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ABSTRACT

When building virtual reality applications teams must choose be-
tween different configurations of the hardware and/or software as-
pects, and other factors, of the experience. In this paper we extend a
framework for assessing how these factors contribute to quality of
experience in an example evaluation. We consider how four factors
related to avatar expressiveness affect quality of experience: Eye
Gaze, Eye Blinking, Mouth Animation, and Microexpressions. 55
participants experienced an avatar delivering a presentation in virtual
reality. At fixed times participants had the opportunity to spend a
virtual budget to modify the factors to incrementally improve their
quality of experience. They could stop making transitions when they
felt further changes would make no further difference. From these
transitions a Markov matrix was built, along with probabilities of a
factor being present at a given level on participants’ final configu-
rations. Most participants did not spend the full budget, suggesting
that there was a point of equilibrium which did not require maxi-
mizing all factor levels. We discuss that point of equilibrium and
present this work as an extended contribution to the evaluation of
people’s responses to immersive virtual environments.

Index Terms: I.3.7—Computer Graphics—Three-Dimensional
Graphics and Realism—Virtual Reality

1 INTRODUCTION

When constructing a virtual reality (VR) application teams typically
have a choice between different configurations of the objective as-
pects of the design of the experience, or factors, relating to hardware
and/or software. Moreover, there may be tradeoffs between these
factors in terms of rendering performance, latency, cost of imple-
mentation and so on. For example, avatar facial expressions that
are highly accurate may be computationally expensive, but in the
end make no difference to the experience when compared to more
simple facial expression representations.

Teams need a way to evaluate trade-offs between factors that
differentially affect the experience. The challenge in doing so lies in
that we currently lack a systematic method for assessing experience
that does not rely on large multi-factor experiments that elicit partic-
ipant preferences across all possible configurations of factors. The
primary objective of this research is to extend a previously existing
method for evaluating presence to inform hardware and/or software
trade-off decisions. We illustrate the validity of the approach via
a novel application and extension of the method in an avatar pre-
sentation context. We briefly review the concept of presence before
describing in detail the methodology we adapt and extend.
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1.1 Presence
Presence was originally defined as the sense of ‘being there’ in the
place depicted in VR. The concept was derived from its original
use in telepresence systems, where people operating in a remote
environment through a robot typically had the feeling that they were
located ‘there’ [14]. It was adapted to the similar feeling of ‘being
there’ that people had in VR – e.g. [11, 19–21, 28].

Presence is not the only criteria against which to judge the quality
of a VR experience. For example, a participant can have a strong
sense of presence, but be quite uninterested in or unconvinced by
events that are unfolding. Garau et al. [9] found that participants
interacting with virtual human characters would experience those
characters more like people when they exhibited some minimal
level of response to participant actions compared to treating those
characters as part of a computer interface without such responses
(see also Steed et al. [29]).

Slater [24] deconstructed presence into two different components:
Place Illusion (PI), as the illusion of ‘being there’, and Plausibility
(Psi) as the illusion that events in the virtual environment were
actually occurring, in spite of full knowledge that this was just a
simulated environment. For a recent review of the field see [22].

1.2 Method of assessment of participant responses
The standard method for evaluating presence is to use question-
naires [13, 27, 30]. Although these provide valuable information,
especially in conjunction with behavioral and physiological mea-
sures [25], they nevertheless are difficult to interpret - they provide
no universal measure since one participant’s score of ‘5’ out of a
maximum of ‘7’ might mean something completely different than
another’s. Additionally, answering ‘7’ or at the high end of a scale
has no consequences for the respondent, yet decisions that may
have costly consequences may be made on that basis. Physiologi-
cal measures also do not provide a universal solution, given their
complexity and utility in a limited number of scenarios. Even if
questionnaires or physiological measures alone were suitable, there
is still the problem of the explosion of conditions necessary to run
a factorial experimental design to test (e.g.) presence across all
possible conditions. For example, suppose there were k factors each
with just two levels; the factorial design would require 2k conditions.
There are ways to reduce this, through hierarchical designs, but this
becomes infeasible for larger k and more than binary levels.

A method that potentially overcomes these methodological chal-
lenges was introduced in Slater et al. [26]. This method was based
on an analogy with colorimetry, where in order to measure the sub-
jective response to illuminated surfaces participants are never asked
to judge how (e.g.) ‘red’ a color is, but to match their perception
of a color produced through manipulation (by adjusting red, green
and blue projectors). Carried out over many participants and patches
of light, experimenters can calculate on average how much ‘red’,
‘green’ and ‘blue’ went into the makeup of any particular patch.

Similarly, participants in the method of Slater et al. [26] were able
to independently manipulate the extent of field-of-view, properties
of a virtual body, perspective condition, and illumination quality, in
order to match a level of PI or Psi previously experienced with all
factors at their ‘highest’ level. This approach led to the derivation



of probabilities of how much each of these factors contributed to PI
or Psi, without participants having to answer a questionnaire. As in
colorimetry, they only had to judge whether a particular experience
matched or not their experience of the system with all factors at their
highest level. The ‘matching’ is an observable event (it is a fact that
they matched) and not something on an ordinal scale, and obviates
the problem of knowing the meaning of a score in a questionnaire.

We extend this approach and we use a much simpler criteria for
the assessment of participant responses to a VR application: what
makes the experience better? - whether they prefer the experience
with a specific factor configuration compared to others, and to what
extent they would be willing to ‘pay’ for this configuration.

To illustrate this alternative approach we describe an experiment
that shows how a version of this method captures preferences in the
context of a VR experience where participants were faced with a
virtual human character giving a presentation about how to have a
good conversation. Participants evaluated configurations of different
levels of four factors relating to avatar facial behavioral realism: eye
gaze, eye blinking, mouth animation, and facial microexpressions,
and how they contribute to a better experience. Our goal is both to
show how the method was improved in its application and analysis,
and to present the findings with respect to the four factors above.
The main contributions of this paper are:

• We extended a previously used method for evaluating VR ex-
periences, modifying the goal that participants were given from
matching previously experienced feelings of presence to “making
the experience better”. We included a virtual budget component
that restricts the number of factors that participants can maximise.
We discuss the benefits and limitations of the proposed approach,
and suggest directions for future work.

• We present the experimental design, analysis and results of a study
to illustrate the aforementioned extension of the method. The de-
sign of the study includes a placebo that serves to demonstrate the
effectiveness of the approach. A knowledge transfer questionnaire
aims to demonstrate that participants were capable of evaluating
the factors whilst remaining engaged in the presentation.

In the next sections we give further background, followed by the
experimental design, results, discussion and conclusions.

2 BACKGROUND

2.1 Building a convincing virtual presenter

One of the most compelling experiences in VR is to have a face-to-
face encounter with another avatar. This is different to seeing an
image or video of a character on a 2D screen as participants share a
virtual space. Such virtual interactions require social cues that are
central to real face-to-face conversations. Significant research has
been conducted to identify the factors that provide these social cues.

One notable factor highlighted by research is avatar behavioural
realism. Behavioral realism refers to the extent to which the avatar
behaves or moves like a human being [3]. It can be operationalized
in the most simple terms by the absence or presence of non-verbal
cues, which are a key component of face-to-face interactions. For
example, Pan et al. [18] found that participants reported high levels
of social presence when a virtual agent blushed after making a
mistake during a presentation. Additionally, Bailenson et al. [4]
found that virtual agents that mimicked the head movements of
the participants were more persuasive and received higher positive
trait ratings. Interestingly, the positive effect of behavioral realism
is dependent on the understanding of the various factors and their
implementation in different use cases. Bente et al. [5] found that
having plausible gaze behaviour contributes to social presence but
also found that when the duration of the eye contact was too long it
led to negative responses from participants.

2.2 Eliciting participant preferences

The method introduced in Slater et al. [26] aims to find an optimal
configuration amongst possible factors in a VR application. In the
first use of the method, four factors were considered: illumination
level (Gouraud shading, static global illumination, global illumina-
tion with real-time shadows), field-of-view (small, large), display
type (simulated power wall, head-mounted display), and virtual body
(none, static, real-time full motion-tracked body). Participants first
experienced a scenario with all these factors at their maximum level,
and were asked to concentrate on their sensation of either PI or Psi.
Starting from a low level for each factor and under simple cost con-
straints, participants were able to increase one level at a time until
they declared that their feeling of PI of Psi matched their original
feeling. There were 36 possible configurations, and each change by
the participant corresponded to a transition from one configuration
to another. By counting the number of times that a change was made
from configuration i to j, a 36×36 transition probability matrix (P)
was constructed, where entry pi j is the probability of transitioning
to configuration j given that the participant was experiencing config-
uration i. From the transition matrix P, Markov Chain theory was
used to compute the k-step transition probabilities (the probability
of being in configuration j, k transitions after being in configuration
i) [12]. The data also supported computation of the probabilities of
choosing a ‘match’ (i.e. when the participant had stopped through
matching their original feeling of PI or Psi) for each configuration.
Hence, this method affords computation of interesting probabilities
that represent how the ‘average’ participant behaves in terms of
choosing a configuration that matches the level of PI or Psi.

Azevedo et al. [2] closely followed this method augmented with
EEG measures of engagement and Azevedo [1] applied the method
to auditory environments. Skarbez et al. [23] applied the method to
Psi in the context of interaction with virtual characters. Bergstrom at
al. [6] applied the method to unravelling how Psi may be influenced
by different characteristics of sound rendering, and the responses of
musicians to the participants, in the context of a virtual string quartet
performance. Gao et al. [8] explored how different factors con-
tributed to the believability of a virtual environment in the context
of a rock climbing application. The study involved participants first
experiencing a rock climbing environment at the highest levels of
each factor: visual appearance of the rocks (3 levels), the appearance
of the surrounding scene (from simple to complex, 3 levels), envi-
ronment sound effects (from no sound to high level windy sound, 3
levels), and environment behavior (none to dynamic changes such as
animated leaves, 2 levels). The windy sound and dynamic features
were the most important contributors to believability in this setup,
and the analysis of the transition matrix showed that to get to the
windy sound, dynamics and rock appearance were the transitions
that participants made.

Just as this method has been used for PI, Psi and believability,
it can be used for any other type of response that is definable and
identifiable by participants. The method does not assume an underly-
ing quantitative scale, but only that participants are able to compare
the effect of two different configurations and choose one over the
other, or conclude that there is no difference in terms of their own
experience between them.

In this paper we considered what is perhaps the most straight-
forward and understandable response by participants to changes in
configuration. Given two configurations, we are only interested in
the configuration that participants felt made the experience better
for them. Like previous uses of this method we first let participants
experience the ‘best’ possible configuration in a demo task but we
did not then ask them to select changes to move towards that experi-
ence since we did not want to impose our notions of what constitutes
a better experience. Rather, participants were free to move through
the configuration space in any direction, their only criterion being
whether they prefer the newly chosen configuration to the previous



one. There are other differences with previous uses of this method
detailed in the next section.

3 EXPERIMENTAL DESIGN

Participants experienced a pre-recorded avatar presenter delivering a
14-minute presentation, divided into two equivalent trials of seven
minutes each, on “How to Have a Good Conversation” in a 1:1 setup
in VR. This approach was selected to ensure maximum stimuli uni-
formity across participants. At fixed points during each trial, the
presenter stopped and participants had the opportunity, should they
choose to do so, to modify characteristics relating to the presenter
through a user interface. The characteristics they were able to mod-
ify were the factor levels (described below). All participants were
given the same fixed budget, and each transition to higher levels that
participants made had an associated cost. We encouraged partici-
pants to spend the minimum budget required to achieve what they
regarded as the best form of presentation. Note that the budget was
virtual and in no way affected participant compensation.

We evaluated four factors related to avatar expressiveness in a 1:1
presentation scenario: Eye Gaze (EG), Eye Blinking (EB), Mouth
Animation (MA) and Microexpressions (ME). This is denoted in a
property vector of the form S = [EG,EB,MA,ME]. Each instance
of the property vector was considered a configuration. Altogether
there were a total of 81 possible configurations, detailed below:
(EG) Eye Gaze
• (EG = 0) Static centered eyes
• (EG = 1) Dynamic random gaze targeting
• (EG = 2) Dynamic saliency-based gaze targeting
(EB) Eye Blinking
• (EB = 0) None
• (EB = 1) Normal-distribution around mean frequency of 6 seconds
• (EB = 2) Normal-distribution around mean frequency of 6 seconds

(note that this level was added as a placebo effect to ensure that
participants were only moving to higher levels if this made the
experience better for them)

(MA) Mouth Animation
• (MA = 0) None
• (MA = 1) Oculus Lipsync [16]
• (MA = 2) Oculus Lipsync with Action Unit Easing
(ME) Microexpressions
• (ME = 0) None
• (ME = 1) Random triggering of microexpressions
• (ME = 2) Linked to events from Oculus Lipsync and Eye Gaze

All of these factors are variations on the facial animation sys-
tem built for the Oculus Avatar SDK, and described in detail in our
Oculus Connect 6 talk [15]. The highest level in each category is
representative of the behavior exhibited in the public release of the
Oculus Avatar SDK (with the exception of EB = 2 as noted, which
was used as a placebo in this experiment, but is triggered by events
in the gaze and speech models related to times of higher blink proba-
bility in the Oculus Avatar SDK). The eye gaze model in EG = 1 and
EG = 2 conditions both use a physiologically-based kinematic model
to generate realistic human saccades, micro-saccades, and smooth
pursuits. The difference between EG = 1 and EG = 2 is that the latter
uses a saliency model to distribute gaze as opposed to distributing
gaze randomly. The saliency model uses a number of factors to
estimate the highest probability of where the user is looking, which
includes head motion, the array of objects in the current field-of-view
and their type, movement, and size, how long an object has been
fixated on and ignored, and the normalized distribution of gaze ec-
centricity from the center. The factors of mouth animation are based
on Oculus Lipsync in MA = 1, and our extensions to the animation

model that feature in the Oculus Avatar SDK in MA = 2. Natively,
Oculus Lipsync generates a probability over 15 visemes (including
laughter), and the avatar rig can be set accordingly per-frame. In
our animation extension in MA = 2, we further correspond these
visemes to their component parts, based on FACS action units [7].
Each action unit has a custom onset and falloff curve, which results
in significantly smoother and more natural appearance of mouth
movements pertaining to speech. Finally, the microexpression fac-
tors operate as a secondary model ME = 2 and in the Oculus Avatar
SDK; linked to characteristic events in the gaze and Lipsync models.
For instance, an upward gaze may trigger a slight raising of the
eyebrows, an end of speech may trigger a subtle smile, and head
movement may trigger slight perturbations of the facial state. These
microexpression models are designed to be extremely subtle; adding
texture and nuance rather than semantic or emotional undertones to
the avatar’s performance. In this experiment, ME = 1 is a state in
which these microexpressions are triggered randomly at a regular
cadence, with no relation to the rest of the facial state.

The following restrictions were built into the system:

1. Participants were given a total budget of 7 in order to encour-
age them to think carefully about their transitions and avoid
the possibility of choosing a maximal configuration [2,2,2,2]
(which would not give us any meaningful information). The bud-
get restriction reduced the total number of configurations being
evaluated from 81 to 80.

2. The cost of moving to each subsequent higher factor level was
equal to 1 budget unit.

3. Factors could only be increased by one level during each transi-
tion opportunity. For example, participants could not move from
level 0 to level 2 on any of the factors without first making a tran-
sition to level 1. This ensured that participants had a chance to
experience and assess the factors at all levels. It also reduced the
amount of data that had to be collected to populate the Markov
transition matrix as some of the transitions became impossible
(transitions from level 0 to 2).

4. Participants were able to remove budget units spent (and recover
total budget) from any factor each turn by reducing the level,
but could not reallocate the budget recovered in the same turn.
For example, if a factor was on level 2, participants were able
to recover budget and bring the factor back to level 1 or level 0
in one turn. However, they could not reallocate that budget to
another factor and increase from level 0 to level 2 on that same
turn, respecting rule 3 described above.

5. At the end of each trial, participants were asked to confirm or
modify their final configuration choice. This final confirmation
turn had none of the previous restrictions in place to allow them
to jump to their preferred final configuration.

Each of the trials randomly started in one of four low base config-
urations, in which three factors were at level 0 and one factor at level
1 ([0,0,0,1], [0,0,1,0], [0,1,0,0], [1,0,0,0]). Participants therefore
began with the remainder six budget units to spend.

4 METHOD

4.1 Participants

A total of 55 participants (31 female, 24 male; average age 35.5 years,
SD = 11.3) were recruited from the Oculus user base. All participants
signed a consent form and the study was approved through Facebook
Research Review. Two participants had no previous VR experience.
Twenty participants were broadly classified as gamers (categorized
as spending more than one hour gaming a week). Participants were
paid £75.



4.2 Materials
The user study was conducted in a lab at Facebook London. An
Oculus Rift Consumer Version 1, two Oculus Touch controllers
and three Oculus sensors were used. The virtual environment was
rendered at scale 1:1 in Unity 2018.2.18f1 at 90FPS in each eye
on an Intel Core i7-7700 CPU @ 3.60GHz, with 16GB RAM and
Nvidia GeForce GTX 1080 GPU running Windows 10.

The virtual environment consisted of an empty custom built room.
A modified version of the Oculus Avatar SDK 1.35 [17] was used
to render the presenter and generate the different factor levels. The
participants’ virtual hands were rendered in a non-human colour
(blue) to remove any effect of skin-tone on performance in the task.
The Oculus Touch trigger buttons were used to interact. A ray
casting method was used in order to point at the user interface in the
experience, with a blue reticle appearing upon collision with it. In
order to account for handedness, participants were able to switch the
interaction from the left or right controller using the X (left hand) or
A (right hand) buttons.

The concept of the user interface for participants to make transi-
tions was very simple and straightforward. Four rounds of usability
testing with five participants each were completed to iterate on its de-
sign prior to the study. The resulting version consisted of a floating
panel with a slider showing coloured discrete marks for each factor
as well as for the budget at the top. A “plus” and “minus” button
were displayed on either side for each factor slider, allowing partici-
pants to increase or decrease levels by selecting them. Each factor
level increase or decrease would automatically update the budget bar
to reflect the units taken or recovered, with a delayed animation to
make this obvious for participants. The vertical order in which fac-
tors were presented in the user interface was counterbalanced across
participants to avoid order effects (with each participant having the
same counterbalanced order for the full duration of their session).

4.3 Metrics
There were two sets of dependent variables. The first was the final
configuration that the participants chose. The second consisted
of the transition data, which depicted the chronological changes
made by a participant from configuration i to another configuration
j across the two trials. We also included a post-trial questionnaire.
This included a 16-question knowledge transfer questionnaire about
the content that the pre-recorded presenter delivered. The facts
required to correctly answer questions 1-7 were delivered during
the presentation in trial 1, and questions 8-16 in trial 2. We also
included a question asking participants to rank the factors in order
of importance. The questionnaire was delivered outside of VR.
Participants also completed a semi-structured interview.

4.4 User interface demo task
To familiarise participants with interaction in the virtual environment,
we created a task where participants had to fill in a bar to continue
onto a simplified version of the user interface by pointing at and
selecting the “plus” button. If participants were in doubt as to how
to interact, the experimenter would assist.

Participants were then shown the full user interface containing
all factors and levels as part of a full user interface demo task.
Here participants were able to experience what was possible within
the system by manipulating the factor levels of the presenter. The
goal of this task was to allow participants to familiarise themselves
with the system and to feel comfortable interacting with the user
interface. The budget was set such that the participant could test
the configuration where all factors are set to their maximum level.
The presenter was not the avatar from the main presentation task
but rather a different avatar to encourage the practice of changing
the factor levels. These would be the same factor levels that they
would be able to modify on the presenter during the main task. The
presenter spoke a short looped phrase to allow participants to see

Figure 1: Main task scene with the presenter and user interface.

the effect of the changes they made. Participants were only able to
advance to the next stage if they displayed understanding of how to
interact with the user interface, understood the effect of the changes
to the confederate avatar, and experienced the system at the highest
configuration [2,2,2,2]. They were encouraged to think aloud to help
the experimenter assess if they understood how the user interface
operated. The confederate avatar for the demo task differed in both
appearance and voice to the confederate in the main task. This was
to prevent familiarity affecting the choices participants made.

4.5 Main task
In the main task, participants were faced with a virtual presenter
who delivered a presentation to them about how to have a good
conversation [10]. This presentation was adapted from an TEDx
Creative Coast talk and was selected out of a series of talks in a pilot
study because it elicited the highest engagement levels as evaluated
via questionnaires.

Participants were reminded of the instructions for the main task
and advised that from that moment on there may be options for
the experience that they cannot always afford, meaning that going
forward the budget restrictions described in Sect. 3 were applied.
The main task was split into two 7-minute trials, with each trial
corresponding to the first and second half of the presentation. At
seven fixed, equally spaced times during the presentation, a dialog
box prompt would appear giving the participant the opportunity to
remain in the same configuration or make a transition to another
configuration. If participants decided to make a change the full
user interface would appear, as shown in Fig. 1. An extra dialog
box would appear at the very end of each trial to allow participants
to confirm or change their final configuration. Participants were
not encouraged to think aloud during the main task to avoid any
distraction from the presentation and the evaluation of factors. This
task was designed to be completed with the participant standing.

4.6 Procedure
Participants were welcomed to the session and escorted to the lab.
The experimenter introduced the hardware and the task. The exper-
imenter helped the participant don the headset. After recentering
to ensure that participants were facing the correct direction and
that the virtual floor was at the correct height, they experienced the
user interface demo task. After making sure that the participants
understood how to interact with the system, they were reminded of
the instructions and completed the main task. Upon completion of
the first trial, the experimenter helped the participants remove the
headset. The participant was then given a few minutes (no more than



5) to sit and rest, as well as to drink some water. The experimenter
then helped participants don the headset. They were reminded of
the task before starting the second trial. Participants were asked to
stand throughout the main task of each trial. However, in the cases
were participants expressed a need to sit down, a chair was provided.
The chair was positioned in the same position the participants were
asked to stand in and the application was then recentered to account
for the height change, to ensure that the presenter’s height would
always match the participant’s. One participant chose the sitting
option. After both trials were completed, the experimenter helped
the participants remove the headset and they were handed an iPad
to answer the questionnaire described in Sect. 4.3. They were also
offered water. The questionnaire was completed sitting down. They
then discussed their experience with the facilitator.

5 RESULTS

5.1 Method of analysis
Participants completed two trials with each trial starting at different
configurations. The results were analysed for each trial indepen-
dently as well as combined, with all showing similar results. In
addition to looking at the transitions from configuration to config-
uration (Transition Analysis), we also analyze the final configura-
tions that participants chose after they had reached the configuration
through following the transitions (Final Configuration Analysis).
For Transition Analysis, we denote the set of 80 configurations that
a participant could experience by C. Note that the budget restrictions
made configuration [2,2,2,2] impossible to reach. The set of all
possible transitions from configuration to configuration is therefore
a subset of C. Each transition is of the form:

[EGt ,EBt ,MAt ,MEt ]→ [EGt+1,EBt+1,MAt+1,MEt+1]
denoting the transition from the configuration that a participant was
in at time t, to the configuration at time t +1.

From the set of all such transitions we can build the probabilities
πi j that a participant in configuration i ∈C would next choose con-
figuration j ∈C. This gives us the m×m Markov transition matrix
P, where m = 80 is the number of configurations. Fig. 2 shows,
for example, the numbers of transitions for each factor separately.
The full transition matrix is similar, but includes each of the 80
configurations, and thus is too complex to display.

Pk is the k-step transition matrix, with elements that give the prob-
ability that a participant in configuration i would be in configuration
j, k steps later. Let u be a 1× 80 vector where u j are the initial
probabilities of being in configuration j ∈C (i.e. the probability of
being in a particular configuration). Then uPk are the probabilities
of being in the configurations after k transitions. All of the above
follows from Markov Chain theory [12]. P is constructed from the
770 observed transitions (55 participants × 2 trials × 7 transitions).

Markov Chain theory requires that the probability of making a
transition to any valid configuration is only dependent on the current
configuration and not previous history. We follow this abstraction
for the purpose of model building. Using the results of all transi-
tions made by the participants we can estimate the transition matrix:
the probability of a transition to a configuration given the current
configuration. From the resulting transition matrix we can calcu-
late the probabilities of being in the various configurations after the
successive transitions within the set system and budget restrictions.

Suppose that the number of transitions from i to j is ni j . Then the
frequency estimate of the probability πi j is pi j = ni j/Ni, where Ni
is the total number in row i.

From the set of all transitions various other probabilities can be
estimated, including the probabilities of each factor level being part
of the the final configuration arrived at by participants. We can also
compute the marginal probabilities that any particular factor at any
level is included in any configuration.

After completing their final transition at the end of each trial
participants could choose to make one more change. This was to

Table 1: The four highest probability configurations (C) after each
transition (k) with [0,0,0,0] as the starting configuration, and assuming
that participants chose the transitions randomly. C is the property
vector of the form S = [EG,EB,MA,ME].

Probability
Transition Configuration Frequency Random

1

0000 0.333 0.063
0010 0.333 0.063
0100 0.333 0.063
0001 0.000 0.063

2

0010 0.271 0.030
0100 0.214 0.030
0000 0.120 0.030
0110 0.114 0.030

3

0010 0.171 0.026
0110 0.154 0.026
0111 0.115 0.026
0100 0.107 0.026

4

0110 0.146 0.026
1111 0.128 0.026
0111 0.126 0.026
0010 0.101 0.026

5

1111 0.132 0.026
0110 0.122 0.026
0111 0.120 0.026
1110 0.073 0.026

6

1111 0.126 0.026
0111 0.106 0.026
0110 0.096 0.026
2111 0.068 0.013

7

1111 0.114 0.026
0111 0.091 0.026
2111 0.087 0.013
0110 0.074 0.026

act as a confirmation or not that they had ended in their desired
configuration. Since this final confirmation choice was not regulated
by the budget restriction (to allow them to jump onto their preferred
configuration regardless or where they were), it is not included in
the transition analysis.

5.2 Transition analysis
We added one last transition at the end of each trial that would act
as a “confirmation box”. This was to allow participants to end each
trial in their preferred configuration. Since this last transition was
no longer regulated by the budget restriction (to allow them to jump
onto their preferred configuration regardless or where they were),
we must exclude this last transition from the transition analysis. We
therefore calculate the transition probability matrix without the last
transition from each trial (110 transitions).

The 55 participants completed a total of 7 transitions in each of
the two trials leading to a total of 770 transitions. From this the count
matrix N is computed, which represents the number of transitions
from configuration to configuration. Note that, due to the nature of
the transition restriction, N is a sparse matrix, with 226 non-zero
cells (the 80 × 80 matrix has 6400 cells - the budget restriction
reduces the number of valid cells to 4000).

Diving deeper into the question on sparsity, 184 out of the 226
non-zero matrix cells representing transitions were visited four
times or less. Results also indicate that 366/770 transitions were
from and to the same configuration where [EGt ,EBt ,MAt ,MEt ] =
[EGt+1,EBt+1,MAt+1,MEt+1].

The configuration [0,0,0,0] has each of the four factors at their
‘minimal’ levels. For the purposes of analysis we ordered the con-



Figure 2: Markov transition matrices showing the number of times participants moved between factor levels.

Figure 3: Distribution of final configurations across both trials.

figurations so that [0,0,0,0] occupies the first place, and therefore
the probability vector u = [1,0,0,..,0] (79 zeros) represents this as
the starting configuration for a hypothetical participant. Now using
uPk,k = 1,...,7 we can find the probabilities for the four highest
probability configuration transitions that were more likely to be cho-
sen from this starting configuration. This is shown in Table 1. After
the first transition the most likely configurations were the original
starting one, or with change in Eye Gaze or Mouth Animation. By
transition 5 the most likely configuration had each of the factors
at level 1. Note that the probabilities seem to be low, but should
be compared with the probabilities assuming individuals selected
transitions randomly. Table 1 also shows the highest probability
configurations in this case, taking into account that some transitions
were impossible. Starting from other randomly chosen low base
configurations results in similar transitions as for [0,0,0,0], but more
transitions are needed to reach the same configuration.

5.3 Final configuration analysis

For any particular configuration we can estimate the probability of
ending in that configuration P(C| f inal). This is the number of times
that participants ended in that configuration over the total number of
final configurations, which is 55 participants × 2 trials = 110. The
probability distribution is shown in Fig. 3. Overall, the group’s most
likely final configuration was [2,1,1,1]. Note that 81% of trials had
an exact equivalence between the last transition and the confirmation
transition (i.e. chosen through the confirmation UI after all the tran-
sitions had been completed) and 95% were one level away from their
confirmed final configuration. A Wilcoxon signed-rank test showed
no significant difference in the distribution of final configurations
between the two trials (Z =−0.115, p = 0.908). Participants chose
their responses non-randomly. If they had, then Fig. 3 should illus-

Figure 4: Distribution of budget spent for Trial 1, Trial 2 and both trials.

trate a fairly uniform distribution among the final configurations. If
we carry out a Chi-squared test comparing the resulting distribution
with the theoretical uniform distribution, then random choice is an
inconceivable hypothesis (χ2(27) = 68.182, p < 0.001).

5.3.1 Marginal factor probabilities

Starting from [0,0,0,0] we can compute after k transitions the
marginal probabilities of a factor being present at a given level
(shown in Table 2). For example, after 4 transitions we can find the
probability that (e.g.) Eye Gaze would be present at level 1. We
consider this after 4 transitions and after 7 transitions. After 4 transi-
tions Eye Blinking and Mouth Animation have the highest level 1
probabilities and these two have the greatest overall probability of
having made at least one change. This is also true after 7 transitions.
The strong result is that in the case of Mouth Animation there is a
very high probability of there being at least one change, though the
greater bulk of the probability is at level 1. This is followed by Eye
Blinking where again, the greater probability is at a level 1 change.
After 7 transitions there is not a lot of difference between Eye Gaze
and Microexpressions. It is important to note that Eye Blinking at
level 2 was the same as level 1, designed as a ‘placebo’ to understand
if participants were following instructions as they were designed.
This is reflected in Table 2, where the probabilities of EB being at
exactly level 2 are always small in comparison to others.

5.4 Budget analysis

Participants were able to spend a maximum of seven budget units in
each trial. Results show that the mean budget spent by participants
across both trials was 4.7 with an S.D. of 1.6. Fig. 4 shows the



Table 2: Probability that the configurations after 4 and 7 transitions would contain the factor at the given level with the probability estimates.

After 4 transitions After 7 transitions
Level 0 Level 1 Level 2 At least Level 1 Level 0 Level 1 Level 2 At least Level 1

Frequency estimate

Eye Gaze 0.510 0.382 0.109 0.490 0.289 0.367 0.345 0.712
Eye Blinking 0.272 0.685 0.043 0.728 0.104 0.819 0.077 0.896
Mouth Animation 0.086 0.790 0.124 0.914 0.027 0.678 0.295 0.973
Microexpressions 0.506 0.419 0.075 0.494 0.305 0.446 0.249 0.695

Figure 5: Time taken for participants to complete each of the eight
transitions for each trial. Selecting “no change” was recorded as zero.
Boxes represent the interquartile ranges (IQR). Whiskers represent
either the extreme data points or extend to 1.5× IQR. Outliers are
shown by circles. Extremes are shown as asterisks.

distribution of budget spent. A Wilcoxon signed-rank test showed
no statistically significant differences on budget spent between Trial
1 and Trial 2 (Z = −0.801, p = 0.423). A Mann-Whitney U test
showed no statistically significant differences on budget spent based
on gender (U = 1278, p = 0.351). A Mann-Whitney U test showed
no statistically significant differences on budget spent based on
gaming experience (U = 277, p = 0.158).

5.5 Transition times
The time taken by participants to complete each transition decreased
over time and is shown in Fig. 5. A Wilcoxon signed-rank test with a
Bonferroni correction applied showed that there were no significant
differences between the two trials.

5.6 Questionnaire analysis
5.6.1 Factor ranking
Participants rated the factors from most to least important. Overall,
Mouth Animation was ranked as most important, followed by Eye
Blinking, then Eye Gaze and then Microexpressions. There was a
significant difference in the distributions of importance rankings for
each of the factors (χ2(2) = 46.29, p < 0.001,d f = 3). Post hoc
analysis with Wilcoxon signed-rank tests were conducted with a
Bonferroni correction applied, resulting in a significance level set at
p < 0.008. Median (IQR) perceived importance for Eye Gaze, Eye
Blinking, Mouth Animation and Microexpressions were 3 (2 to 4),
2 (2 to 3), 1 (1 to 2) and 4 (3 to 4), respectively.

5.6.2 Knowledge transfer
A Kruskal-Wallis H test showed that there was no statistically sig-
nificant difference in knowledge transfer score (total number of cor-

Figure 6: Stacked bar graph depicting participants’ correct answers
(green), incorrect answers (red) and blank answers (grey) for each of
the knowledge transfer questionnaire questions.

rect responses) based on final configuration (χ2(2) = 21.664, p =
0.301,d f = 19). At a first glance at Fig. 6, we can see that the
lowest correct responses came from Question 1 and Question 8.
Interestingly, the content asked in these questions was located at
the start of each trial. This could relate to participants settling into
the experience and paying less attention to the presentation at the
beginning of each trial.

5.7 Interview analysis

Interview responses were coded into the following themes:
Participants felt they had sufficient opportunities to assess

the factors and believed that the configuration that they ended
in was the best given the options available. This is important for
us in validating that the number of opportunities offered to make
transitions in our experimental design were sufficient.

Participants tended to mimic real-world behaviour, even
though most reported that they knew they were facing a pre-
recorded avatar. Some participants laughed, and others stepped
back when they felt the presenter was too close.

Participants could articulate what their goals were in making
the experience better. They reported that their goal was to make
the presenter more ‘real’, ‘natural’, ‘not mechanic’, ‘human’, ‘less
distracting’, ‘comfortable’, and ‘life-like’.

The budget was sufficient to find a ‘match’. By this we can
conclude that the budget was sufficient.

Some participants had difficulty in interpreting ME levels.
Unlike the other factors, ME changes were harder to pinpoint. This
led to participants having varied notions on what the effect of this
factor was and could explain the results.

6 DISCUSSION

This work extends the methodology introduced in previous work [6,
23, 26] by:

• including a rigorous application of the budget concept,

• using a placebo effect to validate the design,



• proposing a new goal for participants to make the experience
better where they no longer have to match the initially experienced
sensation with all factors at their maximum level,

• allowing participants to move between configurations in any di-
rection before confirming the final configuration, and

• removing the assumption that a given level of a factor is better
than another.
For decades VR practitioners have been imposing measurements

(e.g. presence) to evaluate quality of experience, but maybe partici-
pants have different criteria. Therefore, this approach introduces the
idea that results are purely based on participant preferences rather
than what teams or experimenters decide in advance is important.

However, the method still presents a number of limitations. On
one hand, we do not know the extent to which the results from a
study using the method generalise to other scenarios. We also do not
yet understand what might be the maximum number of factors and
levels for an evaluation using this method. The higher the number of
factors and levels evaluated, the larger the Markov transition matrix
that has to be populated with data, and the higher the cognitive
workload for participants. Another limitation is that it relies on one
particular analytical technique (Markov Chain theory - replicating
the previous uses of the method). Given that participants were
freely navigating through the different configurations during both
trials, it is not possible to correlate a single configuration (e.g. the
final configuration) for each participant to their knowledge transfer
questionnaire score. However, there may be additional ways to
approach the analysis that could yield novel insights.

In the study, we evaluated four factors relating to avatar facial
behavioral realism: EG, EB, MA and ME. Participants were able
to iteratively assess three levels for each of these factors in a 1:1
presentation delivered by a pre-recorded avatar. This allowed for the
evaluation of 80 versions or configurations of the system (a virtual
budget limited participants from reaching a configuration where all
factor levels were maximised).

Overall, the group’s most likely final configuration was [2,1,1,1]
(Full Model Targeting Eye Gaze, Linear Eye Blinking, Oculus Lip-
sync Mouth Animation and Random Microexpressions). This is
the configuration that we would recommend teams to implement
in 1:1 presentation experiences that the scenario we evaluated is
representative of and for the studied set of factors and levels. This
is not to say that this combination is the ‘best’ in all circumstances,
but is relative to this particular system and presentation type.

Most participants did not spend the full budget, suggesting that
there were personal optimal configurations which did not require
maximising all factor levels. This is consistent with theory denoted
in previous works that have implemented this method [6, 23, 26].
We also found no significant differences in budget spent based on
gender and gaming experience. We suggest gathering more granular
background data around gaming experience to continue monitoring
this result in future uses of this method.

The placebo effect included in factor EB worked well to help
us verify that participants were completing the task as it had been
designed (to only spend budget if it made the experience better for
them) as the probability that participants would end in EB = 2 was
low. The expectation was that participants would not end in level 2
for EB as there was no actual increased quality or value, but there
was an increase in cost. The placebo effect actually allowed for
participants to maximise all factor levels with the available budget.
However, this effect was not observed given that most participants
did not consume the full budget.

Results indicate that knowledge transfer was generally high but
lower at the start of each trial. This is a good indication that par-
ticipants were involved in the presentation and paying attention to
the information that was delivered, beyond evaluating the different
factors. Participants may have concentrated on settling into the task
and evaluating options towards the beginning of each trial.

Overall, the time taken by participants to make transitions be-
tween levels decreased over time. This could indicate that, towards
the end, participants had generally found their optimal configuration
and decided not to make further changes, whereas towards the begin-
ning there was more exploration and evaluation. This could also be
attributed to fatigue; participants may have felt tired and therefore
less engaged in the task and more focused on finishing quickly. An-
other possibility is that participants may have overcome the learning
curve, and felt more confident in using the system to achieve the
result they wanted. However, for this last potential reason we would
have expected to see a significant difference between trials, which
we did not observe.

Future work should further explore how different factors may
contribute to quality of experience in other applications, extending
the range of use cases evaluated. This information will be important
to help teams define the best possible configurations for different
VR applications, including future hardware that can support those
configurations (e.g. face tracking technologies). Even though our
goal with the proposed extended method was to model the average
user based on the actions that participants took, future work could
focus on studying individual differences. The community should
equally continue to evaluate other factors and levels in the context
of immersive social interactions, and in multi-user scenarios where
avatars are driven in real-time.

Extensions to the method should explore other budget restrictions
that will force participants into tighter evaluations and, conversely,
scenarios in which the budget does allow for maximisation of all
factors to understand whether a point of equilibrium can still be
reached when there is no tension. Moreover, the budget could
reflect real costs, for example, of implementation or production.
Other suggestions include different configuration starting points for
trials (i.e. completely random or configurations with high levels) to
explore whether consistent points of equilibrium are reached. For
larger data collection, the research method could also be run as an ‘in
the wild’ study by embedding the experience in public applications
and optionally allowing headset owners to voluntarily take part in
them. This would allow for more sophisticated machine learning
approaches to the data analysis.

7 CONCLUSIONS

This paper is based on the framework described in Slater et al. [26]
that proposed a method for exploring the contributions of different
factors to the illusion of Psi and PI in a VR application. Here we
have shown how this work can be extended to account for other
objective features of a VR experience relating to avatar-mediated
non-verbal communication. Importantly, this method avoids the need
for self-report. The only information it is based on is observable -
participants chose to make transitions (or not).

We tackle this problem with a novel approach; to explore what
participants choose to be acceptable rather than risk imposing pre-
conceived notions of what makes for a better VR experience. In the
study we looked at four factors. The results have shown that most
participants did not spend the full budget, implying that there was
an optimum point reached without having to maximize the factors.

It is important to note that these results should not be taken as an
evaluation of the factors themselves but as an exploration of their
implementation and influence on participants’ preferences on obtain-
ing a better VR experience strictly applied in the context explored.
Above we mentioned that MA followed by EB were accepted overall
at a minimum of level 1, but there was less agreement in what was
the optimal level for EG and ME. This is not to say that EG and ME
are not important: in this setup, this is the preference established
by participants. This framework hopes to provide teams that are
looking to build VR applications with a consistent tool to evaluate
the impact of different factors on experience, as well as a way to
understand the point of equilibrium across a range of use cases.
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