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Figure 1. Consistent view synthesis via pose-guided diffusion model. (top) Given an input image and a sequence of camera poses, we
present a pose-guided diffusion model to generate a sequence of frames that are photorealistic and 3D consistent. (bottom) Our proposed
method can synthesize diverse sequences from the same set of inputs.

Abstract

Novel view synthesis from a single image has been a
cornerstone problem for many Virtual Reality applications
that provide immersive experiences. However, most exist-
ing techniques can only synthesize novel views within a
limited range of camera motion or fail to generate consis-
tent and high-quality novel views under significant cam-
era movement. In this work, we propose a pose-guided
diffusion model to generate a consistent long-term video
of novel views from a single image. We design an atten-
tion layer that uses epipolar lines as constraints to facili-
tate the association between different viewpoints. Experi-
mental results on synthetic and real-world datasets demon-
strate the effectiveness of the proposed diffusion model
against state-of-the-art transformer-based and GAN-based

approaches. More qualitative results are available at
https://poseguided-diffusion.github.io/.

1. Introduction

Offering immersive 3D experiences from daily photos
has attracted considerable attention. It is a cornerstone
technique for a wide range of applications such as 3D
photo [18,49], 3D asset generation [35], and 3D scene nav-
igation [4]. Notably, rapid progress has been made in ad-
dressing the single-image view synthesis [40, 50, 61, 69] is-
sue. Given an arbitrarily narrow field-of-view image, these
frameworks can produce high-quality images from novel
viewpoints. However, these methods are limited to view-
points that are within a small range of the camera motion.

https://poseguided-diffusion.github.io/


The long-term single-image view synthesis task is re-
cently proposed to address the limitation of small camera
motion range. As demonstrated in Figure 1, the task at-
tempts to generate a video from a single image and a se-
quence of camera poses. Note that different from the single-
image view synthesis problem, the viewpoints of the last
few video frames produced under this setting may be far
away from the original viewpoint. Take the results shown
in Figure 1, for instance, the cameras are moving into dif-
ferent rooms that were not observed in the input images.

Generating long-term view synthesis results from a sin-
gle image is challenging for two main reasons. First, due
to the large range of the camera motion, e.g., moving into
a new room, a massive amount of new content needs to be
hallucinated for the regions that are not observed in the in-
put image. Second, the view synthesis results should be
consistent across viewpoints, particularly in the regions ob-
served in the input viewpoint or previously hallucinated in
the other views.

Both explicit- and implicit-based solutions are proposed
to handle these issues. Explicit-based approaches [17, 24,
25, 40] use a “warp and refine” strategy. Specifically, the
image is first warped from the input to novel viewpoints
according to some 3D priors, i.e., monocular depth estima-
tion [37, 38]. Then a transformer or GAN-based generative
model is designed to refine the warped image. However,
the success of the explicit-based schemes hinges on the ac-
curacy of the monocular depth estimation. To address this
limitation, Rombach et al. [42] designed a geometry-free
transformer to implicitly learn the 3D correspondences be-
tween the input and output viewpoints. Although reason-
able new content is generated, the method fails to produce
coherent results across viewpoints. The LoR [39] frame-
work leverages the auto-regressive transformer to further
improve the consistency. Nevertheless, generating consis-
tent, high-quality long-term view synthesis results remains
challenging.

In this paper, we propose a framework based on dif-
fusion models for consistent and realistic long-term novel
view synthesis. Diffusion models [14,52,54] have achieved
impressive performance on many content creation applica-
tions, such as image-to-image translation [44] and text-to-
image generation [2, 36, 45]. However, these methods only
work on 2D images and lack 3D controllability. To this
end, we develop a pose-guided diffusion model with the
epipolar attention layers. Specifically, in the UNet [43]
network of the proposed diffusion model, we design the
epipolar attention layer to associate the input view and out-
put view features. According to the camera pose informa-
tion, we estimate the epipolar line on the input view feature
map for each pixel on the output view feature map. Since
these epipolar lines indicate the candidate correspondences,
we use the lines as the constraint to compute the attention

weight between the input and output views.
We conduct extensive quantitative and qualitative stud-

ies on real-world Realestate10K [76] and synthetic Mat-
terport3D [7] datasets to evaluate the proposed approach.
With the epipolar attention layer, our pose-guided diffusion
model is capable of synthesizing long-term novel views that
1) have realistic new content in unseen regions and 2) are
consistent with the other viewpoints. We summarize the
contributions as follows:

• We propose a pose-guided diffusion model for the
long-term single-image view synthesis task.

• We consider the epipolar line as the constraint and de-
sign an epipolar attention to associate pixels in the im-
ages at input and output views for the UNet network in
the diffusion model.

• We validate that the proposed method synthesizes re-
alistic and consistent long-term view synthesis results
on the Realestate10K and Matterport3D datasets.

2. Related Work

Novel view synthesis. Novel view synthesis aims to gen-
erate high-quality images at arbitrary viewpoints given a
set of posed images of a particular scene. With the emer-
gence of deep learning, early approaches [9, 11, 59] use
Convolutional Neural Networks to synthesize novel views.
Instead of generating novel views directly, several meth-
ods [34, 56, 57, 78] predict the appearance flow for produc-
ing images of new viewpoints. Recently, various 3D rep-
resentations are leveraged for this task, including 3D point
clouds [1, 17, 29, 33, 69], and layered representations such
as layered depth images [18, 49] as well as multiplane im-
ages [77]. These representations are used in 3D photo [18],
light fields [23,30] and many other novel view synthesis ap-
plications [10, 55, 61]. Very recently, neural radiance field
(NeRF) [31] methods reconstruct the target scene implic-
itly with multi-layer perceptrons and demonstrate impres-
sive novel view synthesis results in various scenarios, in-
cluding 360-degree [3, 72] or city-scale [58] 3D scenes.

Nevertheless, the approaches mentioned above can only
1) interpolate between multiple input views or 2) extrapo-
late from single/multiple views within a limited range of
camera movement. To synthesize a realistic novel view
along camera trajectories that are far away from the input
viewpoint, the PixelSynth [40] and SE3DS [17] schemes
progressively construct a 3D point cloud from the input
viewpoint according to the estimated depth, then repeat-
edly apply the “warp and refine” strategy to produce novel
views. On the other hand, the GeoGPT [42] framework uses
a geometry-free transformer that does not rely on monocu-
lar depth estimation. The LoR [39] approach improves the
transformer model to reduce the temporal flickering gen-
erated along a camera trajectory. Nonetheless, it remains
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Figure 2. Method overview. (left) The core component of our pose-guided diffusion model is the UNet that takes the source view image
and camera poses as the input (red font), and de-noises the image at the target viewpoint. We use an encoder to extract features from
the source view features. We design an epipolar attention to associate the target view with the source view features, and add the epipolar
attention layer after each self-attention layer in the UNet network. The UNet model takes as input the source view features as well as the
camera parameters via the epipolar attention layers, and predicts the de-noised target view image. (right) According to the input camera
parameters, we compute the epipolar line as the constraint to estimate the attention between the source view and target view features.

challenging to produce high-quality novel views. In this
work, we propose a pose-guided diffusion model that syn-
thesizes a consistent and realistic sequence of novel views.

Diffusion models. De-noising diffusion models [14,52,54]
are generative models that learn to generate data samples
from Gaussian noise through a series of de-noising pro-
cesses. Recently, diffusion models have demonstrated re-
markable performance on a variety of 2D content creation
tasks, including image super-resolution [22, 41, 46, 64], im-
age in-painting [27, 44], image de-blurring [21, 68], and
text-to-image [2, 36, 45]. In addition to working on 2D im-
ages, diffusion models are also emerging in the video gen-
eration [13, 16, 51, 63] or 3D shape generation [28, 70, 75]
tasks. As these methods lack 3D camera pose controlla-
bility, they cannot be directly applied to the view synthesis
problem. We also build upon diffusion models for our task.
In contrast to existing diffusion models for image synthesis,
our approach offers full controllability of the viewpoints.

Concurrent with our work, 3DiM [67] also leverages dif-
fusion models for view synthesis tasks. Our work differs in
two aspects. First, 3DiM focuses on object-centric synthetic
scenes (e.g., ShapeNet dataset). In contrast, we focus on
long-term view generation of scene-centric realistic scenes
with complex appearances. Second, we exploit the epipolar
constraints across views explicitly with the proposed epipo-
lar cross-view attention layer. We demonstrate that integrat-
ing these geometric constraints leads to substantial quality
improvements.

Attention. Attention aims to capture the long-range de-
pendencies, e.g., the relationship between two distant im-
age pixels. Attention mechanisms are widely used in deep
learning tasks such as image recognition [26] and image
generation [71]. In particular, self-attention layers [62, 65]

capture the dependencies within the same data. On the other
hand, cross-attention [74] models the relationships between
instances of different data, e.g., two images, or an image
vs. a text sequence. The proposed epipolar attention can
be considered as a type of cross-attention, where the epipo-
lar lines are introduced as geometric constraints to compute
the dependencies between the source view and target view
image pixels.

3. Methodology
Our goal is to synthesize a sequence of images {xi}ni=2

given an input image x1, and a sequence of camera poses
{Ki,Ri, ti}ni=2, i.e., intrinsics, rotation, and translation,
respectively. We design a pose-guided diffusion model to
auto-regressively generate the image at each viewpoint i to
produce the final sequence. In this section, we first intro-
duce diffusion models in Section 3.1. We then illustrate
the proposed pose-guided diffusion model in Section 3.2.
Finally, we describe how we produce the consistent novel
view video in Section 3.3.

3.1. Diffusion Model

Diffusion models [14, 52, 54] learn to convert an empiri-
cal (i.e., isotropic Gaussian) distribution into the target data
(i.e., real image) distribution through a series of de-noising
operations. A forward process is derived to gradually add
noise to the real image so the image becomes indistinguish-
able from the Gaussian noise. On the other hand, a back-
ward process is learned to reverse the forward process, i.e.,
map from noises to real images.

Forward and backward process. Given an image x0 sam-
pled from the real image distribution P(x), the forward pro-
cess converts the image to noise by a T -steps process that
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Figure 3. Artifacts from fixing noises in the backward process.
To improve the consistency across different views in the same se-
quence, we use the same set of initialization noise xT and diffusion
noise {ϵt}t

′
t=T described in (3) to generate all views in the same

video. (top) However, we find that fixing noises in all backward
steps, i.e., {ϵt}1t=T , creates obvious artifacts. (bottom) We address
this by using the fixed noises in the early backward steps only, i.e.,
{ϵt}100t=T , and re-sample the noises in the last few backward steps.
This helps improve consistency while maintaining realism.

gradually adds Gaussian noise to x0, namely

xt =
√
αtxt−1 + (1− αt)ϵt ϵt ∼ N (0, I), (1)

where t = [1, · · · , T ]. The notation αt is computed from
the noise schedule, which is pre-determined such that xT ≈
N (0, I). We can further marginalize the forward process to

xt =
√
ᾱtx0 + (1− ᾱt)ϵt ϵt ∼ N (0, I), (2)

where ᾱt =
∏t

i=1 αi. The backward process can then be
formulated as

xt−1 = µθ(xt, t) + Σθ(xt, t)ϵt ϵt ∼ N (0, I), (3)

where t = [T, · · · , 1]. Typically, an UNet [8, 43] model
parameterized by θ is used to learn the backward process.
Training. We use the DDPM [14] strategy that trains the
UNet model to predict ϵθ(xt, t) instead of µθ(xt) in (3),
such that

µθ(xt, t) =
(
xt − (

1− αt√
1− ᾱt

)ϵθ(xt, t)
)
/
√
αt. (4)

The UNet model is trained using the mean square loss:

Ldiffusion = Ex,t

[
∥ϵt − ϵθ(xt, t)∥22

]
. (5)

As for the term Σθ(xt, t), we follow the improved
DDPM [32] approach that uses an additional objective Lvlb

for training the UNet model to make the prediction.

3.2. Pose-Guided Diffusion Model

We present an overview of the proposed pose-guided dif-
fusion model in Figure 2. Given the source view image xj

at the j-th viewpoint, where j ∈ [1, · · · , n], the goal is to

de-noise the target view image xi
t at the diffusion time step

t. We first use the source view encoder to extract the feature
maps from the source view image xj . Combining the fea-
ture maps using the proposed epipolar attention layer, the
UNet model predicts the ϵθ(xi

t, t) and Σθ(x
i
t, t) terms to es-

timate the de-noised image xi
t−1. We obtain the final target

view image xi
0 by iterating through the backward process.

Source view encoder. Given the source view image xj , we
use a deep convolutional neural network Esrc to extract the
feature map Esrc(x

j) ∈ Rc×h×w, where c×w matches the
resolution of the attention layer in the UNet network. In
practice, we use the pre-trained MiDaS [38] model as the
source view encoder. Our early experiments show that such
a strategy facilitates faster training of the pose-guided dif-
fusion model. Note that we extract multiple intermediate
feature maps from the MiDas model according to the reso-
lutions of the attention layers used in the UNet model.
UNet network. We modify the commonly-used UNet ar-
chitecture in diffusion models [8] as our UNet network. As
demonstrated in the left part of Figure 2, we add the pro-
posed epipolar attention layer after each of the self-attention
layers in the UNet network.
Epipolar attention. The proposed epipolar attention aims
to associate the target view with the source view. The core
idea is to leverage the epipolar line as the constraint to
reduce the number of candidate source view pixels corre-
sponding to a particular target view pixel. We present the
epipolar attention in the right-hand side of Figure 2. Given
the query calculated from intermediate UNet feature f i

t and
the key computed from the source view feature Esrc(x

j),
we first use the cross-view attention [74] to compute the
affinity matrix Ai,j ∈ Rhw×hw. The term h × w indicates
the resolution of the epipolar attention layer. Second, for
each pixel position on the intermediate UNet feature map
f i
t , we compute the epipolar line on the source view feature

map Esrc according to the camera parameters K, Rj→i,
and tj→i. The line is then converted to a weight map of
shape h × w where the values indicate the inverse distance
to the epipolar line. We estimate the weight maps for all
positions in f i

t , stack these maps, and reshape to get the
epipolar weight matrix Ei,j ∈ Rhw×hw. We re-weight the
affinity matrix by A′

i,j = Ai,j ⊙ Ei,j , where ⊙ denotes the
Hadamard product. Finally, the output of the epipolar atten-
tion layer f̂ i

t ∈ Rc×h×w is computed as

f̂ i
t = reshape

(
softmax(A′

i,j) · v
)
, (6)

where v is the value term calculated from the source view
feature map Esrc(x

j). We detail the computation of the
epipolar line in the supplementary document.
Super-resolution. We use the cascaded diffusion [15, 36,
45] strategy to obtain the final spatial resolution. Specif-
ically, we use a base pose-guided diffusion model to pro-



Table 1. Quantitative evaluation on short-term view synthesis. We report the average PSNR (↑), SSIM (↑), and LPIPS (↓) scores
between the first five generated and ground-truth frames in the videos. The best performance is in bold.

Methods Re10K MP3D

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

GeoGPT [42] 20.90 0.61 2.53 16.87 0.63 3.46
LoR [39] 20.93 0.61 2.35 19.64 0.61 3.30
SE3DS [17] 18.24 0.59 3.20 - - -
Ours 22.64 0.68 2.19 20.59 0.63 2.90

Input Ours Input GT GeoGPT LoR SE3DS Ours

Figure 4. Qualitative comparisons of short-term view synthesis. We present the short-term single-image view synthesis results generated
by different methods. The patches are all cropped from the same location of the patches in the second image (i.e., Ours).

duce the sequence of resolution 64 × 64. Then another
pose-guided super-resolution diffusion model, detailed in
the supplementary document, is used to generate the final
256× 256 video.

3.3. Consistent Long-Term View Synthesis

Our goal is to synthesize a sequence of novel views
given the input image. Although the proposed pose-guided
diffusion model learns to generate a single novel view dur-
ing the training time, we can use the auto-regressive infer-
ence to produce long-term view synthesis in the test time.
A simple way is to consider the target view xi−1 generated
at the previous step as the source view xj to generate the
novel view in the current step, i.e., j = i− 1. Nevertheless,
this approach produces temporal flickering in the final video
due to the frame-by-frame processing strategy. We use the
following two solutions to address the issue.
Stochastic conditioning. We find that using stochastic
conditioning [67] slightly improves the temporal flickering.
Specifically, at each step in the backward process described
in (3), instead of using the previous frame xi−1, we ran-
domly sample the source view image xj from the set of
prior frames xj ∼ Uniform({xk, · · · , xi−1}). Such a strat-
egy encourages the diffusion model to be guided by all the
previous frames, thus improving the temporal consistency.
Fixing noises in the backward process. The noises in-
troduced during the backward process illustrated in (3) also
contribute to the temporal inconsistency. To reduce the vari-
ance of the backward process across different views, we
use the same initialization noise xT and diffusion noises
{ϵt}1t=T to generate all images in the same video. Neverthe-

less, we observe noticeable artifacts if we fix all diffusion
noises {ϵt}1t=T during the backward process, as demon-
strated in Figure 3. In practice, fixing the diffusion noises
{ϵt}t

′

t=T to a certain backward step t′ alleviates the issue
and improves the temporal consistency.1

4. Experimental Results

4.1. Experimental Setup

Datasets. We focus on two multi-view datasets for all
experiments: real-world RealEstate10K (Re10K) [76] and
synthetic Matterport 3D (MP3D) [7]. We use 61, 986 video
clips in the Re10K dataset for training and randomly sam-
ple 500 sequences from the testing split for the evaluation.
As for the MP3D dataset, we follow the common proto-
col [20, 39, 40, 69] to use the Habitat agent [48] to render
6, 000 training videos and 500 testing videos. For both
datasets, we resize and center-crop the video to the spatial
resolution of 256× 256.

Compared methods. We compare our method with sev-
eral state-of-the-art methods: two recent transformer-based
approaches GeoGPT [42] and LoR [39], as well as a very
recent GAN-based scheme SE3DS [17].

Evaluation setting. We evaluate the short-term and long-
term view synthesis results. We generate a 20-frames video
for each testing image, and consider the first 5 frames as the
short-term views:

• Short-term: We use pairwise metrics PSNR, SSIM,

1We set t′ to be 100 in all experiments, indicating that we re-sample
the noise ϵ in the last 100 backward steps.
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Figure 5. Qualitative comparisons. We present the long-term single-image view synthesis results generated by different methods.



and LPIPS [73] to measure the difference between the
generated and ground-truth images.

• Long-term: We measure generated image quality and
temporal consistency. For image quality, we use the
FID [12] and KID [5] scores to estimate the realism
of the last (i.e., 20-th) generated frame. We use the
flow warping error (Ewarp) [19] to quantify the tem-
poral consistency. Specifically, we use the RAFT [60]
model to compute optical flow between two consecu-
tive generated frames. Then the error is computed as

Ewarp =

20∑
i=2

M (i−1)→i∥xi − x̂i−1∥1, (7)

where M is the visibility mask, and x̂i−1 is warped
from the output frame xi−1 using to the optical flow.

More details are provided in the supplementary materials.

4.2. Short-term View Synthesis

We present the quantitative comparisons in Table 1 and
qualitative results in Figure 4. While the SE3DS method
struggles to produce realistic results, the GeoGPT and LoR
frameworks have similar performance on producing short-
term novel views. However, the details generated by these
two transformer-based methods are slightly inconsistent
with the input view. In contrast, the proposed approach syn-
thesizes 1) details that are consistent with the input view and
2) accurate parallax that corresponds to the camera motion.

4.3. Long-Term View Synthesis

We measure the last frame FID and KID scores to eval-
uate the per-frame quality, and calculate the flow warping
error Ewarp to access the temporal consistency of the gen-
erated 20-frames videos. We demonstrate the quantitative
comparisons in Table 2, and show example qualitative re-
sults in Figure 5. Similar to the short-term view synthe-
sis setting, the SE3DS scheme struggles to generate appeal-
ing results, especially under large camera motion, e.g., the
bottom example in Figure 5. On the other hand, the Ge-
oGPT model synthesizes realistic novel views. Neverthe-
less, the results are not consistent across different view-
points, i.e., the scene changes drastically frame-by-frame.
In contrast to the GeoGPT approach, the novel views pro-
duced by the LoR method are more consistent. Nonetheless,
we observe a quality degradation in the last few generated
frames. Compared to these existing approaches, our model
generates novel view sequences that 1) maintain the image
quality over time and 2) contain less temporal flickering.
Per-frame quality vs. temporal consistency. It is chal-
lenging to assess the overall long-term view synthesis per-
formance since there are two perspectives: per-frame qual-
ity (FID, KID) and temporal consistency (Ewarp). There-
fore, we plot the FID vs. Ewarp curves of videos with dif-

OursSE3DSLoRGeoGPT
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Figure 6. Last frame quality vs. temporal flickering. We show
the FID (↓) of the last frames and flow-warping errors Ewarp

(↓) given different generated video lengths {4, 8, · · · , 20}. Our
method generates not only realistic but also consistent long-term
single-image view synthesis results.

ferent lengths generated by various methods in Figure 6.
Consistent with the observation we have from Table 2 and
Figure 5, the GeoGPT model fails to generate consistent im-
ages, while the LoR approach struggles to maintain the gen-
erated image quality over time. In contrast, the proposed
pose-guided diffusion model synthesizes novel views that
are consistent and remain realistic over time.

4.4. Ablation Study

We conduct ablation studies using the Re10K dataset to
further analyze the proposed approach.

Epipolar attention. In order to understand the effective-
ness of the proposed epipolar attention, we make a com-
parison to two baselines: Concat and Cross-view attention.
In Concat baseline, we use the commonly-used UNet [8]
structure with two modifications. First, we concatenate the
source view xj with the noise image xi

t at the target view
as the input to the UNet model. Second, we flatten the in-
put camera pose parameters, compute the embedding vector
and add the vector to the diffusion time-step embedding for
the UNet network.2 As for the Cross-view attention base-
line, we simply remove the epipolar constraint (i.e., use Ai,j

instead of A′
i,j in (6)) in the proposed epipolar attention

layer. To ensure a fair comparison, we use identical hyper-
parameters to train different models to generate 64 × 64
sequences, then use a third-party video super-resolution [6]
model to get the final results of resolution 256 × 256. Fur-
thermore, all the compared methods use stochastic condi-
tioning and noise-fixing.

We present the results in Table 3. Compared to the
Cross-view attention baseline, the Concat baseline fails to
generate high-quality novel views in long-term, since it is

2The strategy is similar to adding class conditioning embedding [8], or
adding text embedding [45] to the diffusion time-step embedding.



Table 2. Quantitative evaluation on long-term view synthesis. Given the 20-frames videos, we report the average FID (↓) and KID (↓)
scores of the last generated frames, and use all generated frames to compute the flow warping error Ewarp (↓). The best performance is in
bold. We also report the score of real testing videos for reference.

Methods Re10K MP3D

FID (↓) KID (↓) Ewarp (↓) FID (↓) KID (↓) Ewarp (↓)

Real 41.09 0.011 0.018 58.83 0.011 0.019

GeoGPT [42] 63.30 0.016 0.073 213.14 0.046 0.057
LoR [39] 98.01 0.034 0.030 113.50 0.048 0.036
SE3DS [17] 235.8 0.153 0.060 - - -
Ours 56.33 0.016 0.023 72.48 0.019 0.035

Table 3. Impact of epipolar attention. We report the FID (↓) and
KID (↓) scores of the last generated video frames. We use different
diffusion models to generate the 64 × 64 sequences, then use the
same video super-resolution [6] model to get the 256×256 videos
for fair comparison. The best performance is in bold.

Methods Re10K

FID (↓) KID (↓)

Source/target views concatenation 87.22 0.034
Cross-view attention 81.37 0.033
Epipolar attention (Ours) 69.63 0.025

challenging to learn the correspondence between source and
target views via concatenated inputs. On the other hand, our
approach synthesizes realistic novel views as the proposed
attention leverages epipolar lines as the constraint to esti-
mate the dependency between the source and target views.

Super-resolution. In this study, we compare differ-
ent super-resolution approaches: monocular image super-
resolution (ESRGAN) [66], video super-resolution (Real-
BasicVSR) [6], and our pose-guided super-resolution diffu-
sion model. For a fair comparison, we use the same 64×64
sequences generated by the low-resolution pose-guided dif-
fusion model as the input. The results are shown in Table 4.
The videos super-resolved by the RealBasicVSR method
contain less flickering compared to the other methods since
they process the low-resolution sequences frame-by-frame.
On the other hand, the pose-guided diffusion model gener-
ates much more high-quality novel views. Therefore, we
use the pose-guided diffusion model to super-resolve the
low-resolution novel view videos in all experiments. Never-
theless, we argue that video super-resolution diffusion mod-
els may be critical to further reduce the temporal flickering
while maintaining the visual quality.

5. Limitations and Future Works
The proposed method has the following limitations.

First, our approach cannot handle the case where scene
scales vary dramatically across different videos, e.g., land-
scape videos explored in [24, 25]. Take Figure 7, for in-
stance, the scale of the scene is significantly larger than
those in the Re10K training data. We believe that handling

Table 4. Super-resolution models. We report the average LPIPS
(↓) scores for the short-term, FID (↓) and Ewarp scores for the
long-term novel view synthesis results. We use the same 64 × 64
results and different super-resolution methods to get the 256×256
videos. The best performance is in bold.

Methods Re10K

LPIPS (↓) FID (↓) Ewarp (↓)

Real-ESRGAN [66] 2.32 75.05 0.021
RealBasicVSR [6] 2.28 69.63 0.014
Pose-guided diffusion model 2.19 56.33 0.023

OutputsInput
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Figure 7. Failure case. Our proposed method fails to generate re-
alistic novel views if the scale of the scene is significantly different
from those in the training data.

such cases requires proper scale normalization or data aug-
mentation. We leave this exploration to future work. Sec-
ond, the inference is time-consuming as it involves multiple
steps (i.e., 250 in practice) in the backward process to pre-
dict one single novel view. As many recent efforts [47, 53]
are made to accelerate the inference speed of the diffusion
model, we plan to explore these solutions in the future.

6. Conclusions
In this work, we introduce a pose-guided diffusion model

to synthesize a novel view video under massive camera mo-
tion from a single image. The core of our diffusion model
is the epipolar attention that estimates the dependencies be-
tween images of two camera viewpoints. Qualitative and
quantitative results show that the proposed pose-guided dif-
fusion model generates novel views that are 1) realistic,
even the viewpoints far away from the input view, and 2)
consistent across various viewpoints.
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[37] René Ranftl, Alexey Bochkovskiy, and Vladlen Koltun. Vi-
sion transformers for dense prediction. In ICCV, 2021. 2
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