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ABSTRACT

We introduce a new collection of spoken English audio suit-
able for training speech recognition systems under limited or
no supervision. It is derived from open-source audio books
from the LibriVox project. It contains over 60K hours of au-
dio, which is, to our knowledge, the largest freely-available
corpus of speech. The audio has been segmented using voice
activity detection and is tagged with SNR, speaker ID and
genre descriptions. Additionally, we provide baseline sys-
tems and evaluation metrics working under three settings: (1)
the zero resource/unsupervised setting (ABX), (2) the semi-
supervised setting (PER, CER) and (3) the distant supervi-
sion setting (WER). Settings (2) and (3) use limited textual
resources (10 minutes to 10 hours) aligned with the speech.
Setting (3) uses large amounts of unaligned text. They are
evaluated on the standard LibriSpeech dev and test sets for
comparison with the supervised state-of-the-art.

Index Terms— unsupervised and semi-supervised learn-
ing, distant supervision, dataset, zero- and low resource ASR.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has made striking
progress in the recent years with the deployment of increas-
ingly large deep neural networks trained on increasingly
large sets of annotated speech (from thousands to tens of
thousands of hours). This approach is hit by diminishing
returns as the costs of annotating even larger datasets become
prohibitive. It is also difficult to scale beyond a handful of
high-resource languages and address the needs of a long tail
of low-resource languages, dialectal and idiolectal variants,
accents, and registers. As such, there has been a recent surge
of interest in weakly supervised solutions that use datasets
with fewer human annotations. In the semi-supervised set-
ting, only a fraction of the dataset is labelled and the rest is
unlabelled [1, 2], while in a distant supervision setting, the
dataset is mostly or entirely unlabelled, but large quantities of
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unaligned text provide a language model corpus [3, 4]. Other
approaches have addressed pretraining with labels from other
languages [5, 6] or pretraining using unsupervised objec-
tives [7, 8]. At the extreme of this continuum, zero resource
ASR discovers its own units from raw speech [9, 10, 11].
Despite many interesting results, the field lacks a common
benchmark (datasets, evaluations, or baselines) for compar-
ing ideas and results across these settings. Here, we introduce
Libri-light, a large open-source corpus (60K hours) of unla-
belled speech and a common set of metrics to evaluate three
settings: (1) the zero-resource/unsupervised setting (ABX),
(2) the semi-supervised setting (PER and CER), and (3) the
distant supervision setting (WER). The last two settings use
a limited-resource training set (10 min, 1h, 10h), and the last
one large in-domain and out-of-domain text to train language
models. The test sets are identical to LibriSpeech [12] so
as to facilitate comparison of weakly supervised results with
the state-of-the art in supervised learning. We also provide a
baseline system on these three settings. All datasets, metrics
and baseline systems are open source1.

2. RELATED WORK
The release of open source software and datasets has facil-
itated rapid progress in machine learning and in particular
large vocabulary ASR. LibriSpeech is one of the first large-
scale open-source datasets and contains over 1000 hours of
audio books, together with textual annotations aligned at the
sentence level. Mozilla’s CommonVoice project has facili-
tated data collection across several languages and currently
contains 2900 hours of read speech in 37 languages2. A.
Black at CMU has compiled the Wilderness dataset which
consists of the text of the Bible read in 750 languages [13].
Other open-source resources are available from OpenSLR3.

The Zero Resource Challenge has released a series of
datasets and metrics for the unsupervised setting [9, 10]4,
but the datasets are generally small (between 2.5 and 50 h).
In this work, we substantially expand dataset size and use
the same evaluation metrics (ABX [14]) for comparability.

1https://github.com/facebookresearch/libri-light
2https://voice.mozilla.org
3http://openslr.org/
4https://zerospeech.com



The IARPA Babel program [15] has also initiated a push
towards limited supervision for less studied languages. In
its most difficult track, the dataset contains only 10 hours of
transcribed speech in conjunction with with larger amounts
of untranscribed audio. Here, we retain 10 hours as a upper
bound, and add lower-resource sets containing 1 hours and 10
minutes of labeled audio. While distant supervision has been
the focus of two JHU-JSALT workshops (2016 [16], 2019
[17]) but no benchmark has yet emerged.

3. DATASET AND METRICS

3.1. Dataset

(a)
Genre's categories (in hours)

Literature : 42760
Science, Craft & Essay : 8978
Undefined : 5510
Religion : 5373
Poetry : 3462
Theater : 591
Ancient : 331

(b)

Fig. 1: Corpus statistics. (a) Durations in hours per speakers
(b) Durations for our 7 macro-genres.

The dataset is composed four parts: a train set with unla-
belled speech, a train set with limited labels, dev/test sets, and
a train set containing unaligned text; see Table 1.

Unlabelled Speech Training Set. This dataset was ob-
tained by extracting audio files for English speech from the
LibriVox repository5 containing open source audio books.
Files were downloaded and converted to 16kHz FLAC. We
then removed corrupted files, files with unknown or multiple
speakers, and speakers appearing in LibriSpeech dev and test
sets. The potentially duplicated versions of books based on
titles were set aside (and distributed as a duplicate subset,
totalling 4500 hours). We then ran a Voice Activity Detec-
tion (VAD) model using the wav2letter++ framework [18] on
the recordings to tag onsets and offsets of speech segments.

5https://librivox.org

subset hours books files per-spk total
hours spkrs

Unlabelled Speech Training Set
unlab-60k 57706.4 9860 219041 7.84 7439
unlab-6k 5770.7 1106 21327 3.31 1742
unlab-600 577.2 202 2588 1.18 489

subset hours per-spk female male total
minutes sprks spkrs spkrs

Limited Resource Training Set
train-10h 10 25 12 12 24
train-1h 1 2.5 12 12 24
train-10m* 10min 2.5 2 2 4

Dev & Test Sets (from LibriSpeech)
dev-clean 5.4 8 20 20 40
dev-other 5.3 10 16 17 33
test-clean 5.4 8 20 20 40
test-other 5.1 10 17 16 33

subset tokens vocab

Unaligned Text Training Set
librispeech-LM (in-domain) 800M 200K

Table 1: Datasets stats in Libri-light. *Six different ver-
sions of the 10 min datasets have been constructed, the union
of these small datasets make up the 1h dataset.

The VAD segments were used to derive an average SNR for
each file. For each file, we constructed JSON metadata in-
cluding title, unique speaker ID, SNR, macro genre, and list
of valid VAD block (block of more than 500ms of speech
indicated by onsets and offsets). We created three dataset
splits based on different sizes: (unlab-60k), (unlab-6k)
and (unlab-600), matched in macro-genre distribution (the
smaller cuts are included in the larger ones, see the stats in
Table 1). The distributions by speaker and macro-genres are
in Figure 1. The total amount of speech in the dataset is
62.2K hours, including the duplicate files.

Limited-resource Training Set. For training with lim-
ited supervision, we selected three subsets of the LibriSpeech
training set: a 10 hour set, a 1 hour set, and six 10-minute
sets (the six 10-minute sets together make up the 1h set, and
the 1h set is included in the 10h set). In each set, half of
the utterances are from the clean and other training sets, re-
spectively. We additionally provide orthographic transcrip-
tions from LibriSpeech and phonetic transcriptions generated
from phonemizer6.

Dev and Test Set. The dev and test sets are the same
as that of LibriSpeech (5.4 hours for dev-clean, 5.3 hours
for dev-other, 5.4 hours for test-clean, and 5.1 hours for test-
other) and are intended for testing and tuning. All dev or test

6https://gitlab.coml.lscp.ens.fr/mbernard/
phonemizer



ABX within speaker ABX across speaker
System dev-clean dev-other test-clean test-other dev-clean dev-other test-clean test-other

MFCC Baseline 10.95 13.55 10.58 13.60 20.94 29.41 20.45 28.5
CPC unlab-600 7.36 9.39 6.90 9.59 9.58 14.67 9.00 15.1
CPC unlab-6k 6.51 8.42 6.22 8.55 8.48 13.39 8.05 13.81
CPC unlab-60k 6.11 8.17 5.83 8.14 8.05 12.83 7.56 13.42

Table 2: ABX errors on unsupervised CPC trained features. Within- and across-speaker phoneme discriminability scores
(lower is better) on the LibriSpeech dev and test sets as a function of varying quantities of unlabelled speech.

set audio has been removed from training sets. The ground-
truth phonetic sequences for the dev and test sets were gener-
ated as above; in addition, for ABX evaluation, forced align-
ment was obtained using a model trained on LibriSpeech.

Unaligned Text Training Set. For training a language
model in the distant supervision setting, we consider the LM
corpus provided in LibriSpeech7 which contains 800M tokens
and a vocabulary size of 200k from 14.5k public books from
Project Gutenberg. This corpus only partially overlaps with
the content of our unlabelled training set and can thus be con-
sidered in-domain. Several options exist for publicly available
out-of-domain corpora (wikitext103, 1Billion word, etc).

3.2. Metrics
We provide 3 sets of metrics for the unsupervised, distantly-
supervised, and semi-supervised settings.

For the unsupervised setting, the aim is to extract speech
representations (discrete or continuous) which encode the
phonetic content of the language while ignoring irrelevant
information (channel, speaker, etc). The representation is
evaluated using ABX error, a distance-based metric used in
previous zero resource challenges [9, 10, 11]. For a given pair
of sounds (for instance, ”bit” versus ”bet”), we compute the
probability that the distance between a random token of ”bit”
(X) is closer to another token of ”bit” (A) than to a token of
”bet” (B). The ABX error rate is obtained by averaging across
all such minimal pairs of phone trigrams in the corpus. For
the “within-speaker” score, A, B and X are from the same
speakers; in the “across-speaker” score, A and B are from the
same speaker, but X is from a different speaker (see [19]).

For the semi-supervised setting, we evaluate the quality
of learned acoustic representations with little annotated data.
Models can be trained either with character or phonetic tar-
gets using limited data and measured by either Character Er-
ror Rate (CER) or Phoneme Error Rate (PER).

For distant supervision, we evaluate how the learned rep-
resentations can be used to decode speech at the word level
using a pre-trained language model. We use Word Error Rate
(WER) for the evaluation. Because the dev and test sets are
from LibriSpeech, this allows to compare distant supervi-
sion directly with SOTA supervised models. More details on
dataset and metrics in Supplementary Section S1.

7https://openslr.org/11/

dev- dev- test- test-
System clean other clean other

no pretraining+train-10h 45.9 55.7 43.7 58.6
CPC unlab-60k+train-10m 40.1 51.5 39.4 53.3
CPC unlab-60k+train-1h 32.2 44.6 31.6 46.8
CPC unlab-60k+train-10h 28.4 41.4 27.9 43.6

Table 3: PER/CER in the semi-supervised setting. A pre-
trained CPC system plus a linear classifier trained on limited
amounts of labels compared to the same system trained from
scratch (PER).

4. BASELINE SYSTEMS

In the unsupervised setting, we use a PyTorch implementa-
tion of the Contrastive Predictive Coding (CPC) system [7]
trained to predict the hidden states of N future speech frames
and containing an encoder, a sequence model, and a predic-
tor. The encoder maps waveforms to hidden states (one 512
dimensional embedding every 10 ms frames) using a stack of
5 convolutional layers. The sequence model encodes the hid-
den states into a 512-dimensional phonetic embedding with
one layer of Gated Recurrent Units (GRUs). The predictor
maps the last phonetic embedding onto a future hidden state
using a linear projection (one linear projection per time step,
varying from 1 to 12). To avoid collapsing to a trivial solu-
tion, the model is trained discriminatively; the loss function
aims at decreasing the dot product between predicted and ac-
tual future frames while increasing it for frames belonging
to negative sequences (distant time windows). We used a
reimplementation of the original paper, which we modified
to increase stability and performance, as we could not repro-
duce the original paper results with the provided descriptions.
These changes are as follows: we replaced batch-norm with
channel-wise normalization, we reduced the hidden and pho-
netic embeddings to 256 dimensions, used a LSTM instead of
a GRU, and used a 1-layer transformer network instead of a
linear projection. The original paper obtained 65.5% accuracy
on phoneme classification with a linear classifier trained on
top of the frozen system’s phonetic embedding. Our modified
system obtained 68.9% accuracy, while using 4 times fewer
parameters in the encoder+sequence model part of the system.
We trained it on the three cuts (unlab-600, unlab-6k and
unlab-60k).



dev- dev- test- test-
System clean other clean other

Supervised systems (LibriSpeech 1000 h)
Gated Cnv+4gramLM[20] 4.6 13.8 4.8 14.5
Hybrid+seqdisc+4gramLM[21] 3.4 8.3 3.8 8.8

CPC pretrain + CTC fine-tuning + 4gram-LM
CPC unlab-600+train-10m 97.3 97.6 97.1 97.7
CPC unlab-600+train-1h 72.2 84.5 70.1 86.3
CPC unlab-600+train-10h 52.5 71.6 49.3 74.1

CPC unlab-6k+train-10m 93.6 95.2 93.2 94.9
CPC unlab-6k+train-1h 67.5 81.3 65.4 82.0
CPC unlab-6k+train-10h 46.4 66.7 44.7 69.3

CPC unlab-60k+train-10m 92.5 94.2 92.5 94.4
CPC unlab-60k+train-1h 66.6 80.0 64.7 81.6
CPC unlab-60k+train-10h 46.1 66.7 43.9 69.5

MFSC + TDS + CTC + Grapheme + 4gram-LM
train-1h 79.4 88.1 78.4 88.0

+ 60k pseudo-label 78.6 86.5 77.2 86.3
train-10h 34.0 60.9 33.5 62.1

+ 60k pseudo-label 30.5 55.8 30.1 57.2

MFSC + TDS + CTC + Phoneme + 4gram-LM
train-1h 81.1 88.5 80.2 88.7

+ 60k pseudo-label 84.3 90.0 84.0 90.5
train-10h 44.1 64.2 43.8 65.1

+ 60k pseudo-label 30.0 55.8 29.3 56.6

Table 4: WER in the distant supervision setting. Top:
State-of-the-art supervised systems using our 4-gram-LMs.
Middle: A CPC system trained with unlabelled speech, fine-
tuned with limited data and integrated with a 4-gram word
language model (Librispeech-LM). Bottom: A small MFSC
TDS system trained on limited labeled data (graphemes or
phonemes). The pseudo-labels for the 60k corpus segmented
into 36-second chunks are generated and are used to retrain a
larger TDS system.

In the semi-supervised setting, we use our baseline pre-
trained CPC system plus with a linear classifier trained with
CTC loss on the limited-resource set’s phone labels (only the
linear layer is fine-tuned). We also provide a from-scratch
control with the same architecture trained end-to-end.

For the distant supervision setting, we run two exper-
iments: (1) we use our pretrained CPC system with an
improved CTC layer (LSTM) which we fine-tune with or-
thographic labels in the limited-resource set. We decode
with a python wrapped version of the wav2letter++ decoder
[18], using a 4-gram KenLM [22] language model trained on
the unaligned text set. (2) We use CTC to train small Mel-
filterbanks-based TDS systems[23], (7 TDS blocks, 20M
parameters, total stride 2) on phonemes/graphemes respec-
tively. We create pseudo-labels by beam-search decoding the

60k-hours unlabelled data with a 4-gram KenLM decoder
trained on LibriSpeech-LM. These labels are used to train
larger TDS systems (11 TDS blocks, 37M parameters) from
scratch which generate WERs when decoding with the same
LM. More details on baselines in Supplementary Section S2.

5. RESULTS

The results for the unsupervised setting are shown in Table 2.
CPC constructs embeddings with good ABX scores com-
pared to an MFCC baseline, and are in the same range as the
SOTA in the Zero Resource Speech Challenge 2017 for En-
glish (6.2% within and 8.7% across [24]). The results in the
semi-supervised setting (Table 3) show gains in PER in using
unsupervised pretraining for several different amounts of fine
tuning. The results on the distant supervision (Table 4), while
far from supervised state-of-the-art, show that increasing the
amount of unsupervised pretraining helps. Pseudo-labels are
beneficial but only if the generating and fine-tuned models
are initially good (Table 3 and 4).

6. CONCLUSION

We have introduced a new large dataset for benchmarking
ASR systems trained with limited or no supervision. We
found that unsupervised training with increasingly larger
datasets yield better features and can significantly boost
the performance of systems trained with limited amounts
of labels (from 10 min to 10 hours) both for a phoneme
recognition task in a semi-supervised setting and for a word
recognition in a distant-supervision setting. The baselines
were not particularly optimized for the tasks and are provided
only as a proof-of-concept; there is a significant margin with
fully-supervised systems. Obvious improvements include us-
ing larger models, speaker-adversarial losses, fine tuning the
entire system (not just the top layers), and improved pseudo-
labels retraining. Active learning [25] could further select
useful parts of the dataset (we provide SNR data to facilitate
this effort). Other approaches might apply language model-
ing techniques directly on unlabelled audio to improve the
representations before fine-tuning them [26]. A recent paper
[27] obtains impressive results with CPC, VQ and BERT
pretraining on 960h of unlabelled data and fine-tuning on
train-10h (test-clean: 10.2%, test-other: 23.5%).

The objective of Libri-light is to encourage the develop-
ment of algorithms that will be eventually applied to under-
resourced languages. Even though recent work show that
unsupervised representations derived from English trans-
fer across languages [28], more work is required to extend
this benchmark to more languages, and ultimately, to under-
resourced languages.
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