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Abstract

Machine translation systems achieve near
human-level performance on some languages,
yet their effectiveness strongly relies on the
availability of large amounts of bitexts, which
hinders their applicability to the majority of
language pairs. This work investigates how to
learn to translate when having access to only
large monolingual corpora in each language.
We propose two model variants, a neural and
a phrase-based model. Both versions leverage
automatic generation of parallel data by back-
translating with a backward model operating
in the other direction, and the denoising ef-
fect of a language model trained on the tar-
get side. These models are significantly better
than methods from the literature, while being
simpler and having fewer hyper-parameters.
On the widely used WMT’14 English-French
and WMT’16 German-English benchmarks,
our models respectively obtain 27.1 and 23.6
BLEU points without using a single parallel
sentence, outperforming the state of the art by
more than 11 BLEU points.

1 Introduction

Machine Translation (MT) is a flagship of the re-
cent successes and advances in the field of natural
language processing. Its practical applications and
use as a testbed for sequence transduction algo-
rithms have spurred renewed interest in this topic.

While recent advances have reported near
human-level performance on several language
pairs using neural approaches (Wu et al., 2016;
Hassan et al., 2018), other studies have highlighted
several open challenges (Koehn and Knowles,
2017; Isabelle et al., 2017; Sennrich, 2017). A ma-
jor challenge is the reliance of current learning al-
gorithms on large parallel corpora. Unfortunately,
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the vast majority of language pairs have very little,
if any, parallel data: learning algorithms need to
better leverage monolingual data in order to make
MT more widely applicable.

A large body of literature has studied the use of
monolingual data to boost translation performance
when limited supervision is available. This lim-
ited supervision is typically provided in the form
of a relatively small set of parallel sentences (Sen-
nrich et al., 2015a; Gulcehre et al., 2015; He et al.,
2016; Gu et al., 2018; Wang et al., 2018), or a large
set of parallel sentences but in other related lan-
guages (Firat et al., 2016; Johnson et al., 2016;
Chen et al., 2017; Zheng et al., 2017), or bilin-
gual dictionaries (Klementiev et al., 2012; Irvine
and Callison-Burch, 2014, 2016), or with compa-
rable corpora (Munteanu et al., 2004; Irvine and
Callison-Burch, 2013).

Recently, by contrast, two approaches have
been proposed that are fully unsupervised (Lam-
ple et al., 2018; Artetxe et al., 2018), relying only
on monolingual corpora in each language, as in the
pioneering work by Ravi and Knight (2011).

While there are subtle technical differences be-
tween these two recent works, we identify sev-
eral common ingredients underlying their suc-
cess. First, they carefully initialize the model
with an inferred bilingual dictionary. Second,
they leverage strong language models, via train-
ing the sequence-to-sequence system (Sutskever
et al., 2014; Bahdanau et al., 2015) as a denois-
ing autoencoder (Vincent et al., 2008). Third, they
turn the unsupervised problem into a supervised
one by automatic generation of sentence pairs via
back-translation (Sennrich et al., 2015a). In back-
translation, the key idea is to maintain two mod-
els, one for translating the source into the target
and the other to translate the target into the source.
The former model generates data to train the lat-
ter one and vice versa. The last common prop-
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Figure 1: Toy illustration of the three principles of unsupervised MT. A) There are two monolingual datasets. Markers
correspond to sentences (see legend for details). B) First principle: Initialization. The two distributions are roughly aligned,
e.g. by performing word-by-word translation with an inferred bilingual dictionary. C) Second principle: Language modeling.
A language model is learned independently in each domain to infer the structure in the data (underlying continuous curve); it
acts as a data-driven prior to denoise/correct sentences (illustrated by the spring pulling a sentence outside the manifold back
in). D) Third principle: Back-translation. Starting from an observed source sentence (filled red circle) we use the current
source → target model to translate (dashed arrow), yielding a potentially incorrect translation (blue cross near the empty
circle). Starting from this (back) translation, we use the target → source model (continuous arrow) to reconstruct the sentence
in the original language. The discrepancy between the reconstruction and the initial sentence provides error signal to train the
target → source model parameters. The same procedure is applied in the opposite direction to train the source → target model.

erty is that these models constrain the latent repre-
sentations produced by the encoder to be shared
across the two languages. Putting these pieces
together, the encoder produces similar represen-
tations regardless of the input language. The de-
coder, which is trained both as a language model
and as a translator from noisy inputs, learns to
produce increasingly better translations in tandem
with the backward model (operating from target to
source). This iterative process achieves remark-
able results in a fully unsupervised setting; for in-
stance, about 15 BLEU points on the WMT’14
English-French benchmark.

In this paper, we propose a model that combines
these two previous neural approaches, simplify-
ing the architecture and loss function while still
following the above mentioned principles. The
resulting model outperforms previous approaches
and is both easier to train and tune. Then, we
apply the same ideas and methodology to a tra-
ditional phrase-based statistical machine transla-
tion (PBSMT) system (Koehn et al., 2003). PB-
SMT models are well-known to outperform neural
models when labeled data is scarce because they
merely count occurrences, whereas neural models
typically fit hundred of millions of parameters to
learn distributed representations, which may gen-
eralize better when data is abundant but are prone
to overfit when data is scarce. Our PBSMT model
is simple, easy to interpret, fast to train and of-
ten achieves similar or better results than its NMT
counterpart. We report gains of up to +10 BLEU
points on widely used benchmarks when using our

NMT model, and up to +12 points with our PB-
SMT model. This significantly advances the state
of the art in the unsupervised setting.

The rest of this paper is organized as follows. In
Section 2 we introduce the key principles underly-
ing our approach to unsupervised machine transla-
tion. In Section 3 we introduce NMT and PBSMT
models that employ these principles, and evaluate
them empirically in Section 4. Finally, we discuss
how they relate to other approaches in Section 5.

2 Principles of Unsupervised MT

Learning to translate with only monolingual data
is an ill-posed task, since there are potentially
many ways to associate target and source sen-
tences. Nevertheless, there has been exciting
progress in solving this problem in recent years,
as discussed in the related work of Section 5. In
this section, we abstract away from the specific
assumptions made by this recent work and instead
focus on identifying the common principles under-
lying unsupervised MT.

We claim that unsupervised MT can be accom-
plished by leveraging three components illustrated
in Figure 1: suitable initialization, language mod-
eling and iterative back-translation. In the follow-
ing, we describe each of these components and
later discuss how they can be better instantiated
in a neural and phrase-based model.

Initialization: Since unsupervised translation is
ill-posed, one natural prior we can express over
the set of solutions we expect is to initialize the



model so that words, short phrases or even sub-
word units (Sennrich et al., 2015b) are aligned.
For instance, Klementiev et al. (2012) used a pro-
vided bilingual dictionary, while Lample et al.
(2018) and Artetxe et al. (2018) used dictionaries
inferred in an unsupervised way (Conneau et al.,
2018; Artetxe et al., 2017). The motivating intu-
ition is that such alignment can be used to perform
an initial “word-by-word” translation. And while
this may result in a poor translation if languages or
corpora are not closely related, it can still preserve
some of the original semantics.

Language Modeling: Given large amounts of
monolingual data, we can train language mod-
els on both source and target languages. These
models express a data-driven prior about how sen-
tences should read in each language. They im-
prove the quality of the translation by performing
local substitutions and reordering words.

Iterative Back-translation: The third compo-
nent is back-translation (Sennrich et al., 2015a),
which is perhaps the most effective way to lever-
age monolingual data in a semi-supervised set-
ting. Its application in the unsupervised setting
is to couple the machine translation system with
a backward model translating from the target to
source language. The goal of this model is to gen-
erate a source sentence for each target sentence in
the monolingual corpus. This turns the daunting
unsupervised problem into a supervised learning
task, albeit with noisy source sentences. As the
original model gets better at translating, we can
also use the current model to improve the back-
translation model, resulting in an iterative algo-
rithm (He et al., 2016).

3 Unsupervised MT systems

Equipped with the three principles detailed in Sec-
tion 2, we now discuss how to effectively combine
them in the context of a NMT model (Section 3.1)
or PBSMT model (Section 3.2).

In the reminder of the paper, we denote the
space of source and target sentences by S and T ,
respectively, and the language models trained on
source and target monolingual datasets by Ps and
Pt, respectively. Finally, we denote by Ps→t and
Pt→s the translation models from source to target
and vice versa. An overview of our approach is
given in Algorithm 1.

Algorithm 1: Unsupervised MT

1 Language models: Learn language models
Ps and Pt over source and target languages;

2 Initial translation models: Leveraging Ps

and Pt, learn two initial translation models,
one in each direction: P (0)

s→t and P (0)
t→s;

3 for k=1 to N do
4 Backtranslation: Generate source and

target sentences using the current
translation models, P (k−1)

t→s and P (k−1)
s→t ,

factoring in language models, Ps and Pt;

5 Train new translation models P (k)
s→t and

P
(k)
t→s using the generated sentences and

leveraging Ps and Pt;
6 end

3.1 Unsupervised NMT

We now introduce a new unsupervised NMT
method, which is derived from earlier work
by Artetxe et al. (2018) and Lample et al. (2018).
We first discuss how the previously mentioned
three key principles are instantiated in our work,
and then introduce an important feature of the sys-
tem, which is specific and critical to NMT.

In general, an NMT model is composed of an
encoder and a decoder; the specific details of this
architecture is given in Section 4.

Initialization: While prior work relied on bilin-
gual dictionaries, here we propose a more effective
and simpler approach which is suitable for related
languages.1 First, instead of considering words,
we consider byte-pair encodings (BPE) (Sennrich
et al., 2015b), which have two major advantages:
they reduce the vocabulary size and they elimi-
nate the presence of unknown words in the output
translation. Second, instead of learning an explicit
mapping between BPEs in the source and target
languages, we define BPE tokens by jointly pro-
cessing both monolingual corpora. If languages
are related, as those we consider in this study, they
will naturally share a good fraction of BPE tokens,
which eliminates the need to infer a bilingual dic-
tionary. In practice, we i) join the monolingual
corpora, ii) apply BPE tokenization on the result-
ing corpus, and iii) learn token embeddings that
are used to initialize the lookup tables in the en-
coder and decoder.

1For unrelated languages, we need to infer a dictionary to
properly initialize the embeddings (Conneau et al., 2018).



Language Modeling: In NMT, language mod-
eling is accomplished via denoising autoencoding,
by minimizing:

Llm = Ex∼S [− logPs→s(x|C(x))] +
Ey∼T [− logPt→t(y|C(y))] (1)

where C is a noise model with some words
dropped and swapped as in Lample et al. (2018).
Ps→s (Pt→t) is the composition of the encoder and
decoder both operating on the source (target) side.

Back-translation: Let us denote by u∗(y) the
sentence in the source language inferred from y
such that u∗(y) = argmaxPt→s(u|y). Similarly,
let us denote by v∗(x) the sentence in the tar-
get language inferred from x such that v∗(x) =
argmaxPs→t(v|x). The pairs (u∗(y), y) and
(x, v∗(x))) can be seen as aligned sentences on
which, following the back-translation principle, a
new MT model can be learned. Therefore, the
back-translation loss is:

Lback = Ey∼T [− logPs→t(y|u∗(y))] +
Ex∼S [− logPt→s(x|v∗(x))]. (2)

Note that when minimizing this objective function
we do not back-prop through the reverse model
which generated the data, both for the sake of sim-
plicity and because we did not observe improve-
ments when doing so.

The objective function minimized at every iter-
ation (t) of the learning process, namely gradient
step of stochastic gradient descent, is simply the
sum of Lback in Eq. 1 and Llm in Eq. 2. How-
ever, this alone would not work very well, be-
cause it is too unconstrained. For instance, the
decoder operating in the target space has to work
well both when fed encoder representations of tar-
get sentences as well as encoder representations of
source sentences. Unfortunately, the system can
cheat and perfectly minimize the denoising and
translation loss by splitting the latent space in two,
and use one subspace for the language modeling
task and another subspace for the translation tasks.
Clearly, learning to invert the backward model and
separately learning a language model are not suf-
ficient to translate well. This leads to an addi-
tional constraint required for neural unsupervised
machine translation, which we discuss next.

Sharing Latent Representations: A shared en-
coder representation acts like an interlingua,

which is translated in the decoder target language
regardless of the input source language. This
ensures that the benefits of language modeling,
implemented via the denoising autoencoder ob-
jective, nicely transfer to translation from noisy
sources and eventually help the NMT model to
translate more fluently. In order to share the en-
coder representations, we share all encoder pa-
rameters (including the embedding matrices since
we perform joint tokenization) across the two lan-
guages to ensure that the latent representation of
the source sentence is robust to the source lan-
guage. Similarly, we share the decoder parame-
ters across the two languages. While sharing the
encoder is critical to get the model to work, shar-
ing the decoder simply induces useful regulariza-
tion. Unlike prior work (Johnson et al., 2016), the
first token of the decoder specifies the language the
module is operating with while the encoder does
not have any language identifier.

Note that the BPE joint tokenization, which re-
moves the need to infer a bilingual dictionary for
related languages, and the choice of architecture
both differ from prior work (Artetxe et al., 2018;
Lample et al., 2018). Moreover, here we share
the decoder unlike Artetxe et al. (2018). Com-
pared to Lample et al. (2018), we also do online
back translation and lack the adversarial term in
the loss, since the architecture and tokenization are
sufficient to share the latent representations. Over-
all, these changes simplify the model and reduce
the number of hyper-parameters.

3.2 Unsupervised PBSMT

In this section, we discuss how to perform un-
supervised machine translation using a Phrase-
Based Statistical Machine Translation (PBSMT)
system (Koehn et al., 2003) as the underlying
backbone model. Note that PBSMT models are
known to perform well on low-resource language
pairs, and are therefore a potentially good alterna-
tive to neural models in the unsupervised setting.

When translating from x to y, a PBSMT sys-
tem scores according to: argmaxy P (y|x) =
argmaxy P (x|y)P (y), where P (x|y) is derived
from so called “phrase tables”, and P (y) is the
score of a language model.

Given a dataset of bitexts, PBSMT first infers an
alignment, and then populates phrase tables. Each
entry of a phrase table stores the likelihood that a
certain n-gram in the source language is mapped



to another n-gram in the target language, an esti-
mation based on normalized counts.

In practice, the actual scoring is a little more in-
volved as other terms are often introduced, such
as one to take into account the relative positional
misplacement between n-grams, which discour-
ages large phrase re-orderings, one to account for
phrase tables in the other direction, etc.

In the unsupervised setting, we can easily train a
language model on monolingual data, but it is less
clear how to populate the phrase tables, which are
a necessary component for good translation. For-
tunately, similar to the neural case, the principles
of Section 2 are effective to solve this problem.

Initialization: We populate the initial phrase ta-
bles (from source to target and from target to
source) using an inferred bilingual dictionary built
from monolingual corpora using the method pro-
posed by Conneau et al. (2018). These phrases
tables are populated with unigrams2 by setting the
scores of the translation of a source word to:

p(tj |si) =
e

1
T
cos(e(tj),We(si))∑

k e
1
T
cos(e(tk),We(si))

, (3)

where tj is the j-th word in the target vocabulary
and si is the i-th word in the source vocabulary,
T is a hyper-parameter used to tune the peakiness
of the distribution3, W is the rotation matrix map-
ping the source embeddings into the target embed-
dings (Conneau et al., 2018), and e(x) is the em-
bedding of x.

Language Modeling: Both in the source and
target domains we learn smoothed n-gram lan-
guage models using KenLM (Heafield, 2011), al-
though neural models could also be considered.
These remain fixed throughout training iterations.

Iterative Back-Translation: To jump start the
iterative process, we use the unigram phrase tables
and the language model on the target side to con-
struct a seed PBSMT. We then use this model to
translate the source monolingual corpus into the
target language (back-translation step). Once the
data has been generated, we train a PBSMT in su-
pervised mode to map the generated data back to

2The extension to n-grams is trivial. Experiments with
n-grams are reported in Section 4. We could also have
considered to work at the level of BPEs as opposed to
words (Kunchukuttan and Bhattacharyya, 2016). We leave
that to future work.

3We set T = 30 in all our experiments, following the
setting of Smith et al. (2017).

Algorithm 2: Unsupervised PBSMT

1 Learn bilingual dictionary using Conneau
et al. (2018);

2 Populate unigram tables using Eq. 3 and learn

a language model to build P (0)
s→t;

3 Use P (0)
s→t to translate the source monolingual

dataset, yielding D(0)

t ;
4 for i=1 to N do
5 Train model P (i)

t→s using D(i−1)
t ;

6 Use P (i)
t→s to translate the target

monolingual dataset, yielding D(i)
s ;

7 Train model P (i)
s→t using D(i)

s ;

8 Use P (i)
s→t to translate the source

monolingual dataset, yielding D(i)

t ;
9 end

the original source sentences. Next, we perform
both generation and training process but in the re-
verse direction. We repeat these steps as many
times as desired, see Algorithm 2.

Intuitively, many entries in the phrase tables are
not correct because the input to the PBSMT at any
given point during training is noisy. Despite that,
the language model may be able to fix some of
these mistakes at generation time. As long as that
happens, the translation improves, and with that
also the phrase tables at the next round. There will
be more entries that correspond to correct phrases,
which makes the PBSMT model stronger because
it has bigger tables and it enables phrase swaps
over longer spans.

4 Experiments

We first describe the datasets and experimental
protocol we used. Then, we compare the two
proposed unsupervised approaches to earlier at-
tempts (Artetxe et al., 2018; Lample et al., 2018),
to semi-supervised methods (Gu et al., 2018) and
to the very same models but trained with varying
amounts of labeled data. We conclude with an ab-
lation study to understand the importance of each
component in the system, and some qualitative as-
sessment of the translations.

4.1 Datasets and Methodology
We consider four language pairs: English-French,
English-German, English-Romanian and English-
Russian. The first two pairs are used to com-



pare to recent work on unsupervised MT (Artetxe
et al., 2018; Lample et al., 2018). The last two
pairs are instead used to test our PBSMT unsu-
pervised method on truly low-resource pairs (Gu
et al., 2018) or unrelated languages that do not
even share the same alphabet.

For English, French, German and Russian, we
use 50 million sentences from the WMT mono-
lingual News Crawl datasets from year 2014 till
2017. For Romanian, the News Crawl dataset
is only composed of 2.2 million sentences, so
we augment it with the monolingual data from
WMT’16, resulting in 2.9 million sentences. We
report results on newstest 2014 for en − fr, and
newstest 2016 for en− de, en− ro and en− ru.

We use the publicly available implementation of
Moses4 scripts for tokenization. NMT is trained
with 60,000 BPE codes. PBSMT is trained with
true-casing, and removing diacritics from Roma-
nian on the source side to deal with their inconsis-
tent use across the monolingual dataset (Sennrich
et al., 2016).

4.2 Initialization

Both the NMT and PBSMT approaches require
either cross-lingual BPE embeddings (to initial-
ize the shared lookup tables) or n-gram embed-
dings (to initialize the phrase table). We gener-
ate embeddings using fastText (Bojanowski et al.,
2017)5 with an embedding dimension of 512, a
context window of size 5 and 10 negative sam-
ples. For NMT, fastText is applied on the concate-
nation of source and target corpora, which results
in cross-lingual BPE embeddings for related lan-
guage pairs like en − fr and en − de. We have
estimated that more than 95% of the tokens are
shared in these two language pairs. Next, we dis-
cuss how to initialize the phrase tables in PBSMT.

4.2.1 Phrase Table Initialization
For PBSMT, we generate n-gram embeddings on
the source and target corpora independently, and
align them using the MUSE library6 (Conneau
et al., 2018). Since learning unique embeddings
of every possible phrase would be intractable,
we consider the most frequent 300, 000 source
phrases, and align each of them to its 200 nearest
neighbors in the target space, resulting in a phrase

4http://www.statmt.org/moses/
5http://fasttext.cc/
6https://github.com/facebookresearch/

MUSE

Source Target P (s|t) P (t|s)
happy 0.931 0.986
delighted 0.458 0.003

heureux grateful 0.128 0.003
thrilled 0.392 0.002
glad 0.054 0.001
Britain 0.242 0.720
UK 0.816 0.257

Royaume-Uni U.K. 0.697 0.011
United Kingdom 0.770 0.010
British 0.000 0.002
European Union 0.869 0.772
EU 0.335 0.213

Union européenne E.U. 0.539 0.006
member states 0.007 0.006
27-nation bloc 0.410 0.002

Table 1: Unsupervised phrase table. Example of can-
didate French to English translations for unigrams and
bigrams, along with their corresponding conditional
likelihoods P (s|t) and P (s|t).

table of 60 million phrase pairs which we score
using the formula in Eq. 3.

In practice, we observe a small but significant
difference of about 1 BLEU point using a phrase
table of bigrams compared to a phrase table of un-
igrams, but did not observe any improvement us-
ing longer phrases. Table 1 shows an extract of a
French-English unsupervised phrase table, where
we can see that unigrams are correctly aligned to
bigrams, and vice versa.

4.3 Training

The next subsections provide details about the ar-
chitecture and training procedure of our models.

4.3.1 NMT
In this study, we use NMT models built upon
LSTM (Hochreiter and Schmidhuber, 1997) and
Transformer (Vaswani et al., 2017) cells. For the
LSTM model we use the same architecture as
in Lample et al. (2018). For the Transformer, we
use 4 layers both in the encoder and in the decoder.
For both models, we share all parameters, includ-
ing the lookup table BPE embeddings. The dimen-
sionality of the embeddings and of the hidden lay-
ers is set to 512. For all models, we used Adam
optimizer (Kingma and Ba, 2014) with a learning
rate of 10−4, β1 = 0.5, and a batch size of 32. At
decoding time, we generate greedily.

4.3.2 PBSMT
For PBSMT, we use Moses with phrase tables ini-
tialized as described in Section 4.2.1. The lan-



Figure 2: Comparison between supervised and unsupervised
approaches on WMT’14 En-Fr, as we vary the number of par-
allel sentences for the supervised methods.

guage model is a default smoothed n-gram lan-
guage model and the reordering model is disabled
during the very first generation. PBSMT is trained
in a iterative manner using Algorithm 2. At each
iteration, we translate 5 million sentences ran-
domly sampled from the monolingual dataset in
the source language. Except for initialization, we
use phrase tables with phrases up to length 3.

4.4 Model selection

Moses’s implementation of PBSMT has 15 hyper-
parameters, such as relative weighting of each
scoring function, word penalty, etc. In this work,
we consider two methods to set these hyper-
parameters. We either set them to their default
values in the toolbox, or we set them using a small
validation set of parallel sentences. It turns out
that with only 100 labeled sentences in the vali-
dation set, PBSMT would overfit to the validation
set. For instance, on en → fr, PBSMT tuned
on 100 parallel sentences obtains a BLEU score of
26.42 on newstest 2014, compared to 27.09 with
default hyper-parameters, and 28.02 when tuned
on the 3000 parallel sentences of newstest 2013.
Therefore, unless otherwise specified, all PBSMT
models considered in the paper use default hyper-
parameter values, and do not use any parallel re-
source whatsoever.

For the NMT, we also consider two model se-
lection procedures: one based on the BLEU score
of a “round-trip” translation (source → target →
source and target → source → target) as in Lam-
ple et al. (2018), and one based on a small val-
idation set of 100 parallel sentences. In our ex-
periments, we found the unsupervised criterion to

Model en-fr fr-en de-en en-de
(Artetxe et al., 2018) 15.1 15.6 - -
(Lample et al., 2018) 15.0 14.3 13.3 9.6
NMT (LSTM) 24.5 23.7 19.6 14.7
NMT (Transformer) 25.1 24.2 21.0 17.2
PBSMT (Iter. 0) 16.1 15.4 14.5 10.3
PBSMT (Iter. n) 27.1 24.7 21.3 16.7
NMT + PBSMT 26.3 25.1 20.2 16.4
PBSMT + NMT 26.7 27.1 23.6 19.2

Table 2: Comparison with previous approaches.
BLEU score for different models on the en − fr
and en − de language pairs. Just using the unsuper-
vised phrase table, and without back-translation (PB-
SMT (Iter. 0)), the PBSMT outperforms previous ap-
proaches. Combining PBSMT with NMT gives the
best results.

be highly correlated with the test metric when us-
ing the Transformer model, but not always for the
LSTM. Therefore, unless otherwise specified, we
select the best LSTM models using a small vali-
dation set of 100 parallel sentences, and the best
Transformer models with the unsupervised crite-
rion defined in Lample et al. (2018).

4.5 Results

The results reported in Table 2 show that both
our unsupervised NMT and PBSMT largely out-
perform previous unsupervised baselines. For in-
stance, on the en → fr task, our unsupervised
PBSMT obtains a BLEU score of 27.09, while
Artetxe et al. (2018) only obtained 15.13 and Lam-
ple et al. (2018) 15.04. We report large gains on
all languages pairs and in both directions. Even
on a more complex task like en → de, both
PBSMT and NMT surpass the baseline score by
more than 10 BLEU points. Note that the PBSMT
model with the unsupervised phrase table alone
(i.e. before starting back-translation), already sig-
nificantly outperforms previous approaches, and
can be generated in a few minutes using MUSE
once the embeddings are learned with fastText.

The last rows of Table 2 also show that we can
get additional gains by further tuning the NMT
model on the data generated by PBSMT (PBSMT
+ NMT). Here, we simply add the data generated
by the unsupervised PBSMT system to the back-
translated data produced by the NMT model. By
combining PBSMT and NMT, we achieve a BLEU
score of 19.16 on the challenging en → de trans-
lation task, and boost performance on the de→ en
task up to 23.62 points. We also tried to boostrap
the PBSMT model with back-translated data gen-



en → fr fr→ en en→ de de→ en en→ ro ro→ en en→ ru ru→ en
Unsupervised phrase table - 15.42 - 14.50 12.99 - - 7.68
Back-translation - Iter. 1 24.09 23.65 15.06 20.86 20.17 17.12 10.58 14.35
Back-translation - Iter. 2 26.05 24.44 16.66 21.28 20.80 19.25 12.22 15.20
Back-translation - Iter. 3 26.52 24.48 16.74 21.30 21.04 19.84 12.46 15.35
Back-translation - Iter. 4 26.85 24.67 16.71 - - 20.07 12.40 -
Back-translation - Iter. 5 27.09 - - - - - - -

Table 3: Fully unsupervised PBSMT. We report the BLEU score for PBSMT on 8 directed language pairs.
Results are obtained on newstest 2014 for en − fr and newstest 2016 for every other pair. Models created with
the unsupervised phrase table obtain a relatively low performance, but can be used to generate back-translated data
and train new models in a supervised way. After one iteration we observe up to 8 BLEU points improvement on
fr → en. The models converge after few iterations of back-translation.

erated by a NMT model (NMT + PBSMT), but
this did not improve over the PBSMT alone.

Next, we compare to fully supervised models.
Figure 2 shows the performance of the same ar-
chitectures trained in a fully supervised way us-
ing parallel datasets of varying number of train-
ing examples. The unsupervised PBSMT model
is able to achieve the same performance than its
supervised counterpart trained on almost 100,000
sentences. These unsupervised methods produce
reasonable translation models at no labeling price,
becoming a viable alternative for translating low-
resource languages.

This is confirmed on a low-resource language
like Romanian (Ro). In particular, on the ro→ en
language pair, our PBSMT model obtains a BLEU
score of 21.0 without using a single parallel sen-
tence, and 22.2 when using a small validation set
to tune the weights of the model. As a comparison,
Gu et al. (2018) obtain 22.9 BLEU by leveraging
6,000 parallel sentences, a seed dictionary, and a
multi-NMT system combining parallel resources
from 5 different languages.

Finally, we tested our unsupervised PBSMT on
a very different language like Russian, and ob-
tained a respectable BLEU score of 15.4 on ru→
en, showing that this approach works reasonably
well also on distant languages.

Iterative back-translation: Table 3 illustrates
the quality of the PBSMT model during the it-
erative training process, i.e. after each back-
translation step. This highlights the importance of
making multiple back-translation iterations.

For instance, in the en − fr task, the fr → en
model obtains a BLEU score of 15.42 at iteration 0
– i.e after the unsupervised phrase table construc-
tion – while it achieves a score of 24.67 at itera-
tion 4. The same improvement can be observed

in the different language pairs we have tested. As
we iterate, the BLEU score steadily increases un-
til saturation, showing the importance of iterating.
Note that, for the en → de task, the increase is
less pronounced - going from 15.06 at iteration 1
to 16.71 at iteration 4 - but still significant.

4.6 Ablation Study

To better understand the importance of each com-
ponent of our model, we performed an abla-
tion study of the NMT-Transformer model on the
fr → en data. First, if we remove the denois-
ing autoencoder term in the objective function, see
Eq. 1, the model does not learn to translate at all.
Similar catastrophic failure is observed if we re-
move the back-translation objective of Eq. 2. If
we do not share the decoder, the performance on
the validation set increases by half a BLEU point
but it decreases by the same amount on the test
set. Finally, if we do not initialize the model with
pre-trained embeddings, the model does learn, but
much slower and to a much lower accuracy, reach-
ing a mere BLEU score of 10.5 as opposed to 25.1
of the model initialized according to Section 4.2.

4.7 Qualitative study

Table 4 shows examples of translations of French
sentences from the French-English newstest 2014
dataset at different iterations of the learning al-
gorithm for both the NMT and PBSMT models.
Before the first iteration of back-translation, using
only the unsupervised phrase table, the PBSMT
translations are not far from word-by-word trans-
lations that do not respect the syntax of the tar-
get language, but still contain most of the seman-
tic of the original sentences. As we increase the
number of epochs in NMT and as we iterate for
PBSMT, we observe a continuous improvement in
the quality of the unsupervised translations. In-



Source Je rêve constamment d’eux, peut-être pas toutes les nuits mais plusieurs fois par semaine c’est certain.
NMT Epoch 1 I constantly dream, but not all nights but by several times it is certain.
NMT Epoch 3 I continually dream them, perhaps not all but several times per week is certain.
NMT Epoch 45 I constantly dream of them, perhaps not all nights but several times a week it ’s certain.
PBSMT Iter. 0 I dream of, but they constantly have all those nights but several times a week is too much. ”
PBSMT Iter. 2 I had dreams constantly of them, probably not all nights but several times a week it is large.
PBSMT Iter. 8 I dream constantly of them, probably not all nights but several times a week it is certain.
Reference I constantly dream of them, perhaps not every night, but several times a week for sure.

Source La protéine que nous utilisons dans la glace réagit avec la langue à pH neutre.
NMT Epoch 1 The protein that we use in the ice with the language to pH.
NMT Epoch 8 The protein we use into the ice responds with language to pH neutral.
NMT Epoch 45 The protein we use in ice responds with the language from pH to neutral.
PBSMT Iter. 0 The protein that used in the ice responds with the language and pH neutral.
PBSMT Iter. 2 The protein that we use in the ice responds with the language to pH neutral.
PBSMT Iter. 8 The protein that we use in the ice reacts with the language to a neutral pH.
Reference The protein we are using in the ice cream reacts with your tongue at neutral pH.

Source Selon Google, les déguisements les plus recherchés sont les zombies, Batman, les pirates et les sorcières.
NMT Epoch 1 According to Google, there are more than zombies, Batman, and the pirates.
NMT Epoch 8 Google’s most wanted outfits are the zombies, Batman, the pirates and the evil.
NMT Epoch 45 Google said the most wanted outfits are the zombies, Batman, the pirates and the witch.
PBSMT Iter. 0 According to Google, fancy dress and most wanted fugitives are the bad guys, Wolverine, the pirates and their minions.
PBSMT Iter. 2 According to Google, the outfits are the most wanted fugitives are zombies, Batman, pirates and witches.
PBSMT Iter. 8 According to Google, the outfits, the most wanted list are zombies, Batman, pirates and witches.
Reference According to Google, the highest searched costumes are zombies, Batman, pirates and witches.

Table 4: Unsupervised translations. Examples of translations on the French-English pair of newstest 2014 at
different iterations of training. For PBSMT, we show translations at iterations 0, 1 and 4, where the model obtains
BLEU scores of 15.4, 23.7 and 24.7 respectively. For NMT, we show examples of translations after epochs 1, 8
and 42, where the model obtains BLEU scores of 12.3, 17.5 and 24.2 respectively. Iteration 0 refers to the PBSMT
model obtained using the unsupervised phrase table, and an epoch corresponds to training the NMT model on 500k
monolingual sentences. At the end of training, both models generate very good translations.

terestingly, in the second example, both the PB-
SMT and NMT models fail to adapt to the poly-
semy of the French word “langue”, which can be
translated as “tongue” or “language” in English.
These translations were both present in the unsu-
pervised phrase table, but the conditional proba-
bility of “language” to be the correct translation
of “langue” was very high compared to the one
of “tongue”: P (language|langue) = 0.92, while
P (tongue|langue) = 0.0005. As a comparison,
the phrase table of a Moses model trained in a
supervised way contains P (language|langue) =
0.633, P (tongue|langue) = 0.0076, giving a
higher probability for “langue” to be properly
translated. This underlines the importance of the
initial unsupervised phrase alignment procedure.

5 Related Work

Learning to translate without supervision has been
a long standing research problem for the MT com-
munity. The first known attempt at fully unsu-
pervised machine translation is the work by Ravi
and Knight (2011), who leverage linguistic prior
knowledge to reframe the task as an instance of de-
ciphering and demonstrate the feasibility on short
sentences with limited vocabulary. Even earlier
work by Carbonell et al. (2006) also aimed at un-

supervised machine translation, but leveraged a
bilingual dictionary to seed the translation. Both
works rely on a language model on the target side
to correct for fluency of the translation.

These seminal works inspired subsequent ap-
proaches (Klementiev et al., 2012; Irvine and
Callison-Burch, 2014, 2016) that relied on bilin-
gual dictionaries, small parallel corpora of several
thousand sentences, and linguistically motivated
features to prune the search space. Interestingly,
Irvine and Callison-Burch (2014) use monolingual
data to expand phrase tables that are learned in
a supervised setting. In our work we also ex-
pand phrase tables, but we initialize them with
an inferred bilingual unigram dictionary, follow-
ing older work from the connectionist community
aiming at improving PBSMT with neural mod-
els (Schwenk, 2012; Kalchbrenner and Blunsom,
2013; Cho et al., 2014).

Using monolingual data on the target side for
data augmentation purposes has been a major ad-
vance in recent years through a method called
back-translation (Sennrich et al., 2015a). In back-
translation, a model trained from the target to
the source generates translations that are added to
the regular training set in order to regularize the
model. This method is perhaps the most effective



way to leverage monolingual data in the semisu-
pervised setting, and it has been integrated in the
“dual learning” framework of He et al. (2016)
with later extensions (Wang et al., 2018). Our ap-
proach is similar to the dual learning framework,
except that their model is pretrained using a rela-
tively large amount of labeled data and gradients
are backpropagated through the reverse model,
whereas our approach is fully unsupervised.

Finally, recent work by Lample et al. (2018)
and Artetxe et al. (2018) have achieved fully unsu-
pervised machine translation on large-scale bench-
mark datasets by leveraging bilingual dictionaries
that are also learned without supervision (Con-
neau et al., 2018; Artetxe et al., 2017). Addi-
tionally, these works depend on back-translation,
strong language models (implemented via denois-
ing autoencoders), clever initialization of lookup
tables, weight sharing between encoders, and an
adversarial training loss to align the latent rep-
resentations (encoder output) between language
pairs. Our approach is different in several ways.
First, we perform online backtranslation in both
directions, similarly to Artetxe et al. (2018) and
the dual learning framework. Second, we adopt
a simpler scheme for aligning latent represen-
tations between language pairs, by recognizing
that a significant fraction of words and sub-word
(BPE) tokens (Sennrich et al., 2015b; Press and
Wolf, 2016) are usually shared between related
languages. In particular, we find that this over-
lap is often sufficient to align the latent repre-
sentations without requiring complex initialization
schemes or any adversarial loss terms.

6 Conclusions and Future Work

In this work, we synthesize three principles under-
lying recent successes in fully unsupervised ma-
chine translation: (1) proper initialization (e.g.,
by inferring a bilingual dictionary); (2) leverag-
ing a strong language model; and (3) iterative
training with artificially-generated parallel data
through back-translation. Using these principles,
we propose both a simplified neural model and a
novel phrase-based model for unsupervised MT.
These models achieve state of the art translation
performance across multiple benchmark datasets
and language pairs, in some cases improving upon
the previous best models by +12 BLEU points.
We then show that by combining the neural and
phrase-based models we can improve performance

even further.
In the future, we plan to further investigate the

initialization of phrase tables with n-grams aligned
in an unsupervised way. Finally, we plan to study
how these methods can be extended to the semi-
supervised setting and to settings where we may
have significant quantities of labeled data in other
language pairs.
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