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ABSTRACT

We present a unified network for voice separation of an
unknown number of speakers. The proposed approach is
composed of several separation heads optimized together
with a speaker classification branch. The separation is car-
ried out in the time domain, together with parameter sharing
between all separation heads. The classification branch esti-
mates the number of speakers while each head is specialized
in separating a different number of speakers. We evaluate the
proposed model under both clean and noisy reverberant set-
tings. Results suggest that the proposed approach is superior
to the baseline model by a significant margin. Additionally,
we present a new noisy and reverberant dataset of up to five
different speakers speaking simultaneously.

Index Terms— source separation, speech processing,
speaker classification

1. INTRODUCTION

In real-world acoustic environments, a speech signal is fre-
quently corrupted by a noisy environment, room conditions,
multi-talker setup, etc. The ability to separate a single voice
from multiple conversations is crucial for any speech process-
ing system designed to perform under such conditions. Over
the years, many attempts have been made to tackle this sep-
aration problem considering single microphone [1, 2], mul-
tiple microphones [3, 4], supervised and unsupervised learn-
ing [5, 6].

In this work, we focus on fully supervised voice separa-
tion using a single microphone, which has seen a great leap
in performance following the recent success of deep learning
models considering both frequency domain [1, 2, 7, 8, 9, 10],
and time-domain [11, 12, 13, 14, 15, 16] modeling.

Despite its success, most prior work assumes the number
of speakers in the mixture to be known a-priori. Recently, sev-
eral studies proposed various methods to tackle this problem.
The authors of [17, 18, 19] suggest to separate one speaker
at a time using a recursive solution. This requires C sequen-
tial forward passes to separate C sources and it is not clear
when to stop the separating process. The authors of [20] pro-
posed a similar one speaker at a time solution however they
were mainly interested in automatic speech recognition as the
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Fig. 1: The architecture of the proposed network. The feature
extraction constructed with 1D convolutions and chunking.
Then b units are applied using the same separation heads to
produce output after each block.

final downstream task. Another line of prior work, optimize
the network to output the maximum number of speakers re-
gardless of the actual number of speakers present in the input
mixture. At test time, the number of speakers is determined
by detecting the number of silent channels [7, 21]. Although
this method is shown to perform well, it was evaluated only
under an anechoic setup while considering up to three speak-
ers.

The most relevant prior work to ours is [22]. In this study,
the authors suggested training several models, each for sep-
arating a different number of speakers. A model selection
heuristic is applied on top of the obtained models predictions
to detect non-activated channels (noise / silence). Despite its
success, it has two main drawbacks. First, several different
models were trained separately, hence at test time the input
mix is propagating throughout each separately. This makes
inference costly in terms of memory and computing power.
Additionally, training each model separately does not benefit
from shared representations, e.g., the representation learned
while separating two speakers can be beneficial for separating
four speakers. Second, under the unknown number of speak-
ers setting only anechoic setup was considered. While [22]
reported results on WHAMR! dataset [23], which contains
noisy reverberant mixtures, this dataset consists of mixtures
of two sources only.

In this study, we propose a unified approach to separate up
to five different speakers simultaneously speaking using sev-
eral separation heads together with shared representations. To
better handle varying number of speakers in the mixture, we
jointly optimize separation and classification of the number
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of speakers in the mixture. Our model is working directly on
the raw waveform and was evaluated under both anechoic and
noisy reverberant environments. The proposed model obtains
superior performance over the baseline methods under both
clean and noisy reverberant settings, especially when consid-
ering the number of speakers in the mixture to be unknown.
We additionally release the scripts used to generate the pro-
posed noisy reverberant datasets.

2. PROBLEM SETTING

2.1. Anechoic room

Consider a single microphone, recording a mixture of C dif-
ferent sources sj ∈ RT , where j ∈ [1, . . . , C] in an anechoic
enclosure where the source length, T can vary. The mixed
signal is therefore: x =

∑C
j=1 α

j ·sj , where αj is the scaling
factor of the j-th source. Although this model is commonly
used to demonstrate separation abilities, anechoic noiseless
environments are hard to find in the real world.

2.2. Noisy reverberant room

To simulate a more real-world setting an Acoustic Transfer
Function (ATF) which relate the sources and the microphones
is considered together with additive noise as follows: x =∑C
j=1 α

j ·sj ∗hj +n, where hj is the ATF of the j-th source
to the microphone, and n is a non stationary additive noise in
an unknown Signal-to-Noise Ratio (SNR).

Under both cases, we focus on the fully supervised set-
ting, in which we are provided with a training set S =
{xi, (s1

i , · · · , sCi )}mi=1, and our goal is learn a model that
given an unseen mixture x, outputs C separate channels,
ŝ, that maximize the Scale-Invariant Signal-to-Noise Ra-
tio (SI-SNR) to the ground truth signals when considering
reordering of the output channels (ŝπ(1), · · · , ŝπ(C)) for the
optimal permutation π.

3. MODEL

We propose to jointly separate a varying number of sources
using a single model with several separation heads and shared
representations. The proposed architecture is depicted in
Fig. 1.

Following the architecture proposed in [14], the mixed
signal is first encoded using a stack of N 1D convolution
with a kernel size of L and stride of L/2 followed by ReLU
function. The 2D tensor output of the encoder is given by
z ∈ RN×T ′

, where T ′ = (2T/L) − 1. Next, z is go-
ing through a chunking process. It is first divided into R
overlapping chunks with chunk size of K and step size of
P , denoted as ur ∈ RN×K , where r ∈ [1, · · · , R]. Then
the 2D chunks are concatenated into a 3D embedded tensor
v = [u1, . . . ,uR] ∈ RN×K×R. Next, a series of b Multiply-
and-Concatenate (MULCAT) blocks, as proposed in [22], are
employed to model the intra-chunk and inter-chunk depen-
dencies.

We separate the mixture using several separation heads
after each block l ∈ {1, . . . , b} and output ol. The separation
heads architecture is containing four experts alongside a gate.
The n-th expert’ expertise is to separate different number of
speakers Cn, where n ∈ {1, . . . , 4} and Cn ∈ {2, 3, 4, 5},
respectively. Note, all the experts and the gate share the same
input ol. Each expert is comprised of a PReLU non-linearity
with parameters initialized at 0.25, followed by 1× 1 convo-
lution with Cn · R kernels. The resulting tensor with a size
of N ×K × Cn ·R is then divided into Cn tensors with size
N ×K ×R, which are finally transformed to Cn waveforms
samples by applying an overlap-and-add operation to the R
chunks. The overlap between two successive frames is L/2.

The gating network is implemented as Convolutional
Neural Network (CNN) using four convolution layers with
64, 32, 16, 8 channels, respectively, followed by two fully
connected layers. Each convolutional layer has a kernel size
of 3 followed by PReLU and max-pooling with kernel size
2. The first fully connected layers have 100 PReLU neurons
while the last layer outputs a distribution over the number of
speakers. Unlike [22], we do not use any speaker identifica-
tion loss. Note, that the same separation heads are applied
after each block.

Training objective We optimize several loss functions to
further improve models performance, where the main objec-
tive of each of the experts is the SI-SNR,

SI-SNR(sj , ŝj) = 10 log10

||s̃j ||2

‖ẽj‖2
, (1)

where s̃j = 〈sj ,ŝj〉sj

||sj ||2 and ẽj = ŝj − s̃j .
To tackle the permutation invariant problem we use the

utterance level Permutation Invariant Training (uPIT) loss, as
proposed in [7]:

LuPIT(s, ŝ) = − max
π∈ΠCn

1

Cn

Cn∑
j=1

SI-SNR(sj , ŝπ(j)), (2)

where ΠCn
is the set of all possible permutations of 1, . . . , Cn.

We denote the optimal permutation πo.
Next, to further improve optimization and reduce artifacts

in the estimated signals, we include a frequency domain loss
function. Similarly to [24, 25], we define the STFT loss to be
the sum of the spectral convergence (sc) loss and the magni-
tude loss as follows,

Lstft =

Cn∑
j=1

Lsc(s
j , ŝπo(j)) + Lmag(s

j , ŝπo(j)),

Lsc(s
j , ŝπo(j)) =

‖|STFT(sj)| − |STFT(ŝπo(j))|‖F
‖|STFT(sj)|‖F

,

Lmag(sj , ŝπo(j)) =
1

T
‖ log |STFT(sj)| − log |STFT(ŝπo(j))|‖1,

(3)



where ‖ · ‖F and ‖ · ‖1 are the Frobenius the L1 norms re-
spectively. We define the multi-resolution STFT loss to be
the sum of all STFT loss functions using different STFT
parameters. We apply the STFT loss using different res-
olution with number of FFT bins ∈ {512, 1024, 2048},
hop sizes ∈ {50, 120, 240}, and lastly window lengths
∈ {240, 600, 1200}.

Lastly, we included a cyclic reconstruction L2 loss be-
tween the sum of the input mixture to the sum of the estimated
sources. Defined as: Lrec = ‖

∑Cn

j=1 ŝ
j − x‖2. Notice, in the

case of noisy and reverberant setup, we replace x by the sum
of all clean input sources.

Overall, we minimize the following objective function,

L = LuPIT + λstft · Lstft + λrec · Lrec + λgate · Lg, (4)

where Lg is the categorical cross-entropy loss used to opti-
mize the gate branch. Note, the gate is constantly training re-
gardless of the amount of sources. We calibrated all λ values
on the validation set, and set λrec = λgate = 1, and λstft = 0.5.

While training, the number of speakers, Cn is randomly
chosen in each mini-batch. Therefore, only the corresponding
expert is trained at every mini-batch. During inference, the
outputs of the expert with the highest probability are used.
Evaluation method While evaluating a separation model for
a known the number of speakers is straightforward and can be
done by using SI-SNR directly, it is unclear how to evaluate a
separation model with an unknown number of speakers, since
the predicted and target number of speakers can vary.

To mitigate that we follow the method proposed by [22].
Three cases are considered: i) the predicted and target number
of speakers are the same, in this case, we simply compute the
SI-SNR; ii) the predicted number of speakers is larger than
the target number of speakers, here we compute the correla-
tion between each predicted and target channels, and pick the
C predicted channels with the highest correlation; iii) the pre-
dicted number of speakers is smaller than the target number
of speakers. Here we also compute the correlation between
the predicted and target channels, but then we duplicate the
best-correlated signals to reach C number of channels.

The last case can be considered as a penalty for the model
since the separation will always be flawed. In the second case,
the model may produce a good separation despite predicting
the wrong number of speakers.

4. DATASET

Under both clean and noisy settings, we assume all signals
were sampled at 8 kHz. We set 20,000 examples for training,
5,000 samples for validation, and 3,000 samples for testing.
We consider the anechoic signals as target supervision, thus
under the noisy reverberant setting, we optimize the model to
jointly do separation, denoising, and dereverberation.
Clean dataset For the clean dataset, we use the wsj0-2mix
and wsj0-3mix mixtures as suggested in [1], while for wsj0-

Table 1: Noisy reverberant data specification.
x U[4,7]

Room (m) y U[4,7]
z 2.5

T 60 (sec) U[0.16, 0.36]

x xRoom
2 +U[-0.2,0.2]

Mic. Pos. (m) y yRoom
2 +U[-0.2,0.2]

z 1.5

# of speakers {2/3/4/5}
Sources Pos. (◦) θ U[0,180]

Sources Distance (m) 1.5+U[-0.2,0.2]

SNR dB U[0, 15]

4mix and wsj0-5mix we follow the same mixture recipes as
suggested in [22].
Noisy reverberant dataset As for the noisy reverberant set-
tings, we generate datasets for separating up to five different
sources. The setup of the dataset is presented in Table 1. We
synthetically generate noisy reverberant mixtures to mimic
real-world recordings. The clean signals were taken from the
WSJ0 corpus [26] and noise signals from the WHAM! noise
dataset [27].

For each mixture, we first randomly sampled the number
of speaker (between 2-5). Next, we randomly selected room
dimensions, microphone positions, and different positions for
the sources, as shown in Table 1. We generated a Room Im-
pulse Response (RIR) using the rir generator tool [28] for ev-
ery speaker in the mixture, which was then convolved with
the clean signal. The reverberant signals were then summed
up together with an additive noise using random SNR.

5. EXPERIMENTAL RESULTS

We start by evaluating the proposed model while we assume
the number of speakers in the mixture is known a-priori. Next,
we move into comparing our system to several automatic-
selection methods while the number of speakers in the record-
ing is unknown. We conclude this section by analyzing the
performance of the speaker classification branch. All results
are reported for both clean and noisy reverberant environ-
ments. For the separation results, we report the SI-SNR im-
provement over the mixture, denoted as SI-SNRi.

5.1. Known number of speakers

We compared the proposed method to ConvTasNet [11],
Dual-Path RNN (DPRNN) [14], and Gated model [22], for
the case of a known number of speakers. The baseline meth-
ods were trained with a different model separating each
number of speakers between two and five. We optimized all
baseline models using the published code by the method’s
authors. All models were optimized until no loss improve-
ment was observed on the validation set for five epochs using
Adam optimizer with a learning rate of 3× 10−4 and a batch
size of 2.



Table 2: Performance of various models as a function of
the number of speakers under the clean and noisy reverber-
ant setups. In the following results, we assume the number
of speakers in the mixture is known a-priori. All results are
reported in SI-SNRi.

Model 2spk 3spk 4spk 5spk 2spk 3spk 4spk 5spk

Clean Noisy-reverberant

ConvTasNet [11] 15.33 12.71 8.52 7.04 8.97 7.46 6.31 5.53
DPRNN [14] 18.81 14.68 10.39 8.72 10.24 8.34 6.92 5.89
Gated [22] 20.12 16.85 12.88 10.56 10.66 8.93 7.42 6.35
Ours 19.43 17.26 13.93 11.77 11.48 10.73 9.48 8.49

Table 2 presents the separation results. The proposed
method is superior to the baseline methods by a significant
margin, with one exception of two speakers in an anechoic
room. These results suggest that using shared representation
together with classifying the number of speaker in the mix-
ture are beneficial specifically when considering more than
two speakers or a noisy environment.

Notice, the noisy dataset is significantly more challenging
than the clean dataset since the models are required to not
only separate the sources but also reduce their reverberation
and additive noise. Therefore all models suffer a degradation
in performance compared to the clean dataset.

5.2. Unknown number of speakers

Next, we consider the case of an unknown number of speak-
ers. We compared the proposed method to several automatic
selection algorithms for the number of speakers in the record-
ing. Specifically, we compared our model to i) [22] which
trained a separate model to separate a different number of
speakers, denoted as Ensemble; ii) [7, 21] which trains one
model to separate the maximum number of speakers, denoted
as MaxOut. We optimized the MaxOut method with and with-
out speaker classification loss. Notice, both methods use a
silent detection algorithm on top of the model’s output to pro-
duce the final separation. In contrast, our work uses a speaker
classification branch, we use its output to determine the num-
ber of speakers in the mixture.

For a fair comparison, all separation models are based on
Gated [22], where we only change the selection algorithm.
Results presented in Table 3. The proposed method is su-
perior to the baseline methods under both clean and noisy
scenarios. Notice, sharing internal representation yields in
a better separation performance, while including several sep-
aration heads instead of the MaxOut method further improves
the results, specifically under noisy environments. Interest-
ingly, including the classification branch did not improve per-
formance for the MaxOut method.

Lastly, we report the classification results obtained by our
model and compared them to the silent detection algorithm
as in [22]. The results are depicted in Fig. 2. Including a
dedicated branch for speaker separation evidently provides a
boost in classification performance, especially in noisy rever-

Table 3: A comparison of several automatic selection algo-
rithms for speaker separation while considering the number
of speakers in the mixture to be unknown. All results are re-
ported in SI-SNRi.

Model 2spk 3spk 4spk 5spk 2spk 3spk 4spk 5spk

Clean Noisy-reverberant

Ensemble ([22]) 18.63 14.62 11.48 10.37 10.24 8.59 7.07 6.21
MaxOut w/o Cls. ([7, 21]) 19.29 16.8 13.34 11.31 10.59 9.41 7.92 7.5
MaxOut w/ Cls. ([7, 21]) 19.11 16.71 13.35 11.29 10.58 9.39 7.97 7.51
Ours 19.41 17.05 13.91 11.71 11.45 10.6 9.36 8.31
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Fig. 2: Confusion matrix for model selection results using
clean and noisy datasets. Results are reported for both the
proposed model (Fig. 2a (clean) and Fig. 2c (noisy)) and
the MaxOut model using silent detection method as proposed
in [22] (Fig. 2b (clean) and Fig. 2d (noisy)). Acc. is presented
inside each cell in the matrix.

berant environments. As a side-note: we also experimented
with optimizing the classification model using spectral fea-
ture rather than joint optimization with the separation heads.
This, however, provided inferior performance.

It is worth mentioning that although SI-SNRi results are
superior to the baseline methods while listening to the sep-
arations there still much room for improvement, especially
when considering the mixtures with four or five speakers un-
der noisy reverberant environments. Nevertheless, these sepa-
rations can still be used as prior statistics for next-phase multi-
channel speech processing.

6. CONCLUSIONS

Single-channel source separation is a challenging task, espe-
cially when considering a large or unknown number of speak-
ers in noisy reverberant environments. In this work, we intro-
duce a neural net model that handles the uncertainty regarding
the number of speakers under real-world conditions. The suc-
cess of our work under practical settings stems from the use of
a shared representation with a multi-task loss function. Em-
pirical results suggest the proposed method is superior to the
baseline models both in terms of separation and classifying
the number of speakers in the mixture.
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