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TACTO:
A Fast, Flexible, and Open-source Simulator for

High-Resolution Vision-based Tactile Sensors
Shaoxiong Wang1,∗, Mike Lambeta2, Po-Wei Chou2, and Roberto Calandra2

Abstract—Simulators perform an important role in prototyp-
ing, debugging, and benchmarking new advances in robotics and
learning for control. Although many physics engines exist, some
aspects of the real world are harder than others to simulate. One
of the aspects that have so far eluded accurate simulation is touch
sensing. To address this gap, we present TACTO – a fast, flexible,
and open-source simulator for vision-based tactile sensors. This
simulator allows to render realistic high-resolution touch readings
at hundreds of frames per second, and can be easily configured to
simulate different vision-based tactile sensors, including DIGIT
and OmniTact. In this paper, we detail the principles that drove
the implementation of TACTO and how they are reflected in its
architecture. We demonstrate TACTO on a perceptual task, by
learning to predict grasp stability using touch from 1 million
grasps, and on a marble manipulation control task. Moreover,
we provide a proof-of-concept that TACTO can be successfully
used for Sim2Real applications. We believe that TACTO is
a step towards the widespread adoption of touch sensing in
robotic applications, and to enable machine learning practitioners
interested in multi-modal learning and control. TACTO is open-
source at https://github.com/facebookresearch/tacto.

Index Terms—Simulation and Animation; Perception for
Grasping and Manipulation; Force and Tactile Sensing; Learning
and Adaptive Systems; Deep Learning in Robotics and Automa-
tion

I. INTRODUCTION

S IMULATORS play an important role in prototyping, de-
bugging and benchmarking new advances in robotics.

With an appropriate simulator, expensive and time-consuming
experiments in the real world can be approximated inex-
pensively on our computers. This allows to perform orders
of magnitude more experiments at a fraction of the effort,
and in many cases of the time. The robotics community has
traditionally made extensive use of simulators for control, and
many different physics engines are available to researchers
and practitioners [1]. One aspect that has proven so far to be
difficult to simulate is tactile sensing, and in particular vision-
based tactile sensors [2], [3], [4] which provide rich high-
resolution measurements. This is because to accurately model
this family of tactile sensors it is necessary not only to model

Manuscript received: September, 9, 2021; Revised December, 16, 2021;
Accepted January, 9, 2022.

This paper was recommended for publication by Editor Dan Popa upon
evaluation of the Associate Editor and Reviewers’ comments.

∗ Work done during an internship at Meta AI.
1 Massachusetts Institute of Technology
2 Meta AI, Menlo Park, CA, USA
Corresponding author: Roberto Calandra (rcalandra@fb.com)
Digital Object Identifier (DOI): 10.1109/LRA.2022.3146945

Fig. 1: We open-source TACTO – a simulator of vision-based tactile sensors.
TACTO produces high-resolution and high-fidelity reading from tactile sensors
at high-frequency (>100Hz). Its modular structure allows to model different
vision-based tactile sensors and to be integrated with different physics engines.
We believe that such a tool can benefit the touch sensing and robotic
community, as well as researchers in machine learning that can now access a
new sensor modality.

the dynamics of the contact, but also to model the optical
properties of the sensors and the corresponding illumination
to obtain realistic perceptual outputs. All of this while keeping
the simulator flexible enough to implement various sensors
with different form factors, and fast enough to be of practical
use.

To fill this lack of touch sensing simulators, we introduce
TACTO – a simulator of vision-based tactile sensors explicitly
designed to be fast and flexible. Our main contribution is
to develop and open-source this simulator of vision-based
tactile sensors. In this paper, we describe the design choices
adopted, the resulting software architecture of the simulator,
and discuss some of its most important features. Following, we
present simulated experiments to demonstrate the capabilities
of TACTO on perception and control tasks. Fig. 1 shows
examples of TACTO in different scenarios.

TACTO can natively be used in conjunction with PyBul-
let [5], but can also be interfaced with other physics engines.
Particular care was dedicated to having a simulator that could
be both fast and flexible. Through our design, TACTO can ren-
der hundreds of frames per second, thus making the simulator
practical for many control and learning to control applications.
In addition, thanks to its modularity it is easy to implement
vision-based tactile sensors with different form factors and
lighting properties. Currently, TACTO implements two recent
vision-based tactile sensors: OmniTact [3] and DIGIT [4].
While the ideal touch simulator would provide both realistic
perceptual outputs and accurate contact dynamics, TACTO is
aimed at tackling the rendering of realistic perceptual outputs
and the creation of accurate contact dynamics is currently left
to the underlying physical engine being used by the user. We
demonstrate our simulator by learning grasp stability models
from touch, and by learning in-hand marble manipulation. For
learning grasp stability from touch, we collected a simulated
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dataset of 1 million grasps, which is orders of magnitude more
data than the largest dataset previously used for this task [6].
This highlights the advantages of having a fast simulator of
vision-based tactile sensors and allows us to better understand
the performance of machine learning grasp stability models
trained from large datasets that have, so far, been infeasible
to collect in the real world. Moreover, we apply Bayesian
optimization to learn in simulation control to manipulate
marbles between two fingers from touch.

Finally, we present a proof-of-concept of Sim2Real on a
pose-estimation task to show the comparison between sim-
ulated and real signals, and various ways to improve the
performance. With the Sim2Real gap in mind, our major
goal is to provide a playground, similar to OpenAI Gym [7],
to test different design or learning algorithms for the touch
modality. The model can be later trained with real data. But
some fundamental understanding and experience learned in
simulation can be helpful for real robots, e.g. exploring the
possible representation/policy to combine vision and touch for
robotic tasks.

We believe that TACTO can be of practical value for differ-
ent communities: 1) To hardware designers, it provides a pre-
liminary method to simulate and evaluate their design choices
for future sensors; 2) To the robotic community, it provides a
way to simulate and study the integration of touch sensing into
control scheme; 3) To the machine learning community, it pro-
vides an easy-to-use tool to generate multi-modal inputs which
would otherwise require real-world hardware. To enable and
stimulate researchers and practitioners in these fields, we open-
source TACTO at https://github.com/facebookresearch/tacto.

II. RELATED WORK

While there is a large number of physics engines available
to robotic practitioners [1], the choice when simulating tactile
sensors is more limited. This is mostly due to the difficulty of
accurately and efficiently simulating touch.

Several traditional low-dimensional sensors have been sim-
ulated in the literature, including BioTac [8] and fabric-
based tactile sensors [9]. [10] simulated the iCub’s iSkin in
Gazebo through the use of an array of tactels appropriately
distributed on the kinematic structure of the robot. The speed
of the simulation was however severely impacted by modeling
such numbers of sensors independently. Similarly, [11] made
use of Gazebo to model general-purpose robotic skin, but
modeled each element of the array of tactels as a spring-
mass-damper system to provide an improved characterization
of the mechanical properties of the skin. In contrast to these
works that simulate low-dimensional tactile sensors, we aim
to simulate high-resolution vision-based tactile sensors, which
can possess millions of tactels. This creates novel challenges
and requires different modeling approaches.

Exploiting the nature of vision-based tactile sensors, it is
possible to use ray-tracing models from computer graphics to
render sensor output. There are emergent simulators that shows
promise for vision-based tactile sensors based on Phong’s
model [12], [13], Mitsuba2[14], Unity [15], optical flow [16],
and finite elements models [17]. Among them, the closest
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Fig. 2: Software Architecture. TACTO bridges between physics simulator and
back-end rendering engine, and can be configured to model different sensor
designs through configuration files.
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Fig. 3: Workflow showing the functionality of TACTO at three major phases.
(1) Initialize: create the sensor structure in the renderer; (2) Create scene:
parse the objects URDF and add them into the renderer; (3) Step simulation:
synchronize the object poses from physics engine to the renderer.

concurrent works are [14], [13]. For comparison, the authors
in [14] focused on simulating realistic tactile imprints using
Mitsuba2 renderer[18], but have not worked on efficiently
integrating it with physical simulators so far. The authors in
[13] combined the Phong’s model with the Gazebo simulator,
but the experiments were mostly performed with a tactile
sensor pressing on fixed objects. In contrast, we focus on
exploring the scenarios where the sensors actively interact with
the objects during the grasping or manipulation. Overall, we
aim to provide an open-source simulator that is fast, flexible,
and can be efficiently integrated with the physics engine for
experimenting with different learning and control algorithms
with touch modality.

III. A FAST AND FLEXIBLE SIMULATOR OF VISION-BASED
TACTILE SENSORS

We now detail the desired design considered when designing
our simulators, and the corresponding architectural choices
made to achieve these desiderata. Following, we discuss some
of the salient features that TACTO offers.

A. Design Desiderata

High-throughput: simulators must be as fast as possible
to reduce the real-world time of running simulations. Repro-
ducing touch sensing, even for low-dimensional sensors, has
traditionally been a very computationally intensive operation
often leading to simulations barely faster than real-time [10].
Obtaining a simulator that could perform hundreds of frames
per second was, from the beginning, one of our most important
design desiderata.

Flexible: since there are different sensor designs of vision-
based tactile sensors, where some of them have complex
geometry [3], mirrors [19], and transparent case for light
piping [20], it is desirable for any simulator to be flexible
and powerful enough to support a large choice of optical
components, and mechanical designs.

https://github.com/facebookresearch/tacto
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Fig. 4: Example images of simulated DIGIT imprints. TACTO is able to
generate color and depth images at the same time with details of the local
geometry at high speed.

Fig. 5: Example images of a simulated OmniTact [3] touching a sphere.
We show only 3 of the 5 cameras mounted on the sensor. It is visible how
the specific light/camera placement in the OmniTact results in more pinkish
images also in our simulator.

Realistic: it is desirable that the simulator produces outputs
as close as possible to real measurements, including illumi-
nation of the contact region, global lighting distribution, and
details like shadows and deformation on the contact boundary.

Easy to Use: finally, it is from a practical point of view very
important that the simulator is easy to install, use, modify and
set up for different perception and control tasks.

B. Architectural Choices

Here we compare several architectural choices. The simu-
lator needs to calculate the local contact geometry (Depth),
and the corresponding rendering (RGB) that best meets the
desiderata.

1. Phong’s model for RGB rendering from Depth (simple
but less powerful): PyBullet built-in camera can provide a
depth map of the contact area. To render the RGB image
from the depth map, researchers from [13] implemented their
own renderer based on Phong’s reflection model. It generated
promising results and should be easy to use. However, it
assumed that light only bounces once, directly from the gel
surface to the camera. Hence, it is difficult to adapt to existing
and future sensor designs that require advanced functionalities,
like reflection, refraction, and shadows with fast speed.

Although it can be extended to support more ray-tracing
functionalities, this may require non-trivial engineering time
to re-implement methods with GPU acceleration which are
already provided and tested by open-source graphics libraries,
like OpenGL[21].

2. OpenGL for RGB rendering from Depth (power-
ful but slow): Alternatively, we can leverage the power of
OpenGL [21]. Besides the features in [13], OpenGL also sup-
ports mirrors, transparent objects, shadow, GPU acceleration,
etc, which opens up the possibility for rendering advanced
sensor design at high speed, with minimal effort. To use the
power of OpenGL, one can get the depth image from PyBullet
first, and pass the depth map to OpenGL for rendering.

The rendering alone is fast and can be sped up in GPU,
however, I/O speed becomes the bottleneck. In preliminary

experiments, a significant amount of time was spent on loading
the mesh generated by the depth map into OpenGL, and this
limited the overall speed of this method to only 20 frames per
second, even on GPU.

3. OpenGL for RGB rendering from synchronized scenes
(proposed, powerful and fast): Our proposed system design
builds a synchronized scene from the physical simulator, and
directly renders both depth and RGB images in OpenGL. It can
achieve high speed with powerful rendering functionalities.

Specifically, to avoid the I/O bottleneck of loading the
mesh from depthmaps repeatedly, TACTO preloads the gel
surface and object meshes into the OpenGL scene, then keeps
synchronizing their poses from the physical simulator. At each
step, TACTO overlaps the original gel geometry with the
contact object, with the respective poses, in OpenGL to extract
depth and RGB images. Although loading meshes is slow, it
is very fast to change their poses and re-render afterwards. In
this way, the system can render at very high speed (up to 200
frames per second in our experiments).

Note that this is designed to speed up the computation for
interacting the sensor with rigid objects, where the deformation
of the object itself is negligible. Since the silicone gel is
much softer than many everyday objects, the method can still
be applied to these objects. To manipulate very deformable
objects, TACTO provided the functionality to render RGB
from depth, as described in the second option, with slower
speed though.

One limitation of the method is that it is difficult to
model the deformation of the gel on the contact boundary,
because the RGB and depth images are calculated at the
same time. However, this mostly affects sharp edges, and
can be approximated by smoothing objects’ meshes during
pre-processing. We can also add data augmentation [22] or
refine the rendering afterward with generative models to make
it more realistic [23], [24]. Besides, we expect that contact
boundary contains relatively little useful information compared
to other aspects like contact location, contact mask, object con-
tact pose, normal forces, etc. It can still be a good playground
to study different algorithms in simulation for touch. Overall,
we think it is worthwhile to trade this for speed.

For implementation, we use Pyrender [25] as the renderer
in TACTO since it provides a lightweight python interface for
deploying OpenGL with GPU support, making TACTO not
only powerful, but also easy to use.

Based on extensive experiments and analysis of each
method, we decided to use this third option. This results in
TACTO being closely aligned to our ideal simulator, which is
fast, flexible, and powerful. In Section IV, we will demonstrate
that TACTO is also easy to set up for perception and control
tasks.

C. Overview of the Software Architecture

Fig. 2 shows the overall software architecture of TACTO.
TACTO takes the responsibility of bridging between the
physics simulator and the back-end rendering engine. Note
that the architecture we propose leverages the advanced ray-
tracing tools, which enables simulating high-quality tactile
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Res 1 obj (1 in contact) 100 objs (1 in contact) 100 objs (10 in contact)
Step Sync Render FPS Step Sync Render FPS Step Sync Render FPS

GPU
160×120 0.2 2.2 2.5 220 5.8 2.4 2.8 200 11.6 6.3 6.9 80
320×240 0.2 2.2 5.0 140 5.8 2.5 7.6 100 11.5 6.3 9.5 60
640×480 0.2 2.3 9.4 90 6.1 2.6 8.6 90 11.7 6.3 15.0 50

CPU
160×120 0.4 4.2 11.8 60 9.8 4.5 11.3 60 19.5 10.7 16.7 40
320×240 0.4 4.2 25.8 30 9.6 4.6 26.1 30 18.0 9.8 26.2 30
640×480 0.4 4.5 78.3 10 9.0 4.8 78.5 10 17.2 10.4 80.1 10

Table I: Breakdown time of each stage (in millisecond) and overall speed (in frames per second, excluding physics simulation) for TACTO with PyBullet
when simulating a DIGIT sensor with multiple objects (each mesh with 12K faces) in the scene. Step: PyBullet simulates physics; Sync: TACTO synchronizes
the scene; Render: Pyrender renders the scene. Note that physics simulation can run asynchronously to speed up. CPU machine: Intel Core i7-6820HQ. GPU
machine: Nvidia RTX 2080 Super GPU with Intel Core i9-9900K CPU.

- + =

Simulation (In contact) Simulation (No contact) Real signal Simulation (Fine-tuned)

Fig. 6: If readings from a real-world sensor are available, TACTO allows
to fine-tune the simulator using the real-world data. This is achieved by
calculating the pixel-wise difference of the simulated images with and without
touch, and then adding the reference real-world image.

signals efficiently, with minimal efforts. It can render different
sensors by loading corresponding sensor configurations, which
include parameters such as the camera, lights, and gel surface.

Fig. 3 shows a summary of the overall workflow. TACTO
includes three major phases (for simplicity, we here assume
PyBullet as the underlying physics engine). 1) Initialize:
TACTO loads the sensor configuration, and setup up the sensor
(camera, lights, gel mesh) in the rendering engine. 2) Create
scene: PyBullet loads object URDF into the scene, and TACTO
parses the URDF (by urdfpy package in our case), and adds the
analyzed mesh into the rendering engine. 3) Step simulation:
PyBullet first calculates physics simulation. Then TACTO
loads the poses of each link from PyBullet, synchronizes the
poses of objects and sensors in the rendering engine, and
fetches the rendered tactile imprints.

D. Salient Features

Fast: TACTO is very fast for being a tactile sensor simu-
lator. Table I shows the speed of TACTO. When interacting
with an object mesh with 12K faces, TACTO is able to render
a single DIGIT sensor at 200 frames per second on GPU with
an output resolution of 160x120 pixels. It can also render
multiple sensor outputs, e.g., rendering four DIGIT sensors
mounted on an Allegro hand at 50 frames per second on GPU
with an output resolution of 160x120 pixels. We optimized
the TACTO so that only the number of objects in contact
influences Pyrender’s speed, making it maintain a high speed
even in a cluttered environment. The rendering time grows
linearly with higher output resolution on GPU, and the speed
stays the same when the mesh size scales from 2K to 12K
faces.

Flexible: TACTO can adapt to different sensor designs
by changing configuration files easily. Besides rendering
DIGIT [4] signals, as shown in Fig. 4, we also demonstrate the
possibility to render OmniTact [3] signals, as shown in Fig. 5,
which has a substantially more complicated sensor structure
including round surface, 5 cameras, and 11 light sources. For

Fig. 7: Comparison of simulation and real signals with contacts across the
sensor. TACTO captures the non-uniform light distribution similar to the
real signals. The real-world readings are collected from a DIGIT sensor [4]
touching a ball of 5.3mm diameter. Simulated images are fine-tuned with a
background real-sensor image.

Fig. 8: TACTO supports rendering shadows to obtain more realistic simula-
tions. The real-world measurement is collected from a DIGIT sensor touching
a ball of 3.7mm diameter.

the configuration file details, it requires parameters of the
gel (pose, mesh), a list of camera(s) (pose, field of view,
clipping plane), a list of lights (pose, color, intensity), and user-
specific details like noise level, and the mapping from force to
deformation. The example configuration files in the repository
include the explanations for each parameter. The configuration
file and renderer can be further extended to support more
functionality of OpenGL/Pyrender and sensors.

Force dependent: In TACTO, the contact forces are gen-
erated from the physics engine of choice (currently by default
PyBullet with a rigid body contact model). However, within
TACTO we also apply a deformation function to simulate the
dynamics range of the deformation of the gel by mapping the
force measured in the physics engine to different deformations
of the mesh used to simulate the gel. This means that light
forces will yield fewer deformations, and higher forces to
more deformation of the gel. The current deformation function
used is a piece-wise linear mapping from normal forces to
deformation depth, which approximates the linear elasticity
of real sensors within a reasonable range [26] and consider
both a lower (below which the sensor is not capable of
sensing deformation) and an upper threshold (above which
the deformation is saturated) to the force sensed. However,
it is straightforward for the end-user to provide their own
deformation function, for example, by characterizing the gel
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Fig. 9: Comparison of simulated and real tactile readings. Real readings are collected from a DIGIT sensor touching objects with different shapes (spheres,
corners, edges, planes), with different forces. TACTO generates realistic tactile signals for both contact surfaces and shadows. The simulated images are
overlaid on a background real sensor image. We smooth the cube’s mesh to better model the deformations on the contact boundaries, during pre-processing.
A 15×15 Gaussian filter is applied on the rendered RGB image to match the imperfection from camera/light source in the real sensor. Note that it takes only
2 extra milliseconds for rendering shadows (with meshes of 19k faces, output resolution of 640x480, GPU).

with a non-linear function. In the future, we plan to provide
more realistic transfer functions for the sensors to which we
have access.

Rendering from depth: TACTO also supports rendering
tactile imprints from depth images as an option. Given the
depth image, it generates corresponding meshes to replace the
original gel surface in the rendering engine. As mentioned
in Section III-B, the speed is limited due to I/O bottleneck,
however, it can be helpful in some cases where it requires
modification on depth images before rendering for more
realistic tactile imprints.

Calibration from real sensors: To make the render-
ing more realistic the simulator also supports a procedure,
sketched in Fig. 6, that allows to fine-tune the rendering using
readings collected from real-world sensors. This results in
highly realistic renderings that can be easily customized to
each sensor. In addition, TACTO captures the illumination
changes across the sensor similar to real measurements. In
real sensors, the light becomes dimmer when traveling longer,
which generates non-uniform light distributions. Fig. 7 shows
a comparison across different contact regions. Finally, TACTO
supports rendering shadows to match real signals, as shown
in Fig. 8. This option is easy to enable with our framework,
and takes only ≈ 2 extra milliseconds to render on GPU. In
contrast, it can take non-trivial time to re-implement shadow
rendering from scratch with Phong’s reflection model [13],
especially to optimize for GPU acceleration. Fig. 9 shows
a comparison between simulated and real imprints. TACTO
can simulate realistic rendering for both contact surfaces and
shadows, with different contact geometry and forces.

Compatibility to different physics engines: We use an
open-source physics engine, PyBullet, to demonstrate the
framework. But TACTO can also support other physics en-
gines. Specifically, there are two ways: 1) is to synchronize
the scene with the functions provided by the selected physics
engine. The required functions include getting object/link
poses to synchronize the scene, and getting contact forces to
simulate deformation. 2) is to render from depth as described
in Section III-D. Provided the depth information, TACTO
can generate the mesh in the scene and render corresponding
images.

IV. SIMULATED EXPERIMENTS

We now demonstrate TACTO on a perception task to learn
grasp stability from touch, and on a control task to manipulate
a marble between two fingers using touch. We choose these
two tasks based on previous works with real robots[6], [27] for
better comparison between simulated and real environments.
The experiments in simulation achieve similar results to the
ones with real robots, which demonstrates the effectiveness
and potentials of the simulated environment. For these ex-
periments, we use TACTO in conjunction with the PyBullet
physics engine [5].

A. Learning Grasp Stability in Simulation

In this task, we learn in simulation a classifier of grasp
stability from vision and touch readings, following the previ-
ous work on real robots [6]. The goal is to predict whether a
grasped object will be successfully lifted, based on the touch
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Fig. 10: Learning Grasp Stability. (Left) Examples of a successful grasp and a failure grasp. In the failure grasp, the object is only grasped by the corner and
begins to slip after being lifted. (Right) Median and 68% percentile of the learned models when varying the number of data used. We compare using only
vision, only touch and both vision and touch as inputs of the models. Results show that learning grasp stability from touch needs significantly less amount
of data to achieve relative high accuracy compared to vision, and that increasing the amount of data helps to improve performance. The vertical dashed line
shows the largest dataset collected on real robot [6]. In the simulation, we can experiment with a dataset more than two orders of magnitude larger.
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Fig. 11: Learning in-hand marble manipulation. (Upper) The learning curve (median and 68th percentile over 30 experiments) for Bayesian optimization and
random search. (Lower) Examples of a marble rolling into different target locations within the fingers at the early and later learning stage. At the later stages
of learning, the controller can roll the marble between fingers with faster speed and higher accuracy, while avoid dropping the marble.

and vision readings before the lifting. We aim to investigate
whether the results in simulation match the real ones in [6].

Setting Our setup consists of two DIGIT sensors [4]
mounted on a WSG-50 parallel-jaw gripper, and an external
camera. We collected 1 million grasps in a self-supervised
manner by randomizing the position, orientation and force
applied by the gripper. The ground truth for each grasp was
labeled depending on whether the object was still between
the fingers after being lifted. Some examples are shown in
Fig. 10. It took only one day to collect 1 million grasps with
5 threads. In our experiment, we used a single box object
for demonstration purposes, but it would be straightforward to
extend to various object datasets, such as YCB dataset [28],
or Dex-Net [29] dataset. The resulting dataset collected with
TACTO is several orders of magnitude larger than any publicly
available dataset of grasps using tactile sensing [6]. As such, it
allows us to evaluate the performance of learned grasp stability
models in data regimes that are still unexplored. To learn
the grasp stability, we trained ResNet-18 [30] neural network
models that, given the raw vision and touch signals, would
predict whether the grasp is stable or not after lift-off. The
training procedure followed previous work [6]. For details, to
fuse vision and touch signals, the feature vectors produced by

ResNet-18 were concatenated and fed to two fully connected
layers, with 512 and 256 hidden units, to predict final results.
To speed up training, we used ResNet-18 model pre-trained
on ImageNet [31]. And we used vision and touch images with
160× 120 pixels. The images were resized to 256× 256 and
randomly cropped to 224× 224 for data augmentation.

To evaluate the performance of different dataset sizes, we
used K-fold cross-validation and computed the median and
68% percentile of the classification accuracy. Due to compu-
tational limits, we used K = 10 up to 1000 datapoints, k = 5
up to 10k datapoints, and above 10k datapoints we evaluated a
single train/test split 80/20%. We trained 10 epochs for each
dataset size using Adam optimizer [32] with a learning rate
of 5e−4 and batch size of 32.

Results The results shown in Fig. 10 suggests: (1) the
model learned fast from touch with only a little amount of
data, while vision requires 3 or 4 orders of magnitude more
data to catch up; (2) single tactile sensor worked significantly
worse than two tactile sensors, because the object may look
stable from one tactile sensor while it unstably contacts the
other side; (3) on the low-data regime, the result agrees with
previous real-world experiments [6]: combining vision and
touch worked best in most of the cases. Although touch-only
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achieved comparable results to the combined model, we think
the difference can increase with a larger object set; on the high-
data regime, we can evaluate with 2 orders of magnitude more
data in simulation compared to [6], and observe the trends that
all the models keep improving still, and vision’s potentials with
more data.

B. Learning In-hand Marble Manipulation

In this task, we learn in simulation to roll a marble to target
locations in the sensor coordinate, following the previous work
on real robots [27]. The setup includes two DIGIT sensors as
shown in Fig. 11. The lower sensor is fixed, while the upper
sensor is controlled to roll the marble. Since there are rich
contacts with friction happening during the rolling, we aim
to investigate how stable the TACTO and PyBullet are, and
explore whether we could achieve similar performance to the
real one in [27].

Setting We use position control with a maximal force
for controlling the upper sensor. Specifically, we control the
horizontal position of the upper sensor, and push the sensor
vertically with maximal force to keep the marble in hand
while rolling. We parameterize the controller as u = Kx̄,
where u ∈ R2 is the desired velocity of the upper sensor
in horizontal plane, x̄ ∈ R2 is the error state between the
current marble center location x and the goal location x∗

in tactile space, and K ∈ R2×2 is the parameter to learn.
The cost is defined as cumulative error distance in tactile
space

∑
t ‖x̄t‖, and we set eight different target locations

and take the average cost for robustness. We apply Bayesian
optimization [33] with upper confidence bound to optimize
the parameter K automatically. Our main purpose here is
to validate the simulation system, and provide benchmark
experiments, however, the controller can be replaced by model
predictive control and/or reinforcement learning to manipulate
more complex objects [27], [34] and for dexterous hands [4].

Results Fig. 11 shows the quantitative and qualitative results
of rolling a marble into desired locations. The system can
learn to roll the marble into different target locations with
few iterations and roll faster with more iterations. During the
experiments, we validate that both PyBullet and TACTO run as
expected without abnormal situations. Because the simulation
is fast, it only takes 8 minutes for Bayesian optimization
to learn marble manipulation with 50 iterations. It includes
6 minutes for optimizing the acquisition function, and 2
minutes for simulation, where there are 50 iterations, and each
iteration includes 50 steps for rolling into each of 8 directions,
rendering 20,000 tactile imprints of 160 × 120 resolution in
total.

V. SIM2REAL EXPERIMENTS

The major goal with TACTO is to provide a platform to
study representations and algorithms for robot learning using
touch as a sensor modality, which the researchers can use to
test algorithms before experimenting on real sensors/robots.
However, another interesting venue for experimentation with
tactile sensors is Sim2Real, where data from the simulator
are used to directly train models that are either applied in

position error
(mm)

rotation error
(degrees)

Random 11.75 ± 1.15 46.56 ± 5.91
Sim2Sim 0.41 ± 0.01 3.48 ± 0.34
Real2Real (16 datapoints) 4.45 ± 0.86 33.85 ± 1.07
Real2Real (32 datapoints) 3.48 ± 0.56 25.45 ± 2.07
Real2Real (64 datapoints) 2.01 ± 0.14 10.96 ± 0.24
Real2Real (128 datapoints) 0.76 ± 0.07 4.96 ± 0.70
Sim2Real (without augmentation) 4.56 ± 0.40 17.64 ± 2.34
Sim2Real (with augmentation) 1.66 ± 0.16 11.60 ± 4.65
Sim+Real (16 real datapoints) 1.55 ± 0.12 9.08 ± 1.65
Sim+Real (32 real datapoints) 1.36 ± 0.05 7.95 ± 1.60
Sim+Real (64 real datapoints) 1.24 ± 0.03 8.25 ± 0.77
Sim+Real (128 real datapoints) 0.52 ± 0.03 4.14 ± 0.57

Table II: Sim2Real experiment results for pose estimation of a cylinder,
evaluated in position error of the contact center, and rotation error. We repeat
the experiments 5 times, and report the mean error ± standard deviation. We
compare the results of Sim2Sim, Real2Real (with different training samples),
and Sim2Real (with/without data augmentation and with different amount of
mixed real data).

Sim2Sim

Sim + Real (128 real datapoints)

Fig. 12: Examples of tactile reading from simulated (Top row) and real data
(Bottom row), and the corresponding estimated pose (red line).

the real-world or used in conjunction with a small number
of real-world data. Here, we present a proof-of-concept of
Sim2Real on a pose-estimation task, where the goal is to
estimate the contact center and angle of a pen w.r.t. the sensor
being touched.

Setting We generated in TACTO 10, 000 simulated tactile
imprints with corresponding poses, and collected 200 real
tactile imprints with manually annotated poses. Following, we
trained and validated the same convolutional neural networks
on several combinations of datasets: 1) Sim2Sim trained
and evaluated on simulated data. 2) Real2Real trained and
evaluated on real data 3) Sim2Real trained on simulated data
and evaluated on real data. 4) Sim+Real trained on simulated
data mixed with a small amount of real data and evaluated on
real data.

Results We show quantitative and qualitative results in
Table II and Fig. 12 respectively. From the results in Ta-
ble II, we can observe the sim2real gap (Sim2Real without
augmentation). To bridge the gap, we add data augmentation.
We find color jittering very helpful, where we randomly
change the brightness and contrast for each RGB channel.
It makes the model more robust to a variety of illumination
conditions (Sim2Real with augmentation vs. Sim2Real without
augmentation). We also compare the results between Sim2Real
and Real2Real. Without any real data, Sim2Real with augmen-
tation can achieve comparable results with Real2Real (64).
When mixed with real data, Sim2Real consistently outper-
forms Real2Real with the same amount of real data. These
show the potentials for increasing data efficiency by simulated
data.
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VI. CONCLUSION

In this paper, we introduce TACTO, a simulator for vision-
based tactile sensors. TACTO is designed to provide an
easy-to-use, fast and flexible simulator capable of generating
realistic high-resolution readings. We demonstrate and validate
TACTO on a perceptual task for learning grasp stability, and
a control task for marble manipulation. Moreover, we provide
a proof-of-concept that TACTO can be successfully used for
Sim2Real applications. To foster the tactile sensing community
and to enable robotics and machine learning researchers to
make use of touch in simulation, we open-source TACTO at
https://github.com/facebookresearch/tacto.

Future work will focus on improving the modeling of the
effects of forces through the deformation of the elastomers,
and ultimately generating more realistic readings. Besides,
different experiment variations can be evaluated, such as the
use of different deformation models, the effects of image
filtering, the comparison of simulated tactile sensors with
real-world sensors on varying geometries, and learning and
transferring grasp policies on different objects.
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