
Rosetta: Large scale system for text detection
and recognition in images∗

Fedor Borisyuk
Facebook Inc.

Albert Gordo
Facebook Inc.

Viswanath Sivakumar
Facebook Inc.

ABSTRACT
In this paper we present a deployed, scalable optical character re-
cognition (OCR) system, which we call Rosetta, designed to process
images uploaded daily at Facebook scale. Sharing of image content
has become one of the primary ways to communicate information
among internet users within social networks such as Facebook, and
the understanding of such media, including its textual information,
is of paramount importance to facilitate search and recommend-
ation applications. We present modeling techniques for efficient
detection and recognition of text in images and describe Rosetta’s
system architecture. We perform extensive evaluation of presented
technologies, explain useful practical approaches to build an OCR
system at scale, and provide insightful intuitions as to why and
how certain components work based on the lessons learnt during
the development and deployment of the system.

CCS CONCEPTS
• Applied computing→ Optical character recognition;

KEYWORDS
Optical character recognition, text detection, text recognition

ACM Reference Format:
Fedor Borisyuk, Albert Gordo, and Viswanath Sivakumar. 2018. Rosetta:
Large scale system for text detection and recognition in images. In Pro-
ceedings of ACM KDD conference (KDD’2018). ACM, New York, NY, USA,
Article 4, 9 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
One of the primary ways through which people share and con-
sume information in social networks such as Facebook is through
visual media such as photos and videos. In the last several years,
the volume of photos being uploaded to social media platforms has
grown exponentially to the order of hundreds of millions everyday
[27], presenting technological challenges for processing increasing
volumes of visual information. One of the challenges in image un-
derstanding is related to the retrieval of textual information from
images, also called Optical Character Recognition (OCR), which
represents a process of conversion of electronic images containing
typed, printed, painted or scene text into machine encoded text.
Obtaining such textual information from images is important as it

∗Authors of the paper have equal contribution to this work.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD’2018, August 2018, London, United Kingdom
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

Figure 1: OCR text recognition using Rosetta system. An ap-
proach based on Faster-RCNN detects the individual words,
and a fully-convolutional CNN produces the lexicon-free
transcription of each word.

facilitates many different applications, e.g. search and recommend-
ation of images.

In the task of OCR we are given an image, and the OCR sys-
tem should correctly extract the text overlaid or embedded in the
image. Challenges to such a task compound as a number of po-
tential fonts, languages, lexicons, and other language variations
including special symbols, non-dictionary words, or specific in-
formation such as URLs and email ids appear in the image, and
images tend to vary in quality with text in the wild appearing on
different backgrounds. Another aspect of the problem arises from
the huge volume of images in social networks uploaded daily that
need to be processed. Due to the nature of downstream applica-
tions, we targeted to perform OCR in realtime once the image is
uploaded, and that required us to spend significant time optimizing
the components of the system to perform within reasonable latency
constrains. Therefore, our problem can be stated as follows: to build
a robust and accurate system for optical character recognition capable
of processing hundreds of millions of images per day in realtime.

In this paper we present Rosetta, Facebook’s scalable OCR sys-
tem, which we have implemented and deployed in production and
that powers downstream applications within Facebook. Following
state-of-the-art systems, our OCR is divided into a text detection
stage and a text recognition stage. Our text detection approach,
based on Faster-RCNN model [24], is responsible of detecting re-
gions of the image that contain text. After that, our text recognition
approach, that uses a fully-convolutional character-based recog-
nition model, processes the detected locations and recognizes the
text they contain. Figure 1 shows some results produced by Rosetta.

The rest of the paper is organized as follows: §2 provides an over-
view of the related work. §3 describes our detection and recognition
models, and §4 describes the design and architecture for Rosetta, §5
describes the experimental evaluation and the lessons learnt during

KDD’2018, August 2018, London, United Kingdom Borisyuk, Gordo, Sivakumar

Figure 2: Two-step model architecture. The first step performs word detection based on Faster-RCNN. The second step per-
forms word recognition using a fully convolutional model with CTC loss. The two models are trained independently.

the system development. Finally, §6 describes the deployment and
§7 concludes the paper.

2 RELATEDWORK
Although the OCR problem has received a lot of attention during
decades, most of this attention has been led by the document ana-
lysis community and it has been limited to document images (see
e.g. [23] for some examples). It’s only been during the last decade
that the computer vision community has paid more attention to the
problem of text detection and recognition in natural images, mostly
due to the seminal work of Wang and Belongie [29]. Since then
the topic has received a significant amount of attention, and large
advances in text detection and text recognition in natural images
have been produced, mostly driven by the success of convolutional
neural networks (CNN).

The works of Jaderberg et al. [19, 20] are among the first to
propose a CNNbased approach for text recognition to classifywords
into a pre-defined set of dictionary words. Before the recognition
stage, a combination of Edge Boxes [33] and an aggregate channel
features (ACF) detector framework [11] is used to detect candidate
locations for the words. Following Jaderberg’s work, many new
methods have recently appeared that use CNN architectures to
detect words in images, including [16, 21, 25, 32]. CNN based
detection methods have the benefit of providing an end-to-end
learnable framework for text detection. We follow a convolutional
approach as well to detect text in images by adapting state of the
art object detection framework based on Faster-RCNN [24].

Similarly, many recent works on text recognition have also fol-
lowed Jaderberg’s work [20] and addressed its shortcomings. In par-
ticularly, and contrary to the original work, most recent character-
based works do not require a dictionary (also known as lexicon) and
can recognize words of arbitrary length that were not seen during
training (e.g. [12, 22, 26, 30]). In general, this is achieved by using a
fully-convolutional model that given an image produces a sequence
of features. In some cases, attention mechanisms (unsupervised or
supervised) or recurrent models can be leveraged to improve the
quality of the features. At training time, a sequence-to-sequence
loss such as CTC (Connectionist Temporal Classification) [14] is
used to compute the error between the predicted features and the

real transcription and to improve the model through backpropaga-
tion. At testing time, the sequence of features can be converted into
a sequence of characters from where the transcription is obtained,
either in a greedy manner, or using language model or a dictionary.
Our fully-convolutional recognition model shares the key ideas
of these works, i.e., producing a sequence of features that can be
trained with CTC and that can recognize words of arbitrary length
that do not appear in a dictionary.

To train such models, obtaining high quality training data is of
paramount importance. The works of [15, 19, 22] provide elegant
solutions for preparation of artificial generated training dataset with
hundreds to thousands of images being annotated with printed text
combining different fonts, styles and font sizes to provide a variety
of data for training robust text recognition classifiers. We have used
similar approaches in this work to generate artificial training data
for both detection and text recognition tasks.

3 TEXT EXTRACTION MODELS
We perform OCR in two independent steps: detection an recogni-
tion. In the first step we detect rectangular regions in the image
potentially containing text. In the second step we perform text
recognition, where, for each of the detected regions, a CNN is used
to recognize and transcribe the word in the region. This two-step
process has several benefits, including the ability to decouple train-
ing process and deployment updates to detection and recognition
models, run recognition of words in parallel, and independently
support text recognition for different languages. Figure 2 details
this process.

In the following sections we describe our approach in detail.

3.1 Text Detection Model
For text detection we adopted an approach based on Faster-RCNN
[24], a state-of-the-art object detection network. In a nutshell,
Faster-RCNN simultaneously performs detection and recognition
by i) learning a fully-convolutional CNN that can represent an
image as a convolutional feature map (typically based on ResNet
architectures [17]), ii) learning a region proposal network (RPN)
that takes that feature map as input and produces a set of k proposal
bounding boxes that contain text with high likelihood, together

Rosetta: Large scale system for text detection and recognition in images KDD’2018, August 2018, London, United Kingdom

Figure 3: Architecture of Text Recognition model.

with their confidence score, and iii) extracting the features from the
feature map associated with the spatial extent of each candidate
box, and learning a classifier to recognize them (in our case, our
categories are text and no text). To select the k most promising
candidates, the proposals are sorted by their confidence score, and
non-maximum suppression (NMS) is used to choose the most prom-
ising proposals. Additionally, bounding box regression is typically
used to improve the accuracy of the produced bounding boxes. The
whole detection system (feature encoding, RPN, and classifiers) are
trained jointly in a supervised, end-to-end manner.

Our text detection model uses Faster-RCNN, but replaces the
ResNet convolutional body with a ShuffleNet-based [31] architec-
ture for efficiency reasons. As we show empirically in Section 5,
ShuffleNet is significantly faster than ResNet and did not lead to in-
ferior accuracy. The ShuffleNet convolutional trunk is pre-trained
using ImageNet dataset [10]. To train the end-to-end detection
system, the model was bootstrapped with an in-house synthetic
dataset and then fine-tuned with COCO-Text and human annotated
datasets to learn real-world characteristics, cf . §5.2.

3.2 Text Recognition Model
We experimented with different architectures and losses for text
recognition. The first one is based on the character sequence encod-
ing model (CHAR) of Jaderberg et al. [19]. The model assumes that
all images have the same size (resized to 32x100 in [19] without
preserving the aspect ratio) and that there is a maximum number
of characters per word k that can be recognized (k = 23 in [19]).
For longer words, only k of its characters will be recognized. The
body of the CHAR model consists of a series of convolutions fol-
lowed by k independent multiclass classification heads, each of
which predicts the character of the alphabet (including the NULL
character) at each position. During training, one jointly learns the
convolutional body and the k different classifiers.

The CHAR model is easy to train using k parallel losses (softmax
+ negative cross-entropy) and provides a reasonable baseline, but
has two important drawbacks: it can’t recognize correctly words
that are too long (for example URLs), and the number of parameters
in the classifiers is very large, leading to big models that tend to
overfit.

The second model architecture is a fully-convolutional model
that outputs a sequence of characters. We refer to this model as
CTC because it uses a sequence-to-sequence CTC loss [14] during
training. The general architecture of the CTC model is illustrated
in Figure 3. After the convolutional body, which is based on a
ResNet-18 [17] architecture, it has a last convolutional layer that
predicts the most likely character at every image position of the

Algorithm 1 Curriculum Learning for Text Recognition Model
Input: Training dataset D; Number of warm-up epochsW ;
Number of epochs N ; Initial maximum length of words l0; Warm
up word widthww ; Initial word widthw0; Learning rates α and β ;
Learning rate decay period t
Output: Trained CTC model.
1: Note: The values of learning rates α and β are determined

empirically by observing training convergence. α is the highest
learning rate that allows one to train the model after random
initialization without diverging, while β is the highest learning
rate that allows one to train the model after initializing with
pretrained weights.

2: Set initial learning rate lr = α .
3: Set log-increment ∆ = log β−logα

N .
4: Set image width preprocessing toww
5: Warmup training:
6: Set l = l0.
7: for (i = 1; i ≤W ; i + +, l + +) do
8: Generate filtered training datasetT by keeping only training

examples from D with labeled word length equal or smaller
than l characters.

9: Train CTCmodel for one epoch using filtered training dataset
T and learning rate lr .

10: Increase learning rate lr = α + 10i∆
11: end for
12: Post-warmup training:
13: Setw = w0
14: for (i = 1; i ≤ N ; i + +,w+ = 8) do
15: Set image width preprocessing tow . Generate filtered train-

ing dataset T by keeping only training examples from D with
labeled word length equal or smaller than the size of the feature
map when using widthw .

16: Train CTCmodel for one epoch using filtered training dataset
T and learning rate lr .

17: Set lr = lr ∗ 10−f loor (i/t)
18: end for
19: Return model.

input word. Different from other works, we do not use an explicit
recurrent network (such as an LSTM or GRU) stage or any attention
mechanism, and produce directly the probability of each character.
As noted by recent works (e.g. [12]), convolutions can still model
the interaction between characters while being computationally
more efficient at test time.

KDD’2018, August 2018, London, United Kingdom Borisyuk, Gordo, Sivakumar

Figure 4: Schematic visualization for the behavior of learning rate, image width, andmaximumword length under curriculum
learning for CTC text recognition model.

This model is trained using the CTC loss, which computes the
conditional probability of a label given the prediction by margin-
alizing over the set of all possible alignments paths, and that can
be efficiently computed using dynamic programming. As shown
in Figure 3, every column of the feature map corresponds to the
probability distribution of all characters of the alphabet at that
position of the image, and CTC finds the alignments between those
predictions, which may contain duplicate characters or a blank
character (−), and the ground truth label. For example, in Figure 3
we show that for the input training word LEARNING, the model
might produce the sequence of characters "L-EE-A-RR-N-I-NN-G",
which includes blanks and duplicates.

At inference time, computing the optimal labeling is typically
intractable. Instead, one typically relaxes the problem: based on the
assumption that the most probable path will correspond to the most
probable labelling, one can find the best path decoding in linear
time by greedily taking the most likely character at every position
of the sequence. As a postprocessing, one then removes contiguous
duplicate characters not delimited by the blank character.

This CTC model addresses the two problems present in the
CHAR model, i.e., it has significantly less parameters (because it
does not require k independent fully-connected layers) and can pre-
dict words of arbitrary length (because themodel is fully-convolutional).
We also compared inference time of CHARmodel versus CTCmodel
and observed that the CTC model is 26% faster than the CHAR
model, mostly due to the cost of the k fully connected layers that
perform character classification in the CHAR model. Orthogonal
to this, one can use different body architectures. We experimented
with ResNet-18 and SqueezeNet [18], and obtained higher accuracy
with ResNet-18 while experiencing only a very small overhead in
computation.

Image Pre-processing: In most approaches to text recognition
(starting with Jaderberg et al. [19]), the word image crops are pre-
processed by resizing them to 32x100 pixels without preserving the
aspect ratio. This leads to same characters looking very different
depending on the length of the word, which in turn requires more
model capacity to accurately represent. Instead, at training time, we
resize the word images to 32x128 pixels distorting the aspect ratio
only if they are wider that 128 pixels, and using right-zero-padding
otherwise. This ensures that, for most words, no distortion is pro-
duced. Setting a fixed width is necessary from a practical point of
view to be able to efficiently train using batches of images.

At testing time we resize the images to a height of 32 pixels
preserving their aspect ratio (and so they can have an arbitrarily
long width). This ensures that test and train images don’t have,
in general, a large domain shift. In preliminary experiments we
noticed this approach to yield superior accuracy than to resize the
images without preserving the aspect ratio.

Additionally, it is interesting to note that given a body of the
neural network (in our case ResNet-18) and a word image, the
number of character probabilities emitted depends on the width
of the word image, not on the number of characters of the word
(although obviously both are correlated). By stretching all training
and testing images by the same, constant factor, we can control the
number of probabilities emitted and approximately align it with the
length of the transcription, which can affect training convergence
and testing accuracy. We empirically found that a stretching factor
of 1.2 leads to superior results than using the original aspect ratio.

Training of Text RecognitionModel:We firstly train our text
recognition models using synthetic data and then fine-tune on the
application specific human rated data (described in §5.2) to achieve
better results.

Interestingly, we found the CTC model much harder to train
than the CHAR model: while the CHAR model converged quite
rapidly and was not very sensitive to initial parameters such as
the learning rate, the CTC model consistently either diverged after
just a few iterations or trained too slow to be of practical use. We
speculate that aligning sequences is a much harder problem than
learning independent classifiers, and that that’s the reason for the
model not to train satisfactorily.

To effectively train the CTC model we considered two work-
arounds. The first one was to initialize the weights of the model
body with the trained weights of the CHAR model, and then fine-
tune those weights while simultaneously learning the last convo-
lutional layer from scratch. The second approach was based on
curriculum learning [6], i.e., starting with a simpler problem and
increasing the difficulty as the model improves. Instead of training
with all training words directly, we warmed up the model for 10 tiny
epochs that considered only very short words. We started training
with words of length ≤ 3, for which the alignment would be easy
and where the variations in length would be tiny, and increased
the maximum length of the word at every epoch. We also reduced
the width of the images to simplify the initial problem. Simultan-
eously, we started with a tiny learning rate and kept increasing it

Rosetta: Large scale system for text detection and recognition in images KDD’2018, August 2018, London, United Kingdom

at every epoch until it reached the same initial learning rate of the
CHARmodel. This idea of increasing the learning rate during warm
up has been used in other cases, see e.g. [13]. After this warmup
standard training would follow, decreasing the learning rate after n
epochs. However, even at this stage, we still apply the principles of
curriculum learning: at the end of every epoch, besides the reduc-
tion of learning rate, we also increase the width of the words 1. A
representation of the changes in learning rate and word length can
be seen in Figure 4, while Algorithm 1 describes the algorithm in
detail.

Both the pretraining and the curriculum learning approaches
worked well and led to very similar quantitative results. In the end,
we adopted curriculum learning as our standard approach because
of two reasons: first, it was slightly faster to perform the warm up
than to train the CHAR model from start to end. Second, and most
important, curriculum learning helped us to eliminate the need of
training a separate CHAR model and copying the weights to the
CTC model, which created an undesirable dependency between the
models.

4 SYSTEM ARCHITECTURE
We now describe the system architecture of Rosetta, Facebook’s
realtime large-scale OCR system. Rosetta is deployed in production
and is designed to operate on images uploaded daily at Facebook
scale in a realtime fashion. Figure 5 outlines the high-level architec-
ture of Rosetta. Rosetta utilizes a pull-based model where an image
uploaded by a client application (step 1 in Figure 5) is added to a dis-
tributed processing queue. The inference machines in Rosetta pull
the enqueued jobs when resources are available and process them
asynchronously. Consumers can register callbacks when enqueuing
jobs, which Rosetta invokes right after each job is processed for
immediate usage of results by downstream applications. The pro-
cessing queue is optimized for high throughput and availability, and
utilizes RocksDB [8] underneath for persistence. This pull-based
asynchronous architecture provides various benefits including bet-
ter load-balancing, rate-limiting in scenarios of unexpected spikes
in requests (for example, surge in photo uploads on Facebook), and
the ability to optimize the system for throughput.

The online image processing within Rosetta consists of the fol-
lowing steps:

(1) The image is downloaded to a local machine within Rosetta
cluster and pre-processing steps such as resizing and nor-
malization are performed.

(2) The text detection model is executed (step 4 in Figure 5) to
obtain location information (bounding box coordinates and
scores) for all the words in the image.

(3) The word location information is then passed to the text
recognition model (step 5 in Figure 5) that extracts characters
given each cropped word region from the image.

(4) The extracted textual information along with the location of
the text in the image is stored in TAO, Facebook’s distributed
graph database [9] (step 6 in Figure 5).

(5) Downstream applications such as Search can access the ex-
tracted textual information corresponding to the image dir-
ectly from TAO (step 7 in Figure 5).

1And, as a byproduct, the maximum length of the words that can be used for training,
as the maximum accepted length is given by the size of the feature map, which in turn
depends on the width of the image words.

In section §5, we show various experiments performed that
helped us make the right trade-offs between accuracy of the system
and inference speed during the development of Rosetta.

5 EXPERIMENTS
We present an extensive evaluation of Rosetta OCR system. Firstly
we define the metrics used to judge the accuracy and processing
times of the system, and describe the datasets used for training
and evaluation. We follow the standard practice of training and
evaluating our models on separate holdout datasets. We describe
the evaluation of the proposed text detection and text recognition
models, and explain the design decisions made for accuracy vs
inference speed trade-offs. Finally we share various lessons learnt
during the development and deployment of Rosetta that helped us
launch at Facebook scale.

5.1 Metrics
We used a combination of the following accuracy and inference
time metrics to evaluate Rosetta. We report all metrics relative to the
baseline and some of the measurements are reported normalized to
the interval [0, 1] by min-max normalization. Most of the reported
experiments are presented in the form of ablation study, where we
list improvements in metrics over the baseline model configuration
or baseline variant of the training data.

Performance of detection model: For detection tasks, the
standard metric to measure performance is Mean Average Pre-
cision (mAP) at certain IoU (Intersection-over-Union) thresholds.
The IoU between a predicted bounding box region and a ground-
truth region is defined as the ratio of the area of the intersection
of the boxes to the area of the union of the boxes. While precision
and recall are single-valued metrics that measure performance at
a given threshold, Average Precision (AP) takes into account the
order of the predictions as well. Average Precision (AP) measures
the area under the precision-recall curve for a given IoU threshold
interval. Formulaically, AP =

∑
n (Rn − Rn−1)Pn , where Pn and Rn

are the precision and recall at the nth score threshold. Mean Av-
erage Precision (mAP) is calculated as average of AP’s across the
whole test set. As is standard for detection tasks, we report mAP
with a 50% IoU threshold (mAP@0.5) and mAP@0.5:0.95 as the eval-
uation metric for quality of text detection model. mAP@0.5:0.95 is
calculated as average of set of mAP’s over different IoU thresholds,
from 0.5 to 0.95 with step 0.05 (0.5, 0.55, 0.6 ..., 0.95). Higher mAP
value for the detection model is desirable.

Performance of text recognition model: For the recognition
model, we use accuracy and Levenshtein’s edit distance asmetrics to
measure the performance. The accuracy is calculated based on stat-
istics of prediction across test set by Accuracy = T P+T N

T P+F P+FN+T N ,
where TP, TN, FP, and FN are the true positives, true negatives,
false positives, and false negatives. For accuracy calculation, a pre-
diction is counted as positive only if the predicted word matches
exactly the ground-truth word. The accuracy metric gives informa-
tion about the percentage of words that are correctly recognized,
but does not give any information about how wrong the incorrect
predictions are: incorrectly recognizing one character or incorrectly
recognizing ten characters yields exactly the same accuracy, zero.
To obtain more information about the incorrect transcriptions we
use Levenshtein’s edit distance, which counts the number of single

KDD’2018, August 2018, London, United Kingdom Borisyuk, Gordo, Sivakumar

Figure 5: Architecture of Rosetta, Facebook’s scalable text recognition system.

character edits (insertions, deletions and substitutions) between the
predicted word and the ground-truth word, and can be seen as a
surrogate of how much work would be needed to manually correct
the transcription. We report the total edit distance for all items in
the test set. Higher accuracy and lower edit distance are desirable.

Inference time: We used internal Facebook infrastructure to
measure the inference runtimes of detection and recognition mod-
els. Inference time for detection model represents the time spent
detecting and calculating the bounding boxes for all textual inform-
ation observed in the image. Inference time for recognition model
represents the time spent running the recognition model on every
detected word in an image. The experiments were performed on
hardware settings closely matching the production setup and us-
ing only one cpu and one single core. Lower inference times are
desirable.

5.2 Training and Test Datasets
Having high quality training and test data is important for building
robust supervised machine learning models. We used the COCO-
Text [28] public dataset, which contains extensive annotations of
text in the wild, to bootstrap training. COCO-Text contains more
than 63,000 images and 145,000 text instances. However COCO-Text
doesn’t match the data-distribution of images uploaded to Face-
book. For instance, a non-trivial portion of images on Facebook
have text overlaid on them which COCO-Text fails to adequately
capture. To address this, we generated a large synthetic dataset
taking into account different use-cases. This was done by over-
laying words on randomly selected public Facebook images. The
images where filtered to select only those that do not already have
text on them by using a separate image classification CNN that
predicts the probability of text being present in an image. Image
generation is part of the training process, where we automatically
prepare the set of images at training initialization step, and remove
the images after completion of the model training. The words to
generate this synthetic dataset were picked at random from a dic-
tionary, and were augmented to include special characters and to
look like email addresses, URLs and phone numbers, and then over-
laid on images with various fonts, sizes and distortions applied. We
used around 400k synthetic images for training and 50k images for
testing. We also manually annotated a dataset with thousands of

images gathered using help of human raters and used it to fine-tune
the models, which greatly improved the results. In the following
sections of experimental evaluation we report most of the metrics
on the human rated dataset mentioned here.

Table 1:mAPof Faster-RCNNdetectionmodel on the test set
with different training datasets. Accuracies reported as rel-
ative improvements of mAP over training only on synthetic
dataset. The → denotes finetuning, i.e., A → B means train
on A and then finetune on B.

mAP (relative improvement)

Training dataset @IOU=0.5 @IOU=0.5:0.95

Synthetic +0.0% +0.0%
COCO-Text +39.9% +15.2%
Synthetic→ COCO-Text +41.2% +16.6%
Synthetic→ COCO-Text +57.1% +35.2%

→ Human rated

5.3 Detection Model Experiments
Text detection part of the implemented system is the most com-
pute and latency intensive component during inference. Given our
scale and throughput requirements, we spent significant amount
of time improving the execution speed of text detection model
while keeping the detection accuracy high. As we evaluated vari-
ous approaches for the detection model, Faster-RCNNwas a natural
choice owing to its state-of-the-art results and readily available im-
plementation within Facebook through Detectron [5]. Detectron is
Facebook’s state-of-the-art platform for object detection research.

Table 2: Inference runtimes of Faster-RCNN with various
convolutional bodies. Numbers in the table reported as re-
lative improvements to ResNet-50.

Convolutional body Ratio of CPU Inference time

ResNet-50 1x
ResNet-18 1.9x faster
ShuffleNet 4.57x faster

Rosetta: Large scale system for text detection and recognition in images KDD’2018, August 2018, London, United Kingdom

Table 3: mAP of Faster-RCNN with ResNet-18 and Shuffle-
Net bodies evaluated on COCO-Text dataset. mAP numbers
in the table reported as relative improvements to ResNet-18
with 3 RPN aspect ratios.

mAP (relative improvement)

Convolutional RPN Aspect @IOU=0.5 @IOU=0.5:0.95
body Ratios

ResNet-18 3 +0.0% +0.0%
ResNet-18 5 -3.4% -1.1%
ResNet-18 7 +2.4% +1.4%

ShuffleNet 3 +0.7% +0.6%
ShuffleNet 5 +0.3% +0.4%
ShuffleNet 7 +3.1% +1.8%

Table 4: mAP of Faster-RCNN detection model on test set
varying RPN_POST_NMS_TOP_N (number of top RPN pro-
posal boxes to retain). Inference is 2x faster with 100 propos-
als compared to 1000. Numbers in the table reported as rel-
ative improvements to configuration of Faster-RCNN with
RPN_POST_NMS_TOP_N=50.

mAP (relative improvement)

RPN Post NMS Top N @IOU=0.5 @IOU=0.5:0.95

50 +0.0% +0.0%
100 +5.9% +2.3%
1000 +8.2% +2.7%

Table 5: mAP of Faster-RCNN detection model on test
set depending on different NMS methods for suppressing
bounding boxes produced by the final regression head. An
Intersection-over-Union (IoU) threshold of 0.7 is used across
all settings. For Gaussian SoftNMS, we set σ=0.5 as in [7].
Numbers in the table reported as relative improvements to
Standard NMS configuration.

mAP (relative improvement)

NMS Method @IOU=0.5 @IOU=0.5:0.95

Standard NMS +0.0% +0.0%
Gaussian SoftNMS +1.3% +0.9%
Linear SoftNMS +1.5% +1.0%

Detectron is open-source [5] and we refer to its settings in this
section while describing our experiments.

We evaluated various architectures for the convolutional body of
Faster-RCNN including ResNet-50, ResNet-18 and ShuffleNet. Text
detection model based on Faster-RCNNwith ResNet-50 body incurs
significant and impractical runtime on CPU per image whereas
ShuffleNet is 4.5x faster. We show comparison of inference times
for different convolutional bodies for Text Detection in Table 2. We
further evaluated mAP of ResNet-18 and ShuffleNet on COCO-Text
dataset as listed in Table 3, where we report mAP metrics as relative
improvements to ResNet-18 with 3 RPN aspect ratios. ShuffleNet
achieves competitive results in mAP in comparison to ResNet-18.
The region proposal network (RPN) of Faster-RCNN was tweaked

to generate wider proposals to handle text boundaries by modifying
RPN.ASPECT_RATIOS setting in Detectron (with 7 aspect ratios
and 5 different sizes, the RPN generates 35 anchor boxes per region),
which showed consistently better results than the standard aspect
ratios of 0.5, 1 and 2. All further experiments were performed on
ShuffleNet since optimal inference latency was one of our primary
goals.

We started development of the text detection model using COCO-
Text dataset. However, we quickly observed that many applications
of Rosetta have different production data distributions, which posed
challenges during model development. For example, some applica-
tions have many images with printed text overlaid on top of original
photos, where models trained just on COCO-Text showed subop-
timal performance. At the same time, there were other applications
where images with text occurring in natural circumstances is the
norm. This was an important lesson we learnt in the beginning
of our development, so we decided to introduce several datasets
to solve the problem. Our solution to the problem was that we
introduced artificially generated dataset with text overlaid images,
and pre-trained models with it initially. Both detection and text
recognition models were pre-trained on artificial dataset and then
fine-tuned using COCO-text and human rated datasets specifically
collected for client applications. In Table 1, we present an evaluation
of text detection model improvements with fine-tuning. We initially
trained using synthetic dataset, then fine-tuned using COCO-Text,
and finally with human rated dataset achieving 57% improvement
in mAP over the model trained on the synthetic dataset alone.

During inference, RPN_POST_NMS_TOP_N setting of Detectron,
which controls the number of generated proposals to be fed through
RoI Pooling and the final stage of detection network, was reduced to
100 from the default 1000 as shown in Table 4. This made inference
2x faster with acceptable drop in mAP, while reducing it below 100
gave diminishing returns in terms of inference time.

Another trade-off between performance and inference time of
the detection model is related to the resolution of the input image.
We experimented with a range of image resolutions by resizing
the image to a particular size in the maximum dimension while
maintaining its aspect ratio. We found that having images of side
more than 800px increases the mAP@0.5 slightly, but significantly
increases inference time.

We also experimented with a modification of NMS (NonMaximal
Suppression) by replacing the final NMS in Faster-RCNN with
SoftNMS following [7]. Result of the experiments are shown in Table
5, where we report relative gains in mAP@0.5 by using different
strategies of SoftNMS. Overall we improved mAP@0.5 by absolute
1.5 points using SoftNMS.

One lesson that we learnt during the development of text detec-
tionmodel is related to the choice ofmetric formodel’s performance.
Our initial choice of metric for Faster-RCNN model training was
F1-score (a harmonic mean of precision and recall), which was at
the initial moment of development a default evaluation metric in
COCO-Text [28]. However, we observed that our reported valida-
tion set F1-score would fluctuate with a standard deviation of 5.87
points among training runs with the same configuration. We found
the reason for the observed variation in performance to be because
F1-score is measured at a single point in the precision-recall curve,
which means we need to pick a threshold on the curve to compute

KDD’2018, August 2018, London, United Kingdom Borisyuk, Gordo, Sivakumar

Table 6: Recognition model performance on different datasets. Higher accuracy and lower edit distance are better. Values in
edit distance column are normalized by maximum value of occurred error for CHAR+Synthetic variant. Numbers in the table
reported as relative improvements to configuration of CHAR model trained on Synthetic dataset.

Normalized Relative Reduction
Model Training Relative Accuracy of Edit Distance

CHAR Synthetic +0.0% -0.0%
CTC Synthetic +6.76% -11.23%
CHAR Synthetic → Human rated +42.19% -67.01%
CTC Synthetic → Human rated +48.06% -78.17%

Table 7: Normalized magnitude of drop of recall of detec-
ted words for combination of detection and recognition sys-
tems. Normalization is performed by taking a relative drop
in recall and normalizing it by the maximum value of drop
for "Case sensitive". The ∗ symbol denotes that recognitions
with one character error are still considered correct.

Normalized magnitude of recall drop
in word recognition

Case sensitive -1X
Case insensitive -0.94X
Case insensitive∗ -0.63X

it. With minor variations in training runs such as random initializa-
tion of weights, the threshold fluctuates as well and is not a reliable
way to measure the model’s performance, while Average Precision
on the other hand computes the area under the precision-recall
curve and hence is robust to such variations. At the moment of
writing this paper, newer tasks on COCO-Text such as ICDAR [3]
use mAP for evaluation. Therefore, we have replaced F1-score with
mAP and that helped to solve the problem.

5.4 Recognition Model Experiments
During the development of Rosetta we considered different ar-
chitectural designs for the text recognition model, ranging from
dictionary-based approaches where word recognition is modeled
as a classification task amongst a predefined set of words [20],
to character based approaches where all the characters are jointly
recognized and the combination of those characters comprises the
whole word. Dictionary based approaches have been shown to yield
superior accuracy than character based word recognition when a
dictionary or lexicon is known in advance, mainly due to the ca-
pacity of models to memorize a large yet limited set of dictionary
words during training.

However, a predefined dictionary would be too limiting for many
real-world applications, which require recognizing more than just
simple words as in the case of URLs, emails, special symbols and
different languages. Therefore, an important architectural de-
cision and a natural choice was to use a character-based recogni-
tion model.

In the initial stages of development, we tested various efficient
backbone architectures, including ResNet-18 [17] and SqueezeNet
[18]. We evaluated these choices on our synthetic data and ended
up selecting ResNet-18 as our main backbone architecture for the
recognition body: ResNet-18 showed significantly better accuracy

compared to SqueezeNet, while incurring only a negligible overhead
in computation. The discrepancy between detection and recognition
models with respect to the inference performance of ResNet-18 is
because, compared to the detection model, the recognition model
operates on much smaller input images: while the detection model
operates on resolutions close to 600 × 800 pixels, the recognition
one operates on 32 × 128 pixels. While the larger images allow
architectures like SqueezeNet or ShuffleNet to show how efficient
they are, the overheads in recognizing smaller images significantly
reduce this efficiency gap. Therefore all the experimental numbers
for text recognition model provided in this section are based on
ResNet-18 backbone. Additionally, and contrary to many recent
approaches, we do not use a recurrent model such as an LSTM or a
GRU to model the interaction between characters, and instead use
a purely convolutional model. The main argument is that recurrent
models are slower at inference time, and a small loss in accuracy
is affordable if the inference time is reduced. Additionally, a few
works have started showing that recurrent models are not strictly
necessary to accurately model the interaction between characters
[12].

We also evaluated how case sensitive labelling would influence
the accuracy of our model. We found that either ignoring and not
ignoring the character case during training led to equivalent results
when testing in a case-insensitive manner. However, training with
case-sensitive annotations allowed us to perform case-sensitive
inference, which can be useful in some downstream applications of
Rosetta.

The CTC model achieves high accuracy on real-world validation
set when trained with synthetic data and fine-tuned with manually
annotated word crops. We also evaluated the total edit distance, i.e.,
the total number of single character edits in the test set needed to
correct the predicted transcriptions, as shown in Table 6. The fully
convolutional CTC model (referred to as "CTC, Synthetic→Human
rated" in Table 6) improved the accuracy by 48.06% over the CHAR
baseline.

We performed evaluation of the system to measure the gap of
combining errors in text detection and text recognition, where in
the case of perfect text detection we would get pure text recognition
accuracy. We observed that in around 37% of text detection error
cases our text recognition model could still correctly recover words
making just one character error. In Table 7, we show relative drop in
recall for overall number of detected words. For many downstream
applications, single-character errors in recognized words are still
acceptable and useful.

To improve the overall accuracy of the system, we augmented
the training dataset for recognition model by introducing random

Rosetta: Large scale system for text detection and recognition in images KDD’2018, August 2018, London, United Kingdom

jittering. The bounding box coordinates of ground-truth might be
randomly shifted to model the behavior of noise from detection
model. This resulted in 1.54% relative improvement in end-to-end
performance. We observed that jittering becomes especially useful
when there is less amount of training data available for certain
application use-cases.

6 DEPLOYMENT
Rosetta service is deployed within Facebook at scale, offers a cloud
API for text extraction from images, and processes a large volume
of images uploaded to Facebook and Instagram everyday. In Rosetta,
the image is resized to 800px in the larger dimension and fed
through the detection model which outputs bounding box coordin-
ates around each word. The word patches are then cropped out,
resized to a height of 32px while maintaining the aspect ratio, and
processed by the recognition model. The inference runtime for the
recognition model depends on the number of words detected in the
image.

Rosetta service was deployed incrementally to client applications
to anticipate any issues, with such a deployment plan consisting
of weekly increase of traffic served initially to a predefined set of
internal users, then to public traffic of 1%, 5%, 10%, 25%, 40%, 80%
and finally 100%. We continued to evaluate resource utilization
and incrementally add more machines to the processing fleet as
deployment of the service continued until 100%.

The Faster-RCNN detection model was trained using the recently
open-sourced Detectron framework [5] which is built on top of
Caffe2 [2]. The text recognition model was trained using PyTorch
[1] owing to its flexibility for quick prototyping and sequence mod-
eling scenarios. Both models were deployed to production using
Caffe2, with the text recognition model converted from PyTorch to
Caffe2 using the intermediate ONNX format [4].

7 CONCLUSION
In this paper we presented approaches for building robust and
efficient models for text detection and recognition, and discussed
architectural approaches for building a scalable OCR system Rosetta.
With thorough evaluation, we demonstrated trade-offs between
achieving high efficiency in terms of scale and processing time
and the accuracy of models. Our system is deployed to production
and processes images uploaded to Facebook everyday. We have
provided practical experience, trade-offs and shared lessons learnt
building OCR system at scale.

8 ACKNOWLEDGMENTS
The authors would like to thank Anmol Kalia, Manohar Paluri,
Peizhao Zhang, Sam Tsai, Fei Yang, Vajda Peter, Ross Girshick, Cris-
tian Canton Ferrer, Simon Elmir, Alex Kapranoff, Denis Sheahan,
Isaac Nwokocha, Tilak Sharma, Kevin Chen, Nikhil Johri, Shomir
Dutt, Cristina Scheau, Yu Cao, Daniel Olmedilla, Brandon Chen,
Ainulindale Yeqi Lu, and others who contributed, supported and
collaborated with us during the development and deployment of
our system.

REFERENCES
[1] 2016. PyTorch. (2016). http://pytorch.org/
[2] 2017. Caffe2. (2017). https://caffe2.ai/

[3] 2017. ICDAR2017 Robust Reading Challenge on COCO-Text. (2017). http:
//rrc.cvc.uab.es/?ch=5/

[4] 2017. Open Neural Network Exchange (ONNX). (2017). https://onnx.ai/
[5] 2018. Detectron: FAIR’s research platform for object detection research, imple-

menting popular algorithms like Mask R-CNN and RetinaNet. (2018). https:
//github.com/facebookresearch/Detectron/

[6] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009.
Curriculum learning. In ICML.

[7] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and Larry S. Davis. 2017. Im-
proving Object Detection With One Line of Code. CoRR abs/1704.04503 (2017).

[8] Dhruba Borthakur. 2013. Under the Hood: Building and open-sourcing
RocksDB. (2013). https://code.facebook.com/posts/666746063357648/
under-the-hood-building-and-open-sourcing-rocksdb/.

[9] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov,
Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark
Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkatar-
amani. 2013. TAO: Facebook’s Distributed Data Store for the Social Graph. In
USENIX Conference on Annual Technical Conference.

[10] Jia Deng,Wei Dong, Richard Socher, Li jia Li, Kai Li, and Li Fei-fei. 2009. Imagenet:
A large-scale hierarchical image database. In CVPR.

[11] Piotr Dollar, Ron Appel, Serge Belongie, and Pietro Perona. 2014. Fast Feature
Pyramids for Object Detection. TPAMI (2014).

[12] Yunze Gao, Yingying Chen, Jinqiao Wang, and Hanqing Lu. 2017. Reading Scene
Text with Attention Convolutional Sequence Modeling. CoRR abs/1709.04303
(2017).

[13] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. 2017. Accurate,
Large Minibatch SGD: Training ImageNet in 1 Hour. CoRR abs/1706.02677 (2017).

[14] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber.
2006. Connectionist Temporal Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In ICML.

[15] Ankush Gupta, Andrea Vedaldi, and Andrew Zisserman. 2016. Synthetic Data
for Text Localisation in Natural Images. In CVPR.

[16] Dafang He, Xiao Yang, Chen Liang, Zihan Zhou, Alexander G. Ororbia II, Daniel
Kifer, and C. Lee Giles. 2017. Multi-scale FCN with Cascaded Instance Aware
Segmentation for Arbitrary Oriented Word Spotting in the Wild. In CVPR.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual
Learning for Image Recognition. In CVPR.

[18] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song Han, William J.
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and <1MB model size. CoRR abs/1602.07360 (2016).

[19] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014.
Synthetic Data and Artificial Neural Networks for Natural Scene Text Recognition.
In NIPS Deep Learning Workshop.

[20] Max Jaderberg, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2016.
Reading Text in the Wild with Convolutional Neural Networks. IJCV (2016).

[21] Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and Junjie Yan. 2018. FOTS:
Fast Oriented Text Spotting with a Unified Network. CoRR abs/1801.01671 (2018).

[22] Zichuan Liu, YIxing Li, Fengbo Ren, Hao Yu, and Wangling Goh. 2018. Squeezed-
Text: A Real-time Scene Text Recognition by Binary Convolutional Encoder-
decoder Network. AAAI.

[23] George Nagy. 2000. Twenty years of document image analysis in PAMI. (2000).
[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2017. Faster R-CNN:

Towards Real-Time Object Detection with Region Proposal Networks. TPAMI
(2017).

[25] Baoguang Shi, Xiang Bai, and Serge J. Belongie. 2017. Detecting Oriented Text in
Natural Images by Linking Segments. In CVPR.

[26] Baoguang Shi, Xiang Bai, and Cong Yao. 2016. An End-to-End Trainable Neural
Network for Image-based Sequence Recognition and Its Application to Scene
Text Recognition. TPAMI (2016).

[27] Cooper Smith. 2013. Facebook Users Are Uploading 350 Million
New Photos Each Day. (2013). http://www.businessinsider.com/
facebook-350-million-photos-each-day-2013-9.

[28] Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas, and Serge Belongie.
2016. Coco-text: Dataset and benchmark for text detection and recognition in
natural images. CoRR abs/1601.07140 (2016). https://vision.cornell.edu/se3/
coco-text-2/

[29] Kai Wang and Serge Belongie. 2010. Word Spotting in the Wild. In ECCV.
[30] Fei Yin, Yi-Chao Wu, Xu-Yao Zhang, and Cheng-Lin Liu. 2017. Scene Text

Recognition with Sliding Convolutional Character Models. CoRR abs/1709.01727
(2017).

[31] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. 2017. ShuffleNet: An
Extremely Efficient Convolutional Neural Network for Mobile Devices. CoRR
abs/1707.01083 (2017).

[32] Xinyu Zhou, Cong Yao, He Wen, Yuzhi Wang, Shuchang Zhou, Weiran He, and
Jiajun Liang. 2017. EAST: An Efficient and Accurate Scene Text Detector. In
CVPR.

[33] C. Lawrence Zitnick and Piotr Dollár. 2014. Edge Boxes: Locating Object Proposals
from Edges. In ECCV.

