrieval data structure is measured with respect to the 0-th order empirical
entropy of f [31, 4, 28]. Note that once we can do 1-bit retrieval with low overhead, we
can use that to store data with prefix-free variable-bit-length encoding (e.g. Huffman or
Golomb codes). We can store the k-th bit of f(x) as data to be retrieved for the input
tuple (x, k). This can be further improved by storing R 1-bit retrieval data structures where
R = maxx∈S |f(x)| [31, 4, 28]. By interleaving these data structures, one can make queries
almost as fast as in the case of fixed r.
More Linear Algebra based approaches. It has long been known that some matrices
with random entries are likely to have full rank, even when sparse [13] and density thresholds
for random k-XORSAT formulas to be solvable – either at all [23, 15] or with a linear time
peeling algorithm [36, 32] – have been determined.

Building on such knowledge, a solution to the retrieval problem was identified by Botelho,
Pagh and Ziviani [8, 7, 9] in the context of perfect hashing. In our terminology, their rows
~h(x) contain 3 random 1-entries per key which makes AZ = b solvable with peeling, provided
m > 1.22n.

Several works develop the idea from [9]. In [27, 28] only m > 1.089n is needed in principle
(or m > 1.0238n for |~h(x)| = 4) but a Gaussian solver has to be used. More recently in the
spatial coupling approach [44] ~h(x) has k random 1-entries within a small window, achieving
space overhead ≈ e−k while still allowing a peeling solver. With some squinting, a class of
linear erasure correcting codes from [34] can be interpreted as a retrieval data structure of a
similar vein, where |~h(x)| ∈ {5, . . . , k} is random with expectation O(log k).

Two recent approaches also based on sparse matrix solving are [18, 20] where ~h(x) contains
two blocks or one block of random bits. Our ribbon approach builds on the latter.

We end this section with a discussion of seemingly promising techniques and give reasons
why we choose not to use them in this paper. Some more details are also discussed in the
experimental section of the full paper.
Shards. A widely used technique in hashing-based data structures is to use a splitting
hash function to first divide the input set into many much smaller sets (shards, buckets,
chunks, bins,. . . ) that can then be handled separately [28, 3, 18, 20, 1, 40]. This incurs only
linear time overhead during preprocessing and constant time overhead during a query, and
allows to limit the impact of superlinear cost of further processing to the size of the shard.
Even to ribbon, this could be used in multiple ways. For example, by statically splitting the
table into pieces of size nε for standard ribbon, one can achieve space overhead ε+O(n−ε),
preprocessing time O(n/ε), and query time O(r) [20]. This is, however, underwhelming
on reflection. Before arriving at the current form of BuRR, we designed several variants
based on sharding but never achieved better overhead than Ω(1/w). The current overhead of
O
(
logw/w2) comes from using the splitting technique in a “soft” way – keys are assigned to

buckets for the purpose of defining bumping information but the ribbon solver may implicitly
allocate them to subsequent buckets.
Table lookup. The first asymptotically efficient succinct retrieval data structure we are
aware of [40] uses two levels of sharding to obtain very small shards of size O

(√
logn

)
with small asymptotic overhead. It then uses dense random matrices per shard to ob-
tain per-shard retrieval data structures. This can be done in constant time per shard by
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tabulating the solutions of all possible matrices. This leads to a multiplicative overhead
of O

(
log logn/

√
logn

)
. Belazzougui and Venturini [4] use slightly larger shards of size

O((1 + log log(n)/r) log log(n)/ logn). Using carefully designed random lookup tables they
show that linear construction time, constant lookup time, and overhead O

(
(log logn)2/ logn

)
is possible. We discussed on page 2 why we suspect large overhead for [40] and [4] in practice.

In general, lookup tables are often problematic for compressed data structures in practice
– they cause additional space overhead and cache faults. Even if the table is small and fits
into cache, this may yield efficient benchmarks but can still cause cache faults in practical
workloads where the data structure is only a small part in a large software system with a
large working set.
Cascaded bumping. Hash tables consisting of multiple shrinking levels are also used in
multilevel adaptive hashing [11] and filter hashing [25]. While similar to BuRR in this sense,
they do not maintain bumping information. This is fine for storing key-value pairs because
all levels can be searched for a requested key. But it is unclear how the idea would work in
the context of retrieval, i.e. without storing keys.

6 Conclusion and Future Work

BuRR is a considerable contribution to close a gap between theory and practice of retrieval and
static approximate membership data structures. From the theoretical side, BuRR is succinct
while achieving constant access cost for small number of retrieved bits (r = O(log(n)/w)). In
contrast to previous succinct constructions with better asymptotic running times, its overhead
is tunable and already small for realistic values of n. In practice, BuRR is faster than widely
used data structures with much larger overhead and reasonably simple to implement. Our
results further strengthen the success of linear algebra based solutions to the problem. Our
on-the-fly approach shows that Gauss-like solvers can be superior to peeling-based greedy
solvers even with respect to speed.

While the wide design space of BuRR leaves room for further practical improvements,
we see the main open problems for large r. In practice, peeling based solvers (e.g., [44])
might outperform BuRR if faster construction algorithms can be found – perhaps using
ideas like overloading and bumping. In theory, existing succinct data structures (e.g. [40, 4])
allow constant query time but have high space overhead for realistic input sizes. Combining
constant cost per element for large r with small (preferably tunable) space overhead therefore
remains a theoretical promise yet to be convincingly redeemed in practice.
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A Further Experimental Data

The following figures and tables contain
Figures 7 and 8. Performance-overhead trade-off of AMQs for very high false positive rate

(≈ 50%) and very low false positive rate (≈ 0.01%) roughly corresponding to performance
of 1-bit retrieval and 16-bit retrieval for the retrieval-based AMQs.

Figures 9 to 11. Performance-overhead trade-off of AMQs as in Figure 1, but seperately for
positive queries, negative queries and construction.
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Figure 7 Performance–overhead trade-off for false-positive rate > 46 % for different AMQs and
different inputs. This large false-positive rate is the only one for which we have implementations for
GOV [28] and 2-block [18]. Note that the vertical axis switches to a logarithmic scale above 900 ns.
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Figure 8 Performance–overhead trade-off for false-positive rate < 2−13 ≈ 0.01 % for different
AMQs and different inputs. Logarithmics vertical axis above 1600 ns.
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Figure 9 Query time–overhead trade-off for positive queries, false-positive rate between 0.3 %
and 1 % for different AMQs and different inputs. Note that Xor filters have excellent query time
sequentially where random fetches can be performed in parallel but are far from optimal in the
parallel setting where the total number of memory accesses matters most. Logarithmic vertical axis
above 350 ns.
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Figure 10 Query time–overhead trade-off for negative queries, false-positive rate between 0.3 %
and 1 % for different AMQs and different inputs. Again, Xor filters perform well sequentially but
suffer in the parallel case. Logarithmic vertical axis above 350 ns.
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Figure 11 Construction time–overhead trade-off for false-positive rate between 0.3 % and 1 % for
different AMQs and different inputs. Compressed vertical axis above 350 ns.
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