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ABSTRACT
This paper presents Facebook’s design and operational experience
of a Hose-based backbone network planning system. This initial
adoption of the Hose model in network planning is driven by the
capacity and demand uncertainty pressure of backbone expansion.
Since the Hose model abstracts the aggregated traffic demand per
site, peak traffic flows at different times can be multiplexed to save
capacity and buffer traffic spikes. Our core design involves heuristic
algorithms to select Hose-compliant traffic matrices and cross-layer
optimization between the optical and IP networks. We evaluate the
system performance in production and share insights from years
of production experience. Hose-based network planning can save
17.4% capacity and drops 75% less traffic under fiber cuts. As the
first study of Hose in network planning, our work has the potential
to inspire follow-up research.
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1 INTRODUCTION
Global online service providers, such as Google, Facebook, and
Amazon, build wide-area backbone networks for connecting thou-
sands of Point-of-Presence (PoP) sites and hundreds of Data Cen-
ters (DCs) across continents. To keep up with the explosive traffic
growth, tremendous amounts of money and engineering effort
are constantly invested in expanding and upgrading the backbone
network. Network planning is thus the key to the backbone evolve-
ment, with the ultimate goal of devising capacity-efficient network
build plans that are resilient to unforeseen demand uncertainties from
service changes and traffic dynamics.

Facebook achieves this goal by innovatively adopting the Hose
model in backbone planning. Traditionally, backbone planning was
based on the Pipe model. As illustrated in Figure 1, the Pipe model
abstracts pairwise traffic demands between network sites [16]. To
provision sufficient capacity across demand variations, with the
Pipe model, we must plan for the peak demand between every site
pair. From the entire network’s perspective, this approach aims
at accommodating the “sum of peak” traffic regarding all the con-
nected sites. The Hose model, in contrast, abstracts the aggregated
ingress and egress traffic demands per site [9, 13]. It naturally sums
up the traffic demands across sites, so capacity planning with the
Hose model is for the “peak of sum” traffic. As the peak traffic
demands across different sites are unlikely to happen simultane-
ously, the Hose model offers multiplexing gain, which saves the
total capacity and leaves headroom for traffic uncertainties after
deployment where individual demands across sites vary but their
sum does not exceed the provisioned peak capacity.

Besides capacity saving and resilience to uncertainty, Hose-based
backbone planning goes hand in hand with the industry trend of
decoupling service logic from infrastructure design. In practice, ser-
vices are migrated from one DC to another for various reasons, e.g.,
load balancing, service scaling, latency reduction, DC maintenance,
etc. The network and server infrastructure should mark out the
service behaviors and provide flexibility for service migration. This
requirement makes accurate point-to-point traffic demand forecast
between site pairs very difficult. In addition, for an actively growing
backbone network like Facebook’s, new DCs are built yearly, so it is
almost impossible to estimate the traffic demand to/from new DCs
yet to be built. Thanks to the Hose model, we only need to specify
the aggregated traffic demand per site, without worrying about the
other end of each traffic flow. Therefore, using Hose-based plan-
ning, the network has the potential to scale up per-node basis, as
easily as storage and compute resources, in the future.

However, regardless of the advantages of Hose-based network
planning, the capacity must be granted to site pairs in a point-to-
point manner like in the Pipe model. Our problem with backbone
planning is thus to convert the Hose per-site traffic into the Pipe
pairwise traffic. The Hose model, which was originally invented for
Virtual Private Network (VPN) provisioning [9] and later used for
Virtual Machine (VM) placement [4] in the cloud, has never been
applied to the network planning setting, so we cannot turn to the
literature for readily available solutions.

Our main contribution in this paper is the solution to this new
problem. The Pipe output traffic can be presented as a traffic matrix
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Figure 1: Hose model for aggregated ingress and egress traffic de-
mands per site vs. Pipemodel for individual traffic demands between
node pairs on a 3-site network. A site can be a DC or PoP. Pipe plans
for “sum of peak” traffic, whereas Hose plans for “peak of sum”
traffic, which offersmultiplexing gain as individual peak traffic de-
mands usually happen at different times.

(TM) between the site pairs. The aggregated traffic demands in
Hose map to a continuous space, which contains an infinite number
of TMs. It is computationally intractable to plan for all possible Pipe
TMs under the Hose model. Our challenge is to generate a small
subset of TMs to represent the Hose space. We propose a series of
heuristic algorithms to address this challenge (§4). We first design a
sampling scheme to generate candidate TMs uniformly in the Hose
space. From these TMs, we find critical ones that stress the current
bottleneck links, which are potential locations to deploy additional
capacity. We thus propose a sweeping algorithm to quickly find
bottleneck links in the network. Critical TMs are chosen through
optimization, and we also define “Hose coverage” as a metric to
quantify how representative these chosen TMs are.

Another contribution of this paper is to share the production
network planning process, with practical considerations in Face-
book’s network setting. Our engineering experience includes the
separation of short-term and long-term planning, the abstraction
to simplify the interaction between the optical and IP networks,
the resilience policy to protect against failures, and the optical-IP
cross-layer capacity optimization (§5). We also evaluate the perfor-
mance of our Hose-based network planning system in production
(§6). We demonstrate Hose can save 17.4% capacity compared to
Pipe and drops up to 75% less traffic under unplanned failures.

To the best of our knowledge, we are the first to study the Hose
model in the context of network planning, and this is the first time
that the end-to-end network planning procedure is introduced to
academia. We wish our work to inspire a new line of research,
where theoreticians can have a better formulation of our heuristic
algorithms and practitioners can optimize our planning system.
This work does not raise any ethical issues. We preserved user
privacy and anonymity throughout this study.

2 MOTIVATION FOR HOSE
In this section, we use production traffic to demonstrate the ad-
vantages of Hose-based backbone planning on capacity saving and
resilience to traffic uncertainties.
Experimental setup We collect production traffic between every
site pair on the Facebook North America backbone from 11/23/2020
to 12/28/2020. To eliminate the time-of-day effect, we only look at
the busy hour, when the total traffic in the backbone is the highest in
the day. In the busy hour, traffic is sampled once per minute, making
60 data points. For the Pipe model, we get the 90th percentile across
the 60 data points as the peak traffic demand for each site pair. For

the Hosemodel, we add up the ingress/egress traffic per site for each
data point across the source/destination sites it talks to. Among
the 60 data points of aggregated traffic, we use the 90th percentile
as the peak Hose traffic demand. This method gives us the “daily
peak” traffic demands for the Hose and Pipe models respectively.

In production, we usually smooth traffic demands with a moving
average. By Facebook’s standard, we take a 21-day window to
average the daily peak demands described above, and we add 3×
the standard deviation of the 21-day data to the moving average as a
buffer for sudden traffic spikes. This method produces the “average
peak” traffic demand per Hose site and per Pipe site pair.

In the following experiments, we sum up the total traffic demand
in the entire North America backbone, across sites in Hose and
across site pairs in Pipe.We look at 4 numbers per day: the total daily
peak demand and the total average peak demand in the backbone,
under the Hose and Pipe models respectively.

Traffic reduction The key difference between Hose- and Pipe-
based planning is to deploy capacity for “peak of sum” vs. “sum
of peak” traffic. If using the Hose model, the multiplexing gain
allows us to plan for less capacity, as the Pipe traffic sharing the
same source/sink are unlikely to reach the peak simultaneously.
Figure 2 shows the relative Hose traffic reduction, as the reduced
total demand in Hose against Pipe divided by the total demand
in Pipe. The “daily peak” demand of Hose (red dashed curve) is
10%-15% lower than Pipe, and the “average peak” demand (black
solid curve) is 20%-25% lower. As backbone planning is based on
traffic demands, we have good reasons to believe a considerable
proportion of capacity can be saved just by adopting the Hose
model for planning.

Tolerance to traffic dynamics Themultiplexing effect also means
the Hose planning result can cover more traffic variations. Figure 3
is the CDF of the total daily peak traffic demand. For confidentiality,
we normalize the absolute traffic volume against the maximum
demand (which is from the Pipe model). As shown in the figure,
the vertical line at 𝑥 = 0.55 maps to 90% of the days in the Hose
model and 40% in Pipe. It means if we plan for 55% of the maximum
total demand, under the Hose model, the daily peak demand will
be satisfied for 90% of the days, while it will be satisfied for only
40% of the days in Pipe. The higher percentile in Hose indicates
it can tolerate more traffic uncertainties. Since the Hose model is
constrained by the aggregated traffic instead of a particular TM, it
has more headroom to absorb unexpected traffic spikes.

Stable traffic demand We also measure the variance of Hose
and Pipe traffic across days. To make the different traffic demands
comparable, we use coefficient of variation as the metric, which is
the standard deviation of the traffic demand divided by the mean.
Figure 4 shows the coefficient of variation for the total daily peak
traffic in the backbone. The relative traffic dispersion in Hose is
much smaller than Pipe, with a shorter tail as well. As a result,
the Hose model provides a more stable signal for planning and
simplifies traffic forecast. With these, it is not hard to envision the
network scaling up as easily as storage and compute resources,
where a node can have an accurate approximation of its future
growth, without worrying about the interaction with other nodes
in the network.
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Figure 2: Hose traffic reduction.
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Figure 3: Total traffic distribution
of Hose vs. Pipe.
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Figure 4: Coefficient of Variation with Pipe
vs. Hose traffic.
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Figure 5: Service traffic from DC regions B and C to A.

Adaption to service evolvement Services evolve over time in
production. Possible causes include service behavior changes, re-
labeling of Quality of Service (QoS) classes, traffic shift for load
balancing, new service launches, and many others. Figure 5 shows
an example from the user database (UDB) service at Facebook. Due
to resource and operational constraints, the UDB servers storing
user data only sit in a few regions, and UDB-less regions rely on
a caching service called Tao [2] to fetch data from UDB regions
nearby. Figure 5 plots the amount of Tao traffic flowing from UDB
regions B and C to UDB-less region A. The significant traffic change
is a result of Tao service changing the primary UDB region from B
to C, with a canary on a few shards on 03/05 and a complete policy
change on 03/09. Both incidents created several Tbps of traffic shifts,
where a Pipe model would fail. In contrast, because the total traffic
amount stayed the same, the Hose ingress traffic at region A had
little disruption. The traffic aggregation nature of Hose is naturally
more resilient to service changes, making it a future-proof solution
to network planning.

3 HOSE-BASED CAPACITY PLANNING
In this section, we give an overview of the capacity planning prob-
lem and our system design. Table 1 lists the notations throughout
the paper.
Networkmodel Our backbone network connects a number of DCs
and PoPs together. It consists of IP routers over a DenseWavelength
Division Multiplexing (DWDM) optical network. The backbone
routers are connected using IP links that route over multiple fiber
segments. We represent this network as a two-layer graph: the IP
network 𝐺 = (𝑉 , 𝐸), where the vertices 𝑉 are backbone routers
and the edges E are IP links, and the optical network 𝐺 ′ = (𝑉 ′, 𝐸 ′),
where the vertices 𝑉 ′ are Optical Add-Drop Multiplexers (OADMs)
and the edges 𝐸 ′ are fiber segments.

For each IP link 𝑒 ∈ 𝐸, 𝐹𝑆 (𝑒) is the set of fiber segments that 𝑒
rides over, which form a path on the optical topology. The IP link
𝑒 consumes a portion of spectrum on each fiber segment 𝑙 ∈ 𝐸 ′

over which 𝑒 is realized. For example, a 100Gbps IP link realized
using Quadrature Phase Shift Keying (QPSK) modulation can con-
sume 50GHz of spectrum over all fiber segments in its path. The
relationship between IP capacity and optical spectrum is shown in
Section 5.1.

Failure model We consider a set of fiber failures in the backbone.
Every IP link 𝑒 ∈ 𝐸 over the failed fibers would be down. In order to
provide desired reliability to the service traffic, we pre-define a set of
failures 𝑅 referred to as planned failures. The production network
should be planned with sufficient capacity such that all service
traffic can be routed for each failure 𝑟 ∈ 𝑅. Detailed resilience
policy in capacity planning will be presented in Section 5.2.

Traffic forecast Capacity planning depends on the projected traf-
fic demand in the future. Instead of modeling the organic growth
of link-wise traffic like done in ISP networks, for content providers,
it is common practice to forecast the future traffic demand per ser-
vice based on service profiling. This is because services, as content
generators, provide a more reliable source of truth for traffic de-
mand. For inter-DC traffic, service teams calibrate server utilization,
especially CPU utilization, to devise service growth plans under
the server budget allocated by the company. They provide service
scaling factors, which are applied to the current service traffic to
form the future demands. For PoP-DC traffic, we model user growth
and cache misses at PoPs to predict the amount of content retrieval
between PoPs and different DCs. The demands can be aggregated
in different ways, e.g., per-site-pair basis for traditional Pipe-based
planning and per-site basis for Hose-based planning.

Problem statement Network capacity is the maximum through-
put (in Gbps, Tbps, or Pbps) the IP network, and individual IP links,
can carry. The problem of Capacity Planning is to compute the de-
sired network capacity to be built in the future. Building a network
involves complex steps:
(1) Procure fibers from third-party providers
(2) Build terrestrial and submarine fiber routes
(3) Pull fibers on existing ducts
(4) Install line system to light up the fibers
(5) Secure space and power at optical amplifiers and sites
(6) Procure, deliver, install hardware (optical and IP) at sites



Table 1: Notations

Symbol Definition
𝐺 = (𝑉 , 𝐸) The IP topology with backbone routers and IP links
𝐺′ = (𝑉 ′, 𝐸′) The optical topology with OADMs and fiber segments
𝐹𝑆 (𝑒) The set of fiber segments which IP link 𝑒 goes through
𝑁 The number of sites (DCs and PoPs combined) in the backbone
𝑀 A 𝑁 × 𝑁 Traffic Matrix (TM)
𝑚𝑖,𝑗 The traffic volume from site 𝑖 to site 𝑗 in𝑀

®𝑢𝑠 A 1 × 𝑁 all-ones vector to retrieve source nodes in𝑀
®𝑢′
𝑑

A 𝑁 × 1 all-ones vector to retrieve destination nodes in𝑀

®ℎ𝑠 A 1 × 𝑁 vector bounding egress traffic of source nodes in𝑀
®ℎ′
𝑑

A 𝑁 × 1 vector bounding ingress traffic of destination nodes in𝑀

𝐻 = { ®ℎ𝑠 , ®ℎ′𝑑 } Hose constraints for the egress and ingress traffic demands
𝛼 Edge threshold in the sweeping algorithm (§ 4.2)
𝜖 Flow slack in Dominating Traffic Matrix (DTM) selection (§ 4.3)
𝑐 ∈ 𝐶 A network cut in the cut set
𝐷 (𝑐) The set of DTMs for a network cut 𝑐 under flow slack 𝜖
𝑇 A set of candidate DTMs
𝐴𝑀 A binary 0-1 assignment variable indicating if DTM𝑀 is selected
𝑃 A convex polytope to represent the high-dimensional Hose space
𝑆 A set of sample points in the Hose space 𝑃
𝑏 ∈ 𝐵 A plane in a collection of planes in the Hose space 𝑃
𝑥 (𝑙) The cost of procuring and deploying a fiber segment 𝑙 ∈ 𝐸′

𝑦 (𝑙) The cost of turning up a dark fiber 𝑙 ∈ 𝐸′

𝑧 (𝑒) The cost of provisioning a new wavelength to add an IP link 𝑒 ∈ 𝐸

𝜑 (𝑒) The spectral efficiency of an IP link 𝑒 ∈ 𝐸

_𝑒 The IP capacity of IP link 𝑒 ∈ 𝐸

𝛾 Routing overhead
𝑟𝑞 ∈ 𝑅𝑞 A failure scenario in the planned failure set for QoS class 𝑞
𝑓𝑖,𝑗 (𝑢, 𝑣) A traffic flow from source 𝑖 to destination 𝑗 via IP link {𝑢, 𝑣 } ∈ 𝐸

𝜙𝑙 The number of fibers to be lighted up on fiber segment 𝑙 ∈ 𝐸′

𝜓𝑙 The number of fibers to be deployed on fiber segment 𝑙 ∈ 𝐸′

All these activities have high lead time, taking months or even
years to deliver. Thus, capacity planning is critical to the future
evolution and profitability of the network.

In the network planning problem, the objective is to dimension
the network for the forecast traffic under the planned failure set 𝑅
by minimizing the total cost of solution. The cost of the network
is calculated based on a weighted function of equipment (fibers
and other optical and IP hardware) procurement, deployment, and
maintenance to realize the network plan. The specific cost model is
introduced in Section 5.1.

Planning schemes At Facebook, we categorize capacity planning
into two sub-problems: short-term planning and long-term plan-
ning. Short-term planning outputs the exact IP topology, i.e., the
IP links and the capacity on each link, while long-term planning
only determines the fibers and hardware to procure. This design
decision is based on the fact that network building is an iterative
process and long-term planning only serves as a reference most
times. For example, the fiber procurement plan may change at de-
ployment time according to availability of fiber resources on the
market. Short-term planning is conducted only after fiber and hard-
ware are secured and in place, because turning up capacity can
happen at a short notice.

Planning pipeline Figure 6 illustrates the planning process. Back-
bone network planning starts from traffic forecast. As aforemen-
tioned, our traffic forecast is service-based and independent of the
planning method, i.e., Pipe- and Hose-based planning alike. For
Hose-based planning, we aggregate the service demands with re-
spective to each backbone site to generate the ingress and egress

Capacity Planner
Hose Demand

Service
Profiling

!

Failure
Scenarios!

?
Pipe
TMs

Traffic
Forecaster

Traffic Matrix 
Generator

Capacity
Optimizer

Long-term Plan

Short-term Plan

Figure 6: System Architecture

Hose constraints. As motivated in the introduction, the key to Hose-
based network planning is converting the Hose constraints into
Pipe TMs. Thus, as will be shown in Section 4, the planner takes
judicious steps to narrow down the infinite number of possible
Pipe TMs to a small set of representative ones. Short-term and long-
term planning are then applied to the reference TMs with different
optimization formulations, considering various failure scenarios
under the resilience policy. The optimization procedure is detailed
in Section 5.

The output of planning is Plan Of Record (POR), in the format
of capacity between site pairs. The POR from short-term planning
is handed to the capacity engineering team for capacity turn-up,
and the POR from long-term planning is given to the fiber sourcing
team for fiber procurement and to the optical design and IP design
teams for deployment of fibers and optical line systems. The focus
of this paper is on the design of Capacity Planner.

4 TRAFFIC MATRIX GENERATION
In this section, we introduce specific steps of converting Hose con-
straints into reference TMs for planning, which includes heuristic
algorithms, optimization, and performance metrics.

4.1 Traffic Matrix Sampling
A Traffic Matrix (TM) for a 𝑁 -node network topology is a 𝑁 × 𝑁

matrix𝑀 , where each coefficient𝑚𝑖, 𝑗 represents the traffic demand
of a flow (typically in Gbps in practice) from the source node 𝑖 to the
destination node 𝑗 . The flow traffic demand must be non-negative,
and a node does not generate traffic to itself. Hence, the coefficients
are in R+ and all diagonal coefficients are zero.

A valid TM must satisfy the following Hose constraints, where
®𝑢𝑠 and ®𝑢 ′

𝑑
are the 1×𝑁 and 𝑁 × 1 all-ones column and row vectors,

and the corresponding demand vectors ®ℎ𝑠 and ®ℎ′
𝑑
bound the total

egress and ingress traffic amount at the source and destination
nodes. These constraints form a convex polytope in the 𝑁 2 − 𝑁

dimension space, where each non-zero coefficient in the TM is a
variable. Figure 7 illustrates a highly simplified 3D example with
variables𝑚1,2,𝑚1,3, and𝑚1,4 only. Each valid TM is a point in the
polytope space, and there are an infinite number of valid TMs in
this continuous space.

Hose constraints:
®𝑢𝑠 ·𝑀 ⩽ ®ℎ𝑠
𝑀 · ®𝑢 ′

𝑑
⩽ ®ℎ′

𝑑

(1)

To generate TMs that satisfy the Hose constraints, our first step
is to sample the polytope space uniformly. Algorithm 1 shows our
two-phase algorithm for generating one sample TM. We randomly
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Figure 7: A 3D example of the Hose polytope space.

Algorithm 1 𝑠𝑎𝑚𝑝𝑙𝑒𝑇𝑀 ( )
Input: network size 𝑁 , Hose constraints 𝐻 = { ®ℎ𝑠 , ®ℎ′𝑑 } in Formula (1)
Output: a random 𝑁 × 𝑁 traffic matrix𝑀 satisfying 𝐻
1: 𝑀 = 0𝑁×𝑁
2: for every𝑚𝑖,𝑗 in𝑀 in random order do
3: ℎ = 𝑀𝑖𝑛 (ℎ𝑖 , ℎ′𝑗 ) × 𝑟𝑎𝑛𝑑𝑜𝑚.𝑢𝑛𝑖 𝑓 𝑜𝑟𝑚 (0, 1)
4: 𝑚𝑖,𝑗 = ℎ

5: ℎ𝑖 = ℎ𝑖 − ℎ

6: ℎ′𝑗 = ℎ′𝑗 − ℎ

7: end for
8: for every𝑚𝑖,𝑗 in𝑀 in random order do
9: ℎ = 𝑀𝑖𝑛 (ℎ𝑖 , ℎ′𝑗 )
10: 𝑚𝑖,𝑗 =𝑚𝑖,𝑗 + ℎ
11: ℎ𝑖 = ℎ𝑖 − ℎ

12: ℎ′𝑗 = ℎ′𝑗 − ℎ

13: end for

create a valid TM in the polytope space in Phase 1 (lines 1-7 ) and
stretch it to the polytope surfaces in Phase 2 (lines 8-13), under the
intuition that TMs on the surfaces have higher traffic demands and
translate to higher capacity requirements for network planning.

In Phase 1, we initialize the TM to a zero matrix (line 1) and
assign traffic to the TM entries one by one in a random order (line
2). For every entry𝑚𝑖, 𝑗 , the maximal allowed traffic amount is the
lesser of the two Hose constraints for source 𝑖 and destination 𝑗 .
We give it a uniformly random scaling factor between 0 and 1 (line
3) and assign the product to the entry (line 4). For bookkeeping,
the consumed traffic amount is deducted from the Hose constraints
(lines 5-6). In Phase 2, we add residual traffic to the TM to exhaust
as many Hose constraints as possible. Similar to Phase 1, we iterate
through the entries in a random order (line 8) and add the maximal
allowed traffic amount to each entry (lines 9-12). Because we iterate
through all the entries and always consume the maximal traffic, our
Phase 2 guarantees to exhaust the most Hose constraints from the
Phase 1 result. It also guarantees we cannot have egress and ingress
hose constraints simultaneously unsatisfied (remaining constraints
must be all egress or all ingress), because if that were the case, the
algorithm would simply increase the associated source-destination
flows until either ingress or egress constraints are exhausted.

This sampling algorithm is highly effective regardless of the sim-
plicity. As will be shown in Figure 9a, over 97% of the Hose polytope
space is covered with 105 sample TMs. The effectiveness comes
from the high randomness: (1) we apply different permutations
of the TM entries (line 2 and line 8) in each run to distribute the
Hose traffic budget in different ways; (2) we use a scaling factor
(line 3) to adjust the assignable traffic randomly according to the
uniform distribution. Our two-phase sample-then-stretch approach
is proven to be critical. In a former solution, we directly sample
the polytope surfaces uniformly, but the coverage is 20%-30% lower
with the same number of samples.

4.2 Bottleneck Links Sweeping
It is computationally infeasible to consider the enormous number
of TM samples. Fortunately, TMs have different importance for net-
work planning. As the goal of network planning is to add capacity
to “bottleneck links” in the network, TMs with high traffic demands
over the bottleneck links play a dominating role. We call such TMs
Dominating Traffic Matrices (DTMs), and we aim to find a small
number of DTMs such that designing the network explicitly for
them has a high probability to satisfy the remaining TMs as well.

From the graph theory’s perspective, bottleneck links are cap-
tured by the network cuts that partition the nodes into two disjoint
subsets. However, the number of network cuts is exponential to the
network size. A production backbone network has tens to a few
hundred nodes, thus enumerating all the cuts is intractable. Even if
a backbone network is not a densely connected graph, the number
of possible cuts is still 𝑂 (2𝑚𝑖𝑛 ( |𝑉 |, |𝐸 |) ), where |𝑉 | and |𝐸 | are the
number of nodes and edges respectively. We propose a sweeping
algorithm to quickly sample the network cuts, and the sweeping
process is illustrated in Figure 8.

The sweeping algorithm has a hyperparameter edge threshold 𝛼

chosen in the [0, 1] interval. The network nodes are represented
by their latitude and longitude coordinates. We draw the smallest
rectangle inscribing all the nodes and radar-sweep the graph cen-
tering at points on the rectangle sides. There are 𝑘 equal-interval
points per side and the sweeping is performed at discrete orienta-
tion angles of interval 𝛽 . We typically choose 𝑘 = 1000 and 𝛽 = 1◦.
The algorithm draws a reference cut line at each sweeping step,
which splits the nodes into the following three mutually exclusive
categories.
• Edge nodes, whose distance to the cut line over the distance of
the farthest node in the network to the cut line is smaller than 𝛼 .

• Above nodes, which are above the cut line but are not in the edge
nodes group.

• Below nodes, which are below the cut line but are not in the edge
nodes group.

Network cuts are all possible bipartite splits of the edge nodes
combined with the above and below nodes respectively. In this
algorithm, parameters 𝑘 and 𝛽 define the sampling granularity, and
the edge threshold 𝛼 regulates the number of cuts considered per
sampling step. As 𝛼 increases, we are able to generate an increas-
ingly large number of network cuts. In particular, setting 𝛼 to 1
guarantees that we enumerate all partitions of the network. The
relationship between 𝛼 and network cuts is shown in Figure 9b.

4.3 Selection of Dominating Traffic Matrices
The formal definition of DTM with respect to network cuts is as
below. Intuitively, with the TMs sampled in Section 4.1 and network
cuts generated in Section 4.2, we want to find the TM that produces
the most traffic for every network cut.

Definition 4.1 (Dominating Traffic Matrix - Strict Version). The
dominating traffic matrix of a network cut is the traffic matrix in
all the sampled traffic matrices that has the highest traffic amount
across the cut.

This definition yields as many DTMs as there are network cuts.
To further reduce the number of TMs involved in our planning
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Figure 8: An example of the sweeping algorithm. The sweeping
centers around 𝑘 points per rectangle side and moves in 𝛽◦ steps.
The reference cut (blue solid line) sweeping step creates 2 edge nodes
(yellow dots), whose permutations form 4 cuts.

computation, we get inspiration from the minimum set cover prob-
lem [12]: if we slack the DTM definition from the most traffic-heavy
TM per network cut to a set of relatively traffic-heavy TMs within
a bound to the maximum, the sets of DTMs for different cuts are
likely to overlap and the cuts may be represented by a smaller num-
ber of overlapping DTMs. We thus introduce the flow slack 𝜖 and
define the slack version of DTM as below. For the rest of the paper,
all DTMs refer to this slack definition.

Definition 4.2 (Dominating Traffic Matrix - Slack Version). A dom-
inating traffic matrix of a network cut with flow slack 𝜖 is a traffic
matrix from the sampled traffic matrices whose traffic amount
across the cut is no smaller than 1 − 𝜖 of the maximum among all
the sampled traffic matrices, where 𝜖 is a small value in [0, 1].

In our formulation of the minimum set cover problem, the uni-
verse is the ensemble of network cuts 𝐶 . For every cut 𝑐 ∈ 𝐶 , we
get the set of DTMs 𝐷 (𝑐) under the given flow slack 𝜖 according
to Definition 4.2. Combining them, we have a collection 𝑇 = {𝑀}
of all the candidate DTMs, where each DTM belongs to a subset
of cuts in 𝐶 . For example, a DTM𝑀 may be generated by multiple
cuts {𝑐𝑖 , 𝑐 𝑗 , 𝑐𝑘 } at the same time. Our goal is to find the minimal
number of DTMs to cover all the cuts in 𝐶 .

We solve this minimum set cover problem by Integer Linear
Programming (ILP). As shown below, we define a binary assignment
variable 𝐴𝑀 , which is set to 1 if a candidate DTM 𝑀 is selected
in the end and set to 0 otherwise. The assignment variables must
guarantee each network cut is represented by at least one of its
candidate DTMs, and we minimize the number of selected DTMs
by minimizing the sum of the assignment variables.

min
∑︁
𝑀 ∈𝑇

𝐴𝑀

s.t.
∑︁

𝑀 ∈𝐷 (𝑐)
𝐴𝑀 ≥ 1,∀𝑐 ∈ 𝐶

𝐴𝑀 ∈ {0, 1},∀𝑀 ∈ 𝑇

(2)

We achieve a low DTM count with the commercial ILP solver
FICO Xpress [1]. As will be shown in Figure 9c, a flow slack of
approximately 1% can reduce the number of DTMs by over 75%, a
substantial gain in the computation needed for capacity planning.

A further increase in the flow slack results in even more impressive
results, though at the price of a lower Hose coverage, as we will
see in the next section.

4.4 Hose Coverage
Aswe performHose-compliant capacity planning, we need to define
a metric to evaluate the degree to which our generated reference
TMs cover the entire Hose space. In particular, since we use a
two-stage process, where we sample the Hose space using a large
number of TMs and further down-sample them to reach a smaller
number of DTMs, it is desirable to measure the Hose coverage for
each stage of the process.

Recall that the Hose is represented by a convex polytope 𝑃 in
a high-dimensional vector space, a natural way to measure the
coverage of a set of samples 𝑆 would be by volume, namely the
volume of the convex hull containing all the samples divided by
the volume of the Hose space as follows. This metric is illustrated
in Figure 7 in three dimensions.

Coverage(𝑆, 𝑃) = Volume(ConvexHull(𝑆))
Volume(𝑃) (3)

When applying to practical instances of network planning, how-
ever, this metric is intractable. The complexity of computing a
convex hull for 𝑉 points in a 𝐿-dimensional space is approximately
𝑂 (𝑉

𝐿
2 ) [6]. In our case, 𝑉 = 𝑁 2 − 𝑁 where 𝑁 is the node count

in the network, which can be a few hundred, and the sample size
𝑉 = |𝑆 | can be 105.

Instead, we define the planar coverage of the Hose space 𝑃 by a
set of samples 𝑆 on a plane 𝑏 as follows, where Π(𝑆, 𝑏) marks the
projection of the samples in 𝑆 on the plane 𝑏, and Π(𝑃,𝑏) is the
projection of the Hose polytope 𝑃 on 𝑏.

PlanarCoverage(𝑆, 𝑃, 𝑏) = Area(Π(𝑆, 𝑏))
Area(Π(𝑃,𝑏)) (4)

For a collection of planes 𝐵, we define the coverage of the Hose
space 𝑃 by a set of samples 𝑆 to be the mean planar coverage of 𝑃
by 𝑆 across all the planes in 𝐵.

Coverage(𝑆, 𝑃) = 1
𝑛

𝑛∑︁
𝑖=1

PlanarCoverage(𝑆, 𝑃, 𝑏𝑖 ) (5)

The choice of these planes is critical for picturing the high-
dimensional Hose space truthfully. These planes should charac-
terize all the variables in the Hose constraints, and the variables
should contribute equally to shaping the planes. Conveniently, we
construct planes with all the pairwise combinations of the variables
in the Hose constraints. Recall from Formula (1) that each variable is
an off-diagonal coefficient of a valid TM𝑀 , or a source-destination
pair in the network. In the Figure 7 example, the chosen planes are
𝐵 = {Plane(𝑚1,2,𝑚1,3), Plane(𝑚1,2,𝑚1,4), Plane(𝑚1,3,𝑚1,4)}.

5 CROSS-LAYER OPTIMIZATION
Capacity planning requires cross-layer optimization of the optical
network and the IP network. The optimization inputs include the
DTMs, the IP topology 𝐺 = (𝑉 , 𝐸) with backbone routers 𝑉 and
IP links 𝐸, and the optical topology 𝐺 ′ = (𝑉 ′, 𝐸 ′) involving the
OADMs𝑉 ′ and fiber segments 𝐸 ′. The outputs are the target IP and
optical topologies𝐺+Δ𝐺 = (𝑉 , 𝐸+Δ𝐸) and𝐺 ′+Δ𝐺 ′ = (𝑉 ′, 𝐸 ′+Δ𝐸 ′)



with the same sites but more links or greater capacity. This section
presents the optimization process in detail.

5.1 Cost Model
Although planning is not a time-critical mission, given the size of
our network, we want the optimization to at least finish, hopefully
in hours. To simplify the optimization, we devise a cost model to
abstract complications in the optical and routing systems as simple
cost factors multiplied to the decision variables. The five essential
cost factors are:
Fiber procurement and deployment cost This is the entire cost
of purchasing and installing a new fiber before it becomes usable.
If we own the fiber, it includes the equipment cost of procuring the
fiber, optical amplifiers, Configurable Optical Add/Drop Multiplex-
ers (COADMs), Wavelength Selective Switches (WSSes), IP router
chassis, as well as the labor cost of cleaning the fiber, deploying
the amplifiers along the fiber path and deploying COADMs, WSSes,
and router chassis at the terminal sites. If we lease the fiber, it cov-
ers all the usage, operational, and maintenance cost in the leasing
contract. This cost varies fiber to fiber depending on the vendor,
fiber length, fiber type (terrestrial, submarine, or aerial), etc., and
we model it based on these features. We denote this cost as 𝑥 (𝑙) for
fiber segment 𝑙 on the optical topology 𝐺 ′.
Fiber turn-up cost This is the cost of turning up a dark fiber that
is already installed. It includes the cost of purchasing extra equip-
ment such as transponders and line cards and the manual effort of
configuring devices. We estimate this cost based on historical data.
It is denoted as 𝑦 (𝑙) for fiber segment 𝑙 on 𝐺 ′.
Capacity addition cost This is the cost of provisioning a new
wavelength on a turned-up fiber. It adds one unit of bandwidth
capacity, i.e., 100Gbps, on the IP layer. This cost involves the labor
work of wavelength provisioning and router port configuration. It
is a flat cost, denoted as 𝑧 (𝑒) for IP link 𝑒 on the IP topology 𝐺 .
Spectral efficiency This factor captures the proportion of optical
spectrum a unit of IP capacity consumes over all fiber segments on
its path, which depends on the modulation required to get error-free
transmission on the circuit. We denote the spectral efficiency of an
IP link 𝑒 as 𝜑 (𝑒) and delegate the sophisticated optical link engi-
neering calculations to an optical link simulator similar to [21]. The
following spectral conservation constraint regulates the spectral
consumption per fiber segment 𝑙 ∈ 𝐸 ′. Assume 𝑙 has 𝜙𝑙 lighted-up
fibers, each having a maximum allowable spectrum 𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙).
For an IP link 𝑒 ∈ 𝐸, the required spectrum is the IP capacity _𝑒
multiplied by its spectral efficiency 𝜑 (𝑒). Thus, the total spectrum
consumed over fiber segment 𝑙 must be greater than or at least equal
to the sum of spectrum required by each IP link 𝑒 riding over this
fiber segment, specified by the IP-optical mapping function 𝐹𝑆 (𝑒).
To account for the loss of usable spectrum due to the spectrum
continuity constraint [3], we reserve a percentage of𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙)
as a planning buffer while turning up fibers. This abstraction of
wavelength contention saves the effort of accurate wavelength
allocation and works well in practice.

𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺,𝐺 ′):∑︁
𝑒∈𝐸, 𝑙 ∈𝐹𝑆 (𝑒),

𝜑 (𝑒) × _𝑒 ≤ 𝑀𝑎𝑥𝑆𝑝𝑒𝑐 (𝑙) × 𝜙𝑙 ,∀𝑙 ∈ 𝐸 ′ (6)

Routing overhead This is the loss of bandwidth capacity due to
imperfection of routing algorithms. We formulate capacity plan-
ning as a multi-commodity flow problem [11] on the IP layer. In
practice, backbone routers only allow for a small number of paral-
lel paths per flow, such as in Equal-Cost Multi-Path (ECMP) and
K-shortest path routing, which makes the problem NP-hard. To
solve it in polynomial time, we switch to fractional flows, i.e., every
flow being infinitely splittable, and we capture the difference from
the actual routing algorithm by routing overhead. For a particular
routing algorithm, the routing overhead 𝛾 is a [1, +∞) factor multi-
plied to the original traffic demand to give headroom for routing
inefficiency.

5.2 Resilience Policy
Our services are categorized into several QoS classes for different
performance guarantees. Different QoS classes have different re-
silience policies. Higher QoS classes (usually denoted by smaller
class numbers) can tolerate more failures, through more robust
routing algorithms and greater protection capacity in backup paths.
Based on the resilience policy, each QoS class has a pre-defined set
of failure scenarios to protect against. A failure scenario presents
the physical-layer fiber cuts and the loss of IP links on these fibers.

With Hose-based capacity planning, we need to fully satisfy the
traffic demand of each QoS class under the protected failures. As
Equation (7) shows below, for QoS class 𝑞, we have a set of post-
failure residual IP topologies 𝐺𝑞 , whose elements are formed by
removing the failed IP links of a particular failure scenario 𝑟𝑞 in
the scenario set 𝑅𝑞 .

𝐺𝑞 =
⋃

𝑟𝑞 ∈𝑅𝑞
(𝐺0 − 𝑟𝑞) (7)

As described in Section 3, we forecast traffic for individual service
types. Aggregating across services, we have a Hose model 𝐻𝑞 per
QoS class 𝑞 ∈ {𝑄𝑜𝑆}. We design resilience policies in such a way
that traffic from one QoS class is protected against failure scenarios
from its own class and all other classes lower than it. Hence, the
residual topology 𝐺𝑞 must carry traffic of its own class and all
higher classes. Per Section 5.1, each QoS class may use a different
routing scheme, thus having a different routing overhead. Like
shown in the equation below, the reference DTMs of a QoS class 𝑞
is derived from the TM generation in Section 4 over all the protected
traffic, as the union of the Hose constraints in classes 1 to 𝑞, with
the routing overhead applied.

𝑇𝑞 = 𝐷𝑇𝑀 (
𝑞⋃
𝑖=1

𝛾 (𝑖) × 𝐻𝑖 ) (8)

For each QoS class 𝑞, given the DTMs 𝑇𝑞 and post-failure IP
topologies 𝐺𝑞 , the traffic flows in each reference TM𝑀 ∈ 𝑇𝑞 must
satisfy the conservation constraints on every topology 𝐺 ∈ 𝐺𝑞 , as
shown below. That is, for every flow in a TM𝑀 , the source and sink
of the flow have the required traffic amount, all intermediate nodes
of the flow have zero traffic in sum, and the flows over an IP link
cannot exceed the bandwidth capacity _. Here we simply assume
all flows are infinitely splittable, because the difference from the
actual routing algorithms is accounted for by the routing overhead.



𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺) for𝑀 ∈ 𝑇𝑞,𝐺 ∈ 𝐺𝑞 :∑︁
{𝑖,𝑢 }∈𝐸

𝑓𝑖, 𝑗 (𝑖, 𝑢) −
∑︁

{𝑖,𝑢 }∈𝐸
𝑓𝑖, 𝑗 (𝑢, 𝑖) =𝑚𝑖, 𝑗∑︁

{ 𝑗,𝑢 }∈𝐸
𝑓𝑖, 𝑗 (𝑢, 𝑗) −

∑︁
{ 𝑗,𝑢 }∈𝐸

𝑓𝑖, 𝑗 ( 𝑗, 𝑢) =𝑚𝑖, 𝑗∑︁
{𝑢,𝑣 }∈𝐸,
𝑢≠𝑖,𝑣≠𝑗

𝑓𝑖, 𝑗 (𝑢, 𝑣) −
∑︁

{𝑢,𝑣 }∈𝐸,
𝑢≠𝑖,𝑣≠𝑗

𝑓𝑖, 𝑗 (𝑣,𝑢) = 0

∑︁
{𝑢,𝑣 }∈𝐸

𝑓𝑖, 𝑗 (𝑢, 𝑣) ≤ _𝑢,𝑣 ∀𝑚𝑖, 𝑗 ∈ 𝑀

(9)

5.3 Short-Term Planning
Short-term network planning is for the next 6 months to 2 years.
In this period, we rely on the existing optical infrastructure. Thus,
we assume the IP topology stays the same, yet the capacity of
IP links can be increased. The physical-layer topology formed by
active fiber segments can be expanded under the limit of deployed
(maybe inactive) fiber resources. Our goal is to minimize cost while
admitting the future traffic derived from Hose-based traffic forecast.

The ILP formulation is as follows. The optimization takes in
the current IP topology 𝐺 and the expandable optical topology
𝐺 ′ + Δ𝐺 ′, where Δ𝐺 ′ is the expansion budget offered by the dark
fibers. 𝜙𝑙 is the number of fibers on fiber segment 𝑙 ∈ 𝐸 ′ + Δ𝐸 ′ that
will be lighted in the end, and _𝑒 is the target capacity on IP link
𝑒 ∈ 𝐸. Multiplying them with the respective cost as described in
Section 5.1, i.e., per-fiber turn-up cost 𝑦 (𝑙) and per-unit-bandwidth
capacity addition cost 𝑧 (𝑒), we get the optimization objective of
minimizing the total cost of building the final network.

min
∑︁

𝑙 ∈𝐸′+Δ𝐸′
𝑦 (𝑙) × 𝜙𝑙 +

∑︁
𝑒∈𝐸

𝑧 (𝑒) × _𝑒

s.t. 𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺,𝐺 ′ + Δ𝐺 ′)⋃
𝑀 ∈𝑇𝑞 ,𝐺 ∈𝐺𝑞

𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺),∀𝑞 ∈ 𝑄𝑜𝑆

_𝑒 ≥ Λ𝑒 ,∀𝑒 ∈ 𝐸

𝜙𝑙 ≥ Φ𝑙 ,∀𝑙 ∈ 𝐸 ′ + Δ𝐸 ′

(10)

This objective is intrinsically equivalent to minimizing the addi-
tional cost of network expansion, because the sunk cost of building
the existing network has been paid for, but it simplifies the con-
straints. For example, the spectral conservation constraint described
in Section 5.1 is regarding the total IP capacity and total fiber counts.
The flow conservation constraint in Section 5.2 should also be sat-
isfied. Note that we need to consider this constraint for every QoS
class. Besides, we have additional constraints that _𝑒 and 𝜙𝑙 must be
greater than or equal to the current values Λ𝑒 and Φ𝑙 in the existing
network, based on the fact that a network keeps growing: we do
not reduce IP capacity or disable optical fibers once a network has
been built.

5.4 Long-Term Planning
Long-term network planning targets at 2 to 5 years in the future.
The purpose of long-term planning is to estimate the worst-case
hardware requirements and make sure sufficient equipment is pro-
cured ahead of time. An important difference from short-term plan-
ning is long-term planning considers installation of new fibers. The
large scale of our backbone network makes it infeasible to perform

global search for all possible fiber installation locations. A practical
solution is to narrow down to a small number of candidate locations
based on fiber availability on the market and our operational expe-
rience. We sketch an optical topology𝐺 ′ + Δ𝐺 ′, with the candidate
fibers in Δ𝐺 ′, and we map these fibers to possible IP links to form
the IP topology𝐺 +Δ𝐺 , where the potential IP links are in Δ𝐺 with
zero initial capacity.

In this way, we convert the long-term planning problem to a
similar formulation as the short-term planning problem. As shown
below, the optimization objective is still minimizing the total cost,
yet with one more term for the fiber procurement and deployment
cost. On the candidate optical topology Δ𝐺 ′, 𝜓𝑙 is the number of
fibers to deploy on the fiber segment 𝑙 and 𝑥 (𝑙) is the per-fiber
procurement and deployment cost defined in Section 5.1. The fiber
turn-up cost and capacity addition cost are similar to short-term
planning, but need to be considered on topologies 𝐺 ′ + Δ𝐺 ′ and
𝐺 + Δ𝐺 respectively with candidate fibers and IP links.

min
∑︁

𝑙 ∈Δ𝐸′
𝑥 (𝑙) ×𝜓𝑙 +

∑︁
𝑙 ∈𝐸′+Δ𝐸′

𝑦 (𝑙) × 𝜙𝑙 +
∑︁

𝑒∈𝐸+Δ𝐸
𝑧 (𝑒) × _𝑒

s.t. 𝑆𝑝𝑒𝑐𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝐺 + Δ𝐺,𝐺 ′ + Δ𝐺 ′)⋃
𝑀 ∈𝑇𝑞 ,𝐺 ∈𝐺𝑞+Δ𝐺𝑞

𝐹𝑙𝑜𝑤𝐶𝑜𝑛𝑠𝑒𝑟𝑣 (𝑀,𝐺),∀𝑞 ∈ 𝑄𝑜𝑆

_𝑒 ≥ Λ𝑒 ,∀𝑒 ∈ 𝐸 + Δ𝐸
𝜙𝑙 ≥ Φ𝑙 ,∀𝑙 ∈ 𝐸 ′ + Δ𝐸 ′

𝜓𝑙 ≥ 0,∀𝑙 ∈ Δ𝐸 ′

(11)

Likewise, the spectral conservation constraint and flow conser-
vation constraint also apply to the potential topologies 𝐺 ′ + Δ𝐺 ′

and 𝐺 + Δ𝐺 . Although our approach results in a large number of
possible IP links over the new fibers, the spectral conservation con-
straint guarantees to select a subset whose capacity can be fully
accommodated by the fibers. Similar to short-term planning, the
variables _𝑒 , 𝜙𝑙 , and 𝜓𝑙 must increase relative to the base values,
namely existing capacity numbers in the current network and zero
for the candidate topologies. Since the fiber procurement and de-
ployment cost is orders of magnitude higher than the fiber turn-up
cost and capacity addition cost, our formulation naturally favors
exhausting existing fiber resources first. In case the optimization
fails to produce feasible solutions, we enlarge the pool of candidate
fibers and rerun the optimization.

6 EVALUATION
Our Hose-based capacity planning system has been running in
production for several years. Its core component is an optimization
engine implemented on top of the Xpress solver [1] with a max-
flow-based route simulator. It is a production-grade software with
substantial engineering efforts put into scaling up the optimization.
In this section, we first evaluate the Hose conformance of the TM
generation process in Section 4 to give guidelines for parameter tun-
ing in our system, then we compare the end-to-end planning results
with Pipe-based planning to show the performance advantages.

All experiments are on Facebook’s latest North America produc-
tion topology, which contains hundreds of nodes and thousands
of IP links over hundreds of optical fibers. We plan for 500 fail-
ure scenarios based on historical data, including 300 single-fiber
failures and 200 multi-fiber failures. We predict future traffic with
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Figure 9: (a) Distribution of planar Hose coverage by different numbers of sampled TMs, (b) Network cuts generated under different edge
threshold 𝛼 , and (c) The number of DTMs as a function of flow slack 𝜖 , for various edge threshold 𝛼 values.

Figure 10: Average Hose coverage of DTMs as a function of the flow
slack 𝜖 , for various edge threshold 𝛼 values.

our production traffic forecast system, and our experiments strictly
follow the two-step planning procedure in production: deciding the
hardware infrastructure with long-term planning and feeding the
result into short-term planning for the final IP network build plan.
Traffic forecast and capacity planning for the Pipe model are based
on our legacy systems before Hose was adopted.

6.1 Hose Conformance
Hose coverage of TM sampling The effectiveness of our TM
sampling algorithm is shown in Figure 9a. Here, we present the
CDF distribution of planar coverage, as defined in Section 4.4, for
different sample sizes. With 105 TM samples, among all the projec-
tion planes for the Hose polytope, even the worst plane reaches
over 97% coverage, and the mean coverage is over 99%. This result
indicates that the Hose space can be represented by 105 sample
TMs with negligible loss of accuracy.

Comparing different curves, intuitively, more TM samples result
in higher Hose coverage. Yet, the increase of coverage slows down
as the number of samples grows. For example, the mean coverage
of 104 samples is 10% higher than 103 samples, while the increase
from 104 to 105 samples is only 3%. This trend shows a rewarding
tradeoff: we can reduce a large number of sample TMs at minimal
degradation of Hose coverage. However, recall that our TM sam-
pling algorithm (Algorithm 1) has 𝑂 (𝑁 2) complexity with regard
to the network size 𝑁 , sampling 105 TMs takes only 200 seconds
in practice. In our production, we choose 105 samples for highly
accurate planning results.
Effect of edge threshold on cut generation Figure 9b looks into
the performance of the sweeping algorithm in Section 4.2. It plots
the number of generated network cuts with the variance of the
edge threshold parameter 𝛼 . Recall from the algorithm illustration

Figure 11: Mean number of DTMs \ -similar to each other with an
increasing angle of \

in Figure 8 that 𝛼 determines the number of edge nodes that are
permuted to form different cuts, thus a larger 𝛼 results in more
network cuts and 𝛼 = 1 guarantees to find all cuts in the network.
In practice, however, we do not need to set 𝛼 = 1 to get all the cuts.
According to Figure 9b, the number of cuts reaches the maximum
when 𝛼 ≥ 0.095. The curve has a sharp increase for 𝛼 between 0.065
and 0.07, indicating the algorithm can be sensitive with 𝛼 . Based
on these observations, we conclude a sufficiently large 𝛼 should be
chosen, otherwise a significant number of cuts may be ignored.

Effect of flow slack on DTM selection Figure 9c quantifies
the relationship between the number of DTMs and the flow slack
factor 𝜖 as of the DTM selection process in Section 4.3. According
to Definition 4.2, a sample TM can be a candidate DTM if its traffic
across a network cut is at least 1 − 𝜖 of the maximum traffic across
the cut. So, a bigger 𝜖 will cause more TMs to be qualified as DTMs,
among which a smaller subset can represent all the network cuts.
Figure 9c is consistent with this expectation: the minimum DTM
count to cover all network cuts reduces with the increase of 𝜖 ,
sharply in the beginning and slowing down as 𝜖 grows. A smaller
number of DTMsmeans less computation for planning optimization,
yet the Hose coverage may be compromised. We discuss the details
in Figure 10.

It also shows the effect of edge threshold 𝛼 on the number of
DTMs. Interestingly, comparing to Figure 9b, the effective 𝛼 value
can be further reduced with DTM selection in place. Specifically,
the top curves where 𝛼 is 8%, 9%, and 10% show little difference in
terms of the number of DTMs, although 𝛼 = 8% finds 25% fewer
network cuts than 𝛼 = 10% in Figure 9b. This result proves the
robustness of our DTM selection process: with a reasonable 𝛼 , even



(a) (b)

Figure 12: Traffic drop on Hose and Pipe network plans: (a) CDF of
daily drop, (b) drop per day.

if some network cuts are not explicitly considered, the resulted
difference in the number of DTMs is small.

Hose coverage of DTMs Figure 10 combines the above factors
and shows their joint effect on DTM selection. The curves have
similar trends as those in Figure 9c. However, for 𝛼 values 8%, 9%,
and 10%, their Hose coverage almost overlap completely. Thus,
we claim the edge threshold 𝛼 = 8% is sufficient for our network,
as the slightly lower number of DTMs can cover the Hose space
equally well. Compared to Figure 9c, Hose coverage shows a more
smooth, near-linear reduction with the increasing flow slack 𝜖 ,
which confirms the design purpose of our DTM selection process:
a small set of well-chosen DTMs can reach high Hose coverage. We
set 𝛼 = 8% and 𝜖 = 0.1% in production and reach a relatively high
Hose coverage of 83%.

DTM Similarity From another angle to examine the coverage, we
also analyze the similarity of DTMs. A diverse set of DTMs implies
tolerance to traffic uncertainty. We define similarity between two
DTMs𝑀1 and𝑀2 as follows:

Similarity(𝑀1, 𝑀2) =
< 𝑀1 ·𝑀2 >

∥𝑀1∥2 ∥𝑀2∥2
(12)

where ∥.∥2 denotes the L2-norm of a matrix and < · > denotes
the dot product of the vectors obtained from unrolling the matri-
ces. The similarity can be expressed as the cosine of the angle of
alignment between the two matrices w.r.t. the origin. For exam-
ple, Similarity(𝑀1, 𝑀2) = 1 if 𝑀2 is a multiple of 𝑀1 by a strictly
positive scalar. We then define the two matrices𝑀1 and𝑀2 to be
\ -similar iff Similarity(𝑀1, 𝑀2) ≥ cos\ .

We evaluate the similarity of the DTMs used in production,
where 𝛼 = 8% and 𝜖 = 0.1%. For each DTM, we compute the number
of DTMs (including itself) that are \ -similar to it. We then average
the numbers across all DTMs to get the mean DTM \ -similarity.
Figure 11 shows this metric with the increase of \ . When DTMs
are all isolated, the mean number of DTMs similar to each other
should be 1, i.e., a DTM is only similar to itself. As \ increases,
DTMs further away are \ -similar, and the mean DTM similarity
would increase. We see here that the mean DTM similarity remains
close to 1, even for values of \ in excess of 20◦, indicating that the
DTMs are each well-isolated in the Hose space of TMs, and that
applying additional clustering would not yield many benefits.

Figure 13: Traffic drop under random fiber failures.

6.2 Performance Comparison with Pipe
Planning result vs. actual traffic We evaluate the planning accu-
racy by seeing whether the planned capacity can satisfy the actual
traffic. To do so, we take the June 2020 network as our baseline
topology and perform demand forecast of the next 6 months with
both Hose and Pipe models to generate the capacity plans. Note that
these plans are not the production topology in December 2020, but
rather what the network hypothetically asked for 6 months ago in
history. We evaluate how good these plans are by replaying 28 days
of actual traffic in December 2020 on them. The difference between
the actual traffic and the forecast traffic is the main reason for either
under-provisioning causing dropped demand or over-provisioning
causing wasted capacity.

Traffic drop is especially harmful to service performance. Fig-
ure 12 compares the dropped traffic volume on the Hose and Pipe
plans under the steady state, i.e., no failures in the network. In
subfigure (a), we observe from the CDF distribution that the daily
dropped demand in the Hose model is much lower than Pipe, and
for 80% of the days, the difference in dropped demand is almost
50%. In the day-to-day view of subfigure (b), for almost all days,
the dropped demand for Pipe is higher than Hose, and the differ-
ence can be as high as several Tbps on some days like 12/08 and
12/13. Both results confirm our initial hypothesis in Section 2 that
Hose-based planning is more resilient to traffic dynamics and can
provide better overall performance.
Resilience to unplanned failures We further compare the traf-
fic drop with Hose and Pipe plans under unplanned failures in
Figure 13. It uses the same setting as Figure 12 with 10 randomly
selected fiber cuts. We observe that Hose consistently drops less
traffic than Pipe in all scenarios by 50%-75%. Compared to steady
state in Figure 13, the benefit of Hose dropping less traffic is even
more profound.
Yearly capacity growth Figure 14a shows Hose and Pipe’s yearly
capacity growth as a percentage of the baseline capacity in the next
5 years. The projected traffic demand from our production traffic
forecaster roughly doubles every two years. Hose-based capacity
planning is more capacity-efficient in the long run. First, the relative
capacity gain of Hose is greater year by year. By 2025, it can save
17.4% capacity compared to Pipe. Second, while both Pipe and Hose
capacity scale faster than traffic growth (more capacity is needed
to account for failure scenarios), the Hose capacity increases at a
lower rate. The capacity saving of the Hose model comes from the
multiplexing gain of traffic aggregation, as discussed in Section 2.

The advantage is not obvious in the near future because the
Hose model has been in use for only a few years. Our current
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Figure 14: (a) Yearly capacity growth of Hose and Pipe, (b) 2021
capacity decrease with clean-slate planning.

Figure 15: Cost benefit of Hose measured by fiber consumption.

topology is mostly built with Pipe-based planning, and it takes time
to become Hose-compliant. In Figure 14b, we remove this factor
by planning the network from scratch, and we show the capacity
decrease against the 2021 Pipe result in Figure 14a. In this case, Hose
can save almost 7% more capacity than Pipe. These observations
suggest evolving a network with the Hose model can reach a more
optimized network topology than evolving with the Pipe model.
Cost saving While we cannot share the proprietary cost values,
we approximate the cost benefit of Hose using the fiber pair con-
sumption. Figure 15 shows the additional percentage of fiber usage
normalized by the baseline. We observe a similar trend as the capac-
ity growth. The cost advantagemanifests as the years of deployment
increase, with as high as 20% saving in four to five years.
Optimization time vs. accuracy Table 2 further investigates
the Figure 14b results with varying Hose coverage. We see even a
relatively low coverage of 40% achieves a large capacity saving of
8.62%. At a high coverage of 83%, the overall computation time is
an affordable 1063 minutes, or 17.7 hours. Because the DTMs are
consumed by the optimization procedure iteratively in batches, the
DTMs in later batches may already be satisfied by earlier batches.
Thus, the computation time per DTM is only a few minutes, and
further reduces given more DTMs, thanks to the batching effect.
This result highlights that our solution is scalable and insensitive to
the DTM selection when the coverage is sufficient. Figure 16 com-
pares the planned capacity per IP link for different Hose coverage
values against the 83% coverage baseline. The planning difference
is remarkable, though shrinking, as the Hose coverage improves.
Considering the good time scalability of our system, we suggest
choosing a high Hose coverage in practice, so as to avoid under-
provisioning from overly high capacity reduction such as achieved
by coverage values of 58% and 67%. The capacity saving has little
change when the coverage value is above 83%.
Capacity Distribution Figure 17 shows the standard deviation of
capacity across all the IP links at each site for Year 1 planning (2021

Hose # Reduced Time Time
cove- DTMs capa- in per
rage city % mins DTM
40% 21 8.62 48 2.28
52% 64 8.28 312 4.87
58% 89 10.52 342 3.84
67% 154 9.31 412 2.67
83% 628 8.45 1063 1.69

Table 2: Capacity saving with different Hose coverage

Figure 16: Capacity saving of Hose over Pipe: per-link capacity
difference relative to the 83% coverage plan.

Figure 17: CDF of the capacity variance of IP links per site.

result in Figure 14). Capacity is distributed more uniformly in Hose.
For the Hose model, almost 70% of sites have capacity variance
less than 5Tbps, while the number is only 50% for Pipe. At 80%,
Pipe has a variance 1.5× larger than Hose. The tail of variance for
Pipe is also larger than Hose. More uniform capacity distribution
is desirable for resilience against unplanned failures and future
scaling, because more TMs can fit into even link capacities at a site.
Hose-based planning adds capacity more uniformly across links
thanks to the variant TMs it has considered.

7 OPERATIONAL EXPERIENCE
We have learned important operational lessons throughout years of
running Hose-based network planning in production. This section
reveals unexpected use cases, system adjustments, and directions
for future improvements.

7.1 Disaster Recovery Buffer
The concept of "disaster readiness" has been built into every aspect
of Facebook’s infrastructure [22]. Disaster refers to any catastrophic
failure that takes a long time to recover, such as hurricane, major
fire event in a DC, etc. Facebook conducts disaster recovery (DR)
exercises to test its capability under actual disasters. These DR tests
migrate requests originally sent to potentially failing DCs to other
healthier DCs. This process explores the inter-service dependencies
and dynamic resource constraints (such as compute and storage
resources) to identify the mitigation plan for each service in real
time. Each candidate mitigation plan will create a drastic shift to the



original TM. For a network planned with Pipe, it requires careful
evaluation of every TM (one for every candidate migration plan)
to certify if the current production backbone can accommodate
this changed TM. By moving to Hose-based network planning, a
planner is able to provide an upper bound on the total ingress and
egress traffic supported per DC. By looking at the current traffic
utilization, one could quantify additional traffic that can be added
to the DC without overloading the region, i.e., a planner is able to
provide deterministic DR buffers that can be used by operational
teams performing the DR exercise.

7.2 Partial Hose
Our Hose model is based on the general assumption that a service
would send traffic to any destination region. However, we find a
service may only need to communicate with a small subset of the
regions, as the service placement is limited to these regions. For
example, we have a data warehouse service that utilizes a special-
ized server type, which is only available in 4 regions. The data
warehouse traffic accounts for 75% of the total inter-region traffic
between these 4 regions. Taking service placement into considera-
tion can help us estimate DTMs more accurately. Thus, in this case,
we can create a smaller Hose, consisting of only these 4 regions,
and a larger Hose consisting of the remaining traffic to all desti-
nations. This partial Hose model gives us additional information
of the application communication patterns. However, considering
the large number of services at Facebook, we only use partial Hose
under two conditions: (1) if the traffic volume of the service is sig-
nificantly large; (2) if the service placement is inherently limited
by the hardware resource such that it is impossible to move the
service to other regions easily.

7.3 A/B Testing
Testing network plans using demand forecast andmodeling assump-
tions for production network is non-trivial. The actual performance
only becomes clear several months or even years after the plan is
deployed. In practice, we rely on extensive A/B testing and man-
ual verification by experts across teams, typically from network
planning, sourcing, and deployment teams, to verify our designs.
We set up A/B testing for different network build plans. For ex-
ample, given two sets of input demands, or two different policies,
two versions of PORs will be generated. We compare key metrics
quantitatively, such as IP topology, optical fiber count, cost, flow
availability, latency, failures unsatisfied, etc. The experts then check
these multiple designs for any anomalies. Right now, our testing
strategy is largely based on engineering tribe knowledge. We en-
courage more research in this area to enable scientific A/B testing
for network build plans.

7.4 Stability of Parameter Setting
In production deployment, we find the choice of parameters, e.g.,
Hose coverage, to be stable over time. The fundamental reason is
the relative stability of traffic demand variations. The backbone
traffic is dominated by machine-to-machine traffic between DCs,
which fundamentally reflects the service placement. In production,
the service placement is relatively stable to accommodate various
infrastructure constraints pertaining to server availability, fault
tolerance requirements, and disaster recovery planning. Thus, we

observed that complete demand shifts are rare but moderate shifts
of 30-50% traffic between different regions are still common under
different failures. This leads to our engineering choice of 83% Hose
coverage, as demonstrated earlier in Section 6.

8 RELATEDWORK

Hose model in Virtual Private Network (VPN) The semi-
nal work by Duffield et al. [9] proposes the Hose model for re-
source management in VPNs. It allocates bandwidth to satisfy
Hose-conformant worst-case traffic distribution. Several follow-
up work have been developed to improve the dynamic bandwidth
resizing [7, 10, 20]. Their problem formulation is fundamentally
different from ours as they allocate existing bandwidth resources
to best guarantee the Hose requirement, whereas our work designs
the underlying network to satisfy all possible traffic splits under a
Hose. Our work is more closely related to [15] which designs a tree
topology to satisfy Hose, while our solution works with general
graphs.

Hose model in cloud resource sharing Hose is also used to
model demands in DCs [4] and the cloud environment [4, 8, 14, 17–
19]. These work use the Hose model for per-VM traffic demand and
use a big virtual switch to abstract the network fabric. For instance,
Oktopus [4] proposes a VM placement algorithm based on the Hose
constraints of any two sets of VMs. The demand between the two
VM sets is determined by the sum of all VMs’ Hose demands in
each set. This model essentially adds up all the worst-case TMs
and results in significant over-provisioning. Our approach is more
efficient because we use an operationally effective slack factor
(Section 4.3) to choose hard-enough TMs, but not the worst-case
TMs, and the resulting multiplexing gain has been demonstrated in
production (Section 6.2).

Network planning Scenario-based planning copes with traffic
uncertainty by using forecast results for a few given network sce-
narios, and each scenario emphasizes on a set of TMs [23]. Our
selection of TMs is more general, not limited by any pre-defined
scenarios. Zhang et al. proposes to find critical TMs by clustering
for general network analysis applications [24]. However, their work
is not tailored for network planning. We are interested in applying
their algorithm to network planning and comparing the efficacy
against our DTM selection algorithm. Little has been revealed about
production network planning except for a brief introduction in [5].
To the best of our knowledge, we are the first to describe real-world
network planning in detail.

9 CONCLUSION
Network planning plays an important role in long-term network
evolvement and service growth. In this paper, we demonstrate the
effectiveness of using the Hose model for network planning by
leveraging its multiplexing gain to simultaneously save capacity
and absorb traffic uncertainty. We share the experience of planning
a production backbone over several years. Our work sheds light on
the potential of Hose in a new problem domain, network planning,
in the hope of stimulating more research in this area.
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