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As companies increasingly rely on experiments to make product decisions, precisely measuring changes in key

metrics is important. Various methods to increase sensitivity in experiments have been proposed, including

methods that use pre-experiment data, machine learning, and more advanced experimental designs. However,

prior work has not explored modeling heterogeneity in the variance of individual experimental users. We

propose a more sensitive treatment effect estimator that relies on estimating the individual variances of

experimental users using pre-experiment data. We show that that weighted estimators using individual-level

variance estimates can reduce the variance of treatment effect estimates, and prove that the coefficient of

variation of the sample population variance is a sufficient statistic for determining the scale of possible variance

reduction. We provide empirical results from case studies at Facebook demonstrating the effectiveness of this

approach, where the average experiment achieved a 17% reduction in variance with minimal impact on bias.
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1 BACKGROUND ANDMOTIVATION
Companies routinely turn to A/B testing when evaluating effectiveness of their product changes.

Also known as a randomized field experimentation, A/B testing has been used extensively over

the past decade to measure the causal impact of product changes or variants of services, and has

proven to be important success factor for businesses making important decisions [10, 14].

With increased adoption of A/B testing, proper analysis of experimental data is crucial to decision

quality [2, 6, 21]. Successful A/B tests must exhibit sensitivity – they must be capable of detecting

effects that product changes routine generate. From a hypothesis-testing perspective, experimenters

aim to have high statistical power – the likelihood that the experiment will detect an non-zero

effect when such an effect exists. Two common ways to improve the power of an experiment are

increasing sample size and decreasing the sampling variance (often through choosing less variable

metrics as outcomes of interest).

Increasing sample size is straightforward to implement – one can simply include more users

or conduct longer experiments. However, if the product change is detrimental, a large number of

users could be adversely affected. In addition, companies conducting multiple tests may have a

limited set of users available for each study [4, 23]. As a result, increasing the sample size is not

always feasible or worth the trade-off.
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We focus on improving sensitivity by reducing the sampling variance of the experiment met-

ric. Several methods for variance reduction have been proposed in literature, including post-

stratification [13], CUPED [5] and predictive modeling [7, 19]. We will review these methods in

section 2.

While standard approaches to variance reduction often require incorporating non-experimental

data, there is little prior work on methods that attempt to understand the inherent uncertainty

introduced by individual experimental users. To leverage this information, we propose directly

estimating the pre-experiment individual variance for each user. For example, if our target metric

is “time spent by user on the site per day,” we may want to give more weight to users who exhibit

lower variance for this metric through their more consistent usage of the product. We can estimate

the variance of a user’s daily time spent during the month before the experiment and assign weights

which are higher for users with less noisy behaviors. We describe this idea more in-depth in section

3.1, where we prove that the amount of variance reduction one can achieve when weighting by

variance is a function of the coefficient of variation of the variance of experimental users – roughly

how variable the users are in their variability.

Applying our approach of using inverse variance-weighted estimators to a corpus of real A/B

tests at Facebook, we find that there is opportunity for substantial variance reduction with minimal

impact on the bias of treatment effect estimates. Specifically, our results show an average variance

reduction of 17% while bias is bounded within 2%. In addition, we show that inverse variance-

weighted estimators can achieve improved variance reduction when combined with other standard

approaches, such as regression adjustment (also known as CUPED) [5], demonstrating that this

method complements existing work.

To summarize, our main contributions in this paper include:

• We propose an efficient average treatment effect (ATE) estimator that weights individual

users based on pre-experiment variance estimates, as well as an approach–stratification–to

manage bias.

• We derive the theoretical extent of variance reduction one can achieve, a function of the

coefficient of variation of the user-level variances, and show how variance reduction depends

on the predictive power of the variance model.

• We provide empirical results from a set of A/B tests at Facebook documenting variance

reduction from our estimator with only modest increases in bias, and a comparison of how

results of existing methodologies (such as CUPED) complement each other.

The remainder of this paper is organized as follows. In section 2, we review A/B testing and

existing approaches to variance reduction. Section 3 proposes our variance reduction framework

and section 4 introduces inverse variance-weighted estimators. In section 5, we conduct a case

study evaluating our proposed estimators. Section 6 concludes with recommendations for future

work and improvements.

2 REVIEW OF A/B TESTING AND RELATEDWORK
2.1 A/B Testing
The primary goal of A/B testing is to estimate whether a change within a sample population leads to

a meaningful effect in an observed metric. To measure such an effect, we refer to a two-sample t-test

[20]. Denoting the observed metric of users in the test and control groups as 𝑌𝑡 and 𝑌𝑐 , respectively,

we can then calculate a t-statistic:

𝑌𝑡 − 𝑌𝑐√
Var(𝑌𝑡 − 𝑌𝑐 )
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We denote 𝛿 = 𝑌𝑡 −𝑌𝑐 as the Average Treatment Effect (ATE) of the experiment. The null-hypothesis

of the test is that 𝑌𝑡 and 𝑌𝑐 are equal and have no significant difference. The larger the statistic, the

less likely we are to have observed the difference in means when there is no effect. If we expand

the expression in the denominator and assume independence between the two groups, then

Var(𝑌𝑡 − 𝑌𝑐 ) = Var(𝑌𝑡 ) + Var(𝑌𝑐 )
meaning that if variance is reduced, then we are more likely to reject the null hypothesis (given

that the average treatment effect, 𝑌𝑡 − 𝑌𝑐 , is constant.)

2.2 Variance Reduction Methods
Assuming that the effect size of the experiment is constant, there are several standard variance

reduction techniques used which have inspired our approach in this paper.

2.2.1 Increasing Sample Size. As mentioned previously, sample size is one of the most direct ways

to decrease the variance in an experiment. To see this, note that the variance of a sample mean is

Var(𝑌 ) = Var

(∑𝑁
𝑖 𝑌𝑖

𝑁

)
=

1

𝑁 2

𝑁∑
𝑖

Var(𝑌𝑖 ) =
𝜎2

𝑖

𝑁

so an increase in the sample size 𝑁 leads to a decrease in the variance of the sample mean.

2.2.2 Metric Transformations. Many metrics are heavy-tailed or noisy, and thus simply calculating

the raw difference in means may not be the optimal statistic to detect lift. Learning suitable metric

transformations is a common method in variance reduction [9].

A simple example of a metric transformation is winsorization, which trims extreme values of the

data to specified percentiles:

𝑓 (𝑥) =
{
𝑥, 𝑥 < 𝑥0

𝑥0, 𝑥 >= 𝑥0

where 𝑥0 is a specified percentile of the data.

Another example of a metric transformation used often for non-parametric data is the median,
which is referred to as an Asymptotically Linear Estimator since it is asymptotically equivalent to

taking the mean after transforming each data point independently. Notably, metric transformations

can add bias, as we will note later in section 5, so practitioners should manage the bias-variance

trade-off with caution.

2.2.3 Regression adjustment (CUPED). Regression adjustment [15], popularly known to practi-

tioners as CUPED (Controlled Experiment Using Pre-Experiment Data) [5], uses pre-experiment

data as control variables to explain nuisance variation in outcomes and increase precision of effect

estimates. To briefly review, suppose we have a target metric 𝑌 , and a closely correlated metric 𝑋

which is not affected by the treatment. We can define a new variable

�̃� = 𝑌 − \𝑋 (1)

where \ is some constant. The expectation of �̃� is E(�̃� ) = E(𝑌 ) − \E(𝑋 ), and the variance of this

expression is

Var(�̃� ) = Var(𝑌 ) − 2\Cov(𝑋,𝑌 ) + \ 2
Var(𝑋 ) (2)

Minimizing (2) with respect to \ , we get
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\ =
Cov(𝑋,𝑌 )

Var(𝑋 )
Plugging this back into (2), we have

Var(�̃� ) = Var(𝑌 ) (1 − 𝜌2) (3)

where 𝜌 is the Pearson correlation between 𝑋 and 𝑌 :

𝜌 =
Cov(𝑋,𝑌 )2

Var(𝑋 )Var(𝑌 ) (4)

If one can identify a variable that is explains variation in the target metric, then sampling variance

of the metric can be reduced. The CUPED implementation of this idea is quite simple: the authors

advocate choosing𝑋 to be the pre-experiment values of the metric. CUPED is implemented in many

companies’ A/B testing platforms (including Microsoft, Facebook, and Lyft), and often provides

substantial variance reduction.

2.2.4 Post-Stratification. Post-stratification [13, 16] is a technique commonly used when a simple

random sample of the population is imbalanced or when there may be heterogeneous treatment

effects. The sample is first divided into separate strata. The average treatment effect is calculated for

each strata, and the estimates are pooled with each strata getting a pre-defined weight. Specifically,

ˆ𝛿 =

∑
𝑘 𝑤𝑘𝛿𝑘∑
𝑘 𝑤𝑘

(5)

where 𝛿𝑘 is the average treatment effect of strata 𝑘 .

There are several methods for selecting post-stratification weights. One commonly used weight

is the sample proportion of the strata,𝑤𝑘 =
𝑛𝑘
𝑛
, where 𝑛𝑘 is the number of users in strata 𝑘 , and 𝑛

is the total number of users in the experiment.

3 VARIANCE-WEIGHTED ESTIMATORS
We now formulate the theory behind variance-weighted estimators and present several empirical

case studies showing the effectiveness of using these estimators.

The variance-weighted estimator we propose uses the same general expression from post-

stratification. First, note that Equation 5 is unbiased when the treatment effects 𝛿𝑘 are independent,

since given true effect 𝛿 ,

E( ˆ𝛿) = E

(∑
𝑘 𝑤𝑘𝛿𝑘∑
𝑘 𝑤𝑘

)
=

1∑
𝑘 𝑤𝑘

∑
𝑘

𝑤𝑘E(𝛿𝑘 ) = 𝛿 (6)

Our approach focuses on using pre-experiment estimated variance to create weights for the

estimator. Importantly, the effectiveness of using a weighted estimator to reduce variance in an

experiment is dependent on how well we can estimate variance.

To begin, first note that the outcome for each user can be written as

𝑌𝑖 = 𝛼 + 𝛿𝑖𝑍𝑖 + 𝜖𝑖

where 𝛼 is the overall mean of the outcome, 𝛿 is the treatment effect, 𝑍𝑖 ∈ {0, 1} is a binary

treatment indicator, and 𝜖𝑖 is i.i.d. random error. The average treatment effect is given by

𝛿 =
1

𝑁

𝑁∑
𝑖=1

E(𝑌𝑖 |𝑍𝑖 = 1) − E(𝑌𝑖 |𝑍𝑖 = 0) (7)
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Assume that the error term 𝜖𝑖 is drawn from a normal distribution: 𝜖𝑖 ∼ 𝑁 (0, 𝜎2

𝑖 ). Using this

formulation, one can show that

Var(𝑌𝑖 |𝑍𝑖 = 0) = Var(𝑌𝑖 |𝑍𝑖 = 1) = Var(𝜖𝑖 ) = 𝜎2

𝑖

We typically assume homogeneity in the variance of the error terms: 𝜎2

𝑖 = 𝜎2
, but practically

this assumption may not be true. Since the variance of each user typically has to be estimated, the

degree to which one can estimate these error terms will then determine how much variance can be

reduced.

3.1 Case 1: Perfect Knowledge of Variance
Suppose that one were able to measure the variance of each individual user or strata with no error.

Then, the most efficient weights to use would be the inverse variances of each measurement. The

proof is straightforward: note that we have a weighted sum
ˆ𝛿 =

∑
𝑖 𝑤𝑖𝛿𝑖 , where the weights𝑤𝑖 are

normalized,

∑
𝑖 𝑤𝑖 = 1. Assuming that the 𝛿𝑖 are independent, the variance of ˆ𝛿 is given by

Var( ˆ𝛿) =
∑
𝑖

𝑤2

𝑖 Var(𝛿𝑖 ) =
∑
𝑖

𝑤2

𝑖 𝜎
2

𝑖 (8)

To minimize (8), we use a Lagrange Multiplier:

Var( ˆ𝛿) =
∑
𝑖

𝑤2

𝑖 𝜎
2

𝑖 −𝑤0 (
∑
𝑖

𝑤𝑖 − 1)

Setting the gradient to 0,

0 =
𝑑Var( ˆ𝛿)
𝑑𝑤𝑘

= 2𝑤𝑘𝜎
2

𝑘
−𝑤0

so that𝑤𝑘 =
𝑤0

2𝜎2

𝑘

. Thus,

2

𝑤0

=
∑
𝑖

1

𝜎2

𝑖

:=
1

𝜎2

0

where 𝜎2

0
is the sum of the variances 𝜎2

𝑖 , and

Var( ˆ𝛿) =
∑
𝑖

𝜎4

0

𝜎4

𝑖

𝜎2

𝑖 = 𝜎4

0

∑
𝑖

1

𝜎2

𝑖

= 𝜎4

0

1

𝜎2

0

= 𝜎2

0
=

1∑
𝑖

1

𝜎2

𝑖

(9)

which is the inverse of variance. This proves that weighting by the inverse of variance,𝑤𝑖 =
1

𝜎2

𝑖

,

will result in the optimal estimator if the variances, 𝜎2

𝑖 , are known [22].

Let the unweighted and weighted estimators be
ˆ𝛿𝑢 and

ˆ𝛿𝑤 , respectively. To formalize how much

variance is reduced when using a weighted estimator, we define the variance ratio (VR) as the
expectation of the ratio of the variance of the unweighted estimator to the variance of the weighted

estimator, or

𝑉𝑅 = E

(
Var( ˆ𝛿𝑢)
Var( ˆ𝛿𝑤)

)
(10)

The following results can then be derived.

Proposition 3.1. The variance ratio is a function of the square of the coefficient of variation of
the user-level variances. Or,

E

(
Var( ˆ𝛿𝑢)
Var( ˆ𝛿𝑤)

)
�

𝐸 (Var( ˆ𝛿𝑢))
𝐸 (Var( ˆ𝛿𝑤))

(
1 + Var(Var( ˆ𝛿𝑤))

(E(Var( ˆ𝛿𝑤)))2

)
(11)
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Proof. For simplicity in notation let 𝑈 = Var( ˆ𝛿𝑢), 𝑊 = Var( ˆ𝛿𝑤), and 𝑓 (𝑈 ,𝑊 ) = 𝑈
𝑊
. Let

\ = (𝑈 ,�̄� ) and Taylor expand around \ :

𝑓 (𝑈 ,𝑊 ) �𝑓 (\ ) + 𝑑 𝑓 (\ )
𝑑𝑈

(𝑈 −𝑈 ) + 𝑑 𝑓 (\ )
𝑑𝑊

(𝑊 − �̄� ) + 1

2

(
𝑑2 𝑓 (\ )
𝑑𝑈 2

(𝑈 −𝑈 )2

+ 2

𝑑2 𝑓 (\ )
𝑑𝑈𝑑𝑊

(𝑈 −𝑈 ) (𝑊 − �̄� ) + 𝑑2 𝑓 (\ )
𝑑𝑊 2

(𝑊 − �̄� )2

) (12)

Next, since we are interested in E(𝑓 (𝑈 ,𝑊 )), we observe that

E(𝑓 (𝑈 ,𝑊 )) � 𝑓 (\ ) + 1

2

(𝑑
2 𝑓 (\ )
𝑑𝑈 2

(Var(𝑈 ) + 2

𝑑2 𝑓 (\ )
𝑑𝑈𝑑𝑊

Cov(𝑈 ,𝑊 ) + 𝑑2 𝑓 (\ )
𝑑𝑊 2

Var(𝑊 )) (13)

Since 𝑓 (\ ) = 𝑈

�̄�
,
𝑑2 𝑓 (\ )
𝑑𝑈 2

= 0,
𝑑2 𝑓 (\ )
𝑑𝑊 2

= 2𝑈
𝑊 3

, and
𝑑2 𝑓 (\ )
𝑑𝑈𝑑𝑊

= − 1

𝑊 2
, the equation above simplifies to

E((𝑓 (𝑈 ,𝑊 )) = E

(
𝑈

𝑊

)
�

𝑈

�̄�
+ 1

2

(
2𝑈

𝑊 3
Var(𝑊 ) − 2

𝑊 2
Cov(𝑈 ,𝑊 )

)
=

E(𝑈 )
E(𝑊 ) +

E(𝑈 )
(E(𝑊 ))3

Var(𝑊 ) − 1

(E(𝑊 ))2
Cov(𝑈 ,𝑊 )

=
E(𝑈 )
E(𝑊 ) +

1

(E(𝑊 ))2

(
E(𝑈 )
E(𝑊 )Var(𝑊 ) − Cov(𝑈 ,𝑊 )

)
Assuming Cov(𝑈 ,𝑊 ) = 0, then

E

(
𝑈

𝑊

)
�

E(𝑈 )
E(𝑊 )

(
1 + Var(𝑊 )

(E(𝑊 ))2

)
(14)

Plugging back𝑈 = Var( ˆ𝛿𝑢) and𝑊 = Var( ˆ𝛿𝑤) concludes the proof. □

The implication in Proposition 3.1 is that the total possible variance reduction is a function of

the square of the coefficient of variation (CV) of the distribution of the user-level variances.

Moreover, if one were to estimate the true variances of each user as accurately as possible, then the

coefficient of variation would be a sufficient statistic to determines the total variance reduction

using a variance-weighted estimator. This insight is significant as it quantifies the amount of

variance reduction one can achieve simply by inspecting the “variance of the variances” of the

experiment sample.

3.2 Case 2: Estimated Value of Variance
In practice, we must estimate the variance of each user, and thus Equation 9 is a lower bound of

the weighted variance due to estimation error. There are three types of weights that can be used in

any weighted estimator:

• Equal weights: 𝑤𝑖 = 1. This is the standard estimator which we are seeking to improve.

• Optimal weight: 𝑤𝑖 =
1

𝜎2

𝑖

. This is the optimal estimator if we know the true variances of each

user.

• Optimal weights with biased error: 𝑤𝑖 =
1

𝜎2

𝑖
𝑒𝑖
. This is the estimator we use since we have to

estimate the variances for each user.

Efficient estimation of user-level variances is an active area of research. We studied unpooled

estimators (using the pre-experiment user-level sampling variance), building a machine learning

models to predict out-of-sample variance from features, and using Empirical-Bayes estimators to

pool information across users.
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Fig. 1. Variance Ratio vs. 𝑅2 of model.
Better estimates of in-experiment user-level
variance can provide much larger variance re-
duction. Poorer models of user-level variance
can actually increase variance of the estima-
tor.
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Fig. 2. Variance Ratio vs. Coefficient of
Variation of Variance.
In agreement with our derivations, the vari-
ance reduction that can be achieved in expec-
tation is a function of the “variance of the
variances” adjusted for the mean-value of the
metric.

To measure how well our estimate of variance is, we rely on two main metrics: 𝑅2
,

𝑅2 = 1 −
∑

𝑖 𝜎
2

𝑖 − �̂�2

𝑖∑
𝑖 (𝜎2

𝑖
− ¯𝜎2)2

(15)

and mean-squared error (MSE),

𝑀𝑆E( ˆ𝜎2) = 𝐸 [( ˆ𝜎2 − 𝜎2)2] (16)

In both metrics above, we denote the theoretical variance, which we can temporarily assume to be

the post-treatment variance, as 𝜎2

𝑖 , while the pre-experiment variance is denoted as �̂�2
.

Based on these theoretical results, we first ran simulations using

log(𝜎2

𝑖 ) ∼ Normal(`, a2)
(log(�̂�2

𝑖 ) − log(𝜎2

𝑖 )) ∼ Normal(0, 𝜏2)
for various values of (`, a, 𝜏) to evaluate the trade-offs between variance ratio, variance prediction

quality, and the coefficient of variation of the data. Figure 1 demonstrates how better variance

estimates improve variance reduction when using weighted estimators.

Using 𝑅2
as the heuristic in determining howwell one can predict post-experiment variance using

pre-experiment variance, we see that as prediction quality increases, the variance ratio increases.

The simulation results estimate that an 𝑅2
of about 0.60 is a necessary threshold to achieve variance

reduction. User-level variance estimates that are too large increase the variance of the weights

while allocating more weight to higher variance users in many cases.

The threshold from our simulation does not take into account bias that may be introduced when

using weighted estimators. Section 5.1 provides a discussion of bias and how to estimate it.

Figure 2 shows in simulation how a higher coefficient of variation of the variances of individual

data leads to more variance reduction opportunity, as measured once again by the variance ratio.
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This is expected, as Proposition 3.1 proves that the variance reduction is a function of the coefficient

of variation.
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Fig. 3. 𝑅2 of Variance Model vs. Coefficient of Variation of Variance for 12 Facebook Metrics.
Six metrics have highly accurate user-level variance models (top-left), while two others have very high
coefficient of variation (right). The four metrics in the bottom left may not be suitable for our proposed
estimator.

To demonstrate that variance-weighted estimators are likely to be useful in practical settings,

we collected 12 popular metrics used in A/B tests at Facebook (such as likes, comments, time

spent, posts shared) to estimate the predictability of the variance for each metric and its coefficient

of variation. The results, in Figure 3, show that the variance of most of the metrics are highly

predictable (as measured by 𝑅2
). In addition, the coefficient of variation of the variances is large

enough that they can be used effectively in a variance-weighted estimator. In section 5 we conduct

further case studies showing estimates from applying a variance-weighted estimator to a A/B tests

on one of the metrics here, “time spent per user per day”.

4 IMPLEMENTATION OF VARIANCE-WEIGHTED ESTIMATORS
To implement variance-weighted estimators, our method utilizes the estimated variance of users

prior to the experiment. In addition, we use stratification as a straightforward approach to control

the variance in estimating user-level variances, as well bias from unequal treatment effects between

users.

4.1 Stratification based on Estimated Variance
One could directly apply the approach we listed in the previous section by estimating the variance

of each individual user and weighting inversely by these estimates. However, while overall variance

of an experiment can be expected to decrease, we often run into increases in bias from treatment

effect heterogeneity. We propose to manage the increase in bias is by creating quantiles bins and

stratifying the users based on variance. This approach requires a weaker assumption about the

treatment effect heterogeneity in order to be unbiased.

To apply stratification, we create bins based on quantiles of estimated variances of each user,

creating strata. For each strata, we then calculate its average treatment effect and estimate its
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weight based on within-group estimated variance (this could be any aggregate function, such as

mean). From Equation 5,

ˆ𝛿 =

∑
𝑘 𝑤𝑘𝛿𝑘∑
𝑘 𝑤𝑘

(17)

Note that if the weights are normalized to 1, then the denominator in (17) is not necessary. Denoting

𝑌𝑖 as the metric for user 𝑖 , 𝑠𝑖 as the sample variance, 𝑆𝑘 as each strata 𝑘 , and 𝑍𝑖 as the treatment

status, where 𝑖 = 1 is the treatment group and 𝑖 = 0 is the control group, we have the treatment

effect in each strata as

𝛿𝑘 =

∑
𝑖 𝑌𝑖1[𝑠𝑖 ∈ 𝑆𝑘 ∩ 𝑍𝑖 = 1]∑
𝑖 1[𝑠𝑖 ∈ 𝑆𝑘 ∩ 𝑍𝑖 = 1] −

∑
𝑖 𝑌𝑖1[𝑠𝑖 ∈ 𝑆𝑘 ∩ 𝑍𝑖 = 0]∑
𝑖 1[𝑠𝑖 ∈ 𝑆𝑘 ∩ 𝑍𝑖 = 0] (18)

and, if we use the mean of within-group variance as weights,

𝑤𝑘 =

∑
𝑖 𝑠𝑖1[𝑠𝑖 ∈ 𝑆𝑘 ]∑
𝑖 1[𝑠𝑖 ∈ 𝑆𝑘 ]

(19)

Algorithm 1 runs through the steps in this approach.

Algorithm 1 Stratification based on Pre-Experiment Variance

Input: Experiment users 𝑥1, 𝑥2, ..., 𝑥𝑛 , and their observed metrics prior to and during the

experiment

Output:Weighted average treatment effect, variance

1: Obtain pre-experiment data for each user for a time period prior to the experiment, 𝑥11, 𝑥12, ...𝑥1𝑡 ,

𝑥21, 𝑥22, ...𝑥2𝑡 , 𝑥𝑛1, 𝑥𝑛2, ...𝑥𝑛𝑡
2: For each user 𝑖 , calculate pre-experiment variance based on the metric using some function

𝑓 (𝑥𝑖1, 𝑥𝑖2, ..., 𝑥𝑖𝑛). One candidate function is the variance of the data.

3: Bin the users into 𝑘 strata based on the estimated pre-experiment variance.

4: Estimate the weight for each bin based on the mean (or another function) of the pre-experiment

variance for users within the bucket

5: Compute the weighted average treatment effect using Equations 17-19.

6: Calculate the variance (or power) 𝑧𝑘 of the experiment based on the results from step 5 using

either bootstrapping [8] or the Delta Method [3, 18]

7: Optional Choose the optimal number of bins by repeating steps 3 to 6 for various values.

4.1.1 Estimating User Variances. A simple method to estimate user variance is to find the variance

of the outcome metric for a user over a pre-experiment time period. The noisiness of this result is

then a strong indicator of how much signal a user would provide in the experiment.

As a thought experiment, suppose we ran an A/B test on two individuals and wanted to estimate

the treatment effect. The month prior to the test, we collect the target metric of each individual

on each day, and both have a mean of 20 minutes. However, one individual has incredibly small

variance - the metric varies daily between 19.8 and 20.2. The other individual’s metric ranges from

12 to 28. If both users were to have the treatment applied to them and both increased their mean to

20.5 over the next five days in the experimental period, then obviously the individual with the lower

prior variance would give us a clearer signal on the treatment effect. Conversely, the high-variance

individual would provide us with a much noisier signal. Figure 4 illustrates this idea, which is based

on a real A/B test at Facebook in which both users had the same mean for the target metric in

the month prior to the experiment and also had the same treatment effect on the first week of the

experiment. The effect of the user with the lower variance is obviously more apparent.
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Fig. 4. Time series of low-variance vs. high-variance users, pre- vs. post-experiment.
The intuition behind our proposed estimator is that users withmore stable behaviors provide greater sensitivity
in detectin effects.

4.1.2 Bias in Variance-Weighted Estimators. One caveat here is that weighting may introduce

bias – the group of users that have lower variance may exhibit a different effect size than the

population. As a result, a recommendation is to compare the unweighted and weighted estimators

when implementing this approach [17]. At the very least, even if the sample is slightly biased,

achieving higher sensitivity on a typically low-powered experiment may still prove to be useful

knowledge.

Another approach is to design weights that minimize variance subject to an unbiasedness con-

straint. For instance, given pre-treatment mean `𝑖 and variance 𝜎2

𝑖 , one could consider an unbiased-

ness constraint such that 𝐸 (𝑤𝑖𝑚𝑖 ) = 𝐸 (𝑚𝑖 ), with a minimum variance objective: min𝑤𝑖
𝑉𝑎𝑟 (𝑤𝑖𝑚𝑖 ).

This is an area of future research.

4.1.3 Connections to CUPED. Similar to CUPED, which was mentioned in section 2.2.3, the ap-

proached described in section 3 leverages pre-experiment data for variance reduction purposes.

However, how the pre-experiment data is used is different. In CUPED, one leverages the individual

values or mean of a user’s data over a period of time prior to the experiment. In contrast, our

approach utilizes a user’s pre-experiment data to understand whether a user is noisy. Thus, it is

the variance of the set of data obtained from a user’s pre-experimental data that is of interest, not

the mean or individual values. However, an estimator that utilizes both pre-experiment mean and

variance would be an intriguing addition, and in section 5 we explore the additive gains empirically.

4.1.4 Relationship to Meta-Analysis. Meta-analysis is a procedure used to combine the results of

multiple experiments [1, 11, 12], and benefits include increasing statistical power and improving

estimates of effect size. It is commonly used to synthesize results from multiple studies. The main

difference between our proposed estimator and meta-analysis is that instead of observing multiple

experiments measuring the same treatment effect and conducting a meta-analysis over many

experiments, here we estimate the pre-experiment variance of users within one test and weight

appropriately.

5 EMPIRICAL RESULTS
Time spent is an important metric of engagement at Facebook. It accounts for the amount of time

users actively engage with Facebook apps and features and is measured on all major products.
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Fig. 5. Average % Variance Reduction vs. # of
Quantiles used in Stratification.
In our collection of 100 experiments, we observe
evidence for a bias-variance trade-off in choosing
the number of bins.

Fig. 6. Average % Bias of vs. # of Quantiles
used in Stratification.
In our collection of 100 experiments, our estima-
tor introduces a small amount of bias when com-
pared to the unbiased estimator.

Many studies at Facebook measure whether a product change will lead to an increase in time

spent. However, the distribution of time spent for users varies widely, and this may impact the

signal clarity of their treatment effect in an A/B test depending on the degree of variance.

This presents an opportunity to apply variance-weighted estimators. To do this, we took a sample

of 100 Facebook A/B tests that experimented for an increase in time spent, with the average sample

size of each test at around 500,000 users. Before analyzing the results of each test, we assembled

the daily time spent for each user in the month prior to the experiment and estimated the variance

for each user. To see how well the estimated variance of each user was, we compared how well the

pre-experiment variance correlated with the post-experiment variance. The results showed an 𝑅2

of 0.696 and a Pearson correlation 0.754, indicating that the pre-exposed variances, when calculated

over an extended period of time, do show reasonable estimations of post-exposed variance.

Next, for each experiment all users were ranked based on their estimated variance and applied

stratification, as in section 4.1. To do this, we first divided users into quantiles based on pre-

experiment estimated variance, and then calculated the sample variance of the experiment based on

various numbers of quantiles. Figure 5 shows how an optimal selection of the number of quantiles

(based on the coefficient of variation) will result in a decrease in the variance of the experiment,

and at 11 quantiles there is a 17% decrease in variance. Note that at some point as the number of

quantiles continues to increase, the variance reduction decreases as error is introduced with a large

number of bins.

5.1 Bias-Variance Trade-off
Importantly, while there are noticeable reductions in variance, an associated increase in bias is likely,

so we recommend one to always check for the corresponding bias to ensure that the approach is

valid (in fact, note that it is often the case that if a user’s variance is correlated with treatment effect,

then the estimator will likely incur a noticeable bias.) To do this, we compared the % difference

between the average treatment effect for the weighted estimator and the standard unweighted

estimator. Denoting the unweighted and weighted estimators as 𝛿𝑢 and 𝛿𝑤 , respectively, % bias is

calculated as

% 𝑏𝑖𝑎𝑠 = 100 ∗ 𝛿𝑢 − 𝛿𝑤

𝛿𝑢
(20)
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A first glance at Figure 6 shows that the bias is minuscule - within 2% in all quantiles. However,

that does not mean that the bias should be ignored, and one should always validate using a variance-

weighted estimator by monitoring the bias accordingly. In practice, a couple useful diagnostics are

to check the signal-to-noise (SNR) ratio and mean-squared error (MSE), and choose a number of

quantiles that provides the maximum benefit.

5.2 Comparison to Existing Approaches
We compared the variance reduction achieved with variance-weighted estimators to CUPED [5].

Three separate approaches were considered: 1) CUPED only, 2) Variance-Weighted Estimators only,

and 3) CUPED in combination with Variance-Weighted Estimators. The results are shown in Table

1.

Variance Reduction (%)

CUPED only 37.24%

VWE only 17.31%

CUPED + VWE 48.38%

Table 1. Comparing the % variance reduction achieved for CUPED vs. VWE

In general, CUPED achieved nearly 40% in variance reduction in our case study. It is also important

to recall that the performance of using variance-weighted estimators is dependent on how noisy

the users in an experiment are, so our results are specific to the sample of A/B tests we studied.

In reality, an experiment with a higher coefficient of variance of user variance or an experiment

metric with more accurate variance estimation would improve the variance reduction opportunity.

Interestingly, we found the total variance reduction achieved when using both CUPED and VWEs

was less than the sum of their individual variance reduction, indicating some of the reduction

obtained with VWE can be achieved through CUPED, and vice versa. How these two method work

together is interesting question for future research. In particular, there is an opportunity to learn

how the pre-experiment mean and variance of a metric can be jointly estimated to best reduce

metric variability. Moreover, given the results from Figure 4 that showed the potential of VWEs

for different topline metrics at Facebook, a logical next step would be to extend this approach to

analyze A/B tests for other metrics.

6 CONCLUSION AND FUTUREWORK
Improving sensitivity of online experiments is increasingly important for businesses as they seek

to detect smaller effect sizes to make launch decisions for products. We presented an approach that,

like regression adjustment, uses pre-experiment information, but uses the pre-experiment variance

rather than the pre-experiment mean in order to achieve a more efficient estimator. The major

limitation to our proposed approach is it requires a stronger assumption about the homogeneity of

the treatment effect in order to be unbiased. However this assumption is testable and we have not

observed large bias in practice.

It is easy to understand when this method is likely to be helpful: we proved the efficiency gains

from using variance-weighted estimators are based on two easy-to-interpret quantities: 1) the

coefficient of variation of the estimated variance, and 2) the predictive performance of variance

models. After demonstrating the applicability of our proposed estimator on 12 topline Facebook
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metrics, we showed that the variance of a set of Facebook A/B tests can be reduced by an average

of 17%, with a low impact on bias.

There are several opportunities to explore in future work:

• Better variance estimates. The approach we proposed in section 3.1 to estimating user-level

metric variance can be improved. There may be significant gains to devising conditional

variance model that estimate variance more accurately. Figure 1 showed in simulations how

increased estimate qualities can improve variance reduction, suggesting very large gains

possible for more precise estimation.

• Interaction with other variance reduction approaches.We showed the gains of VWEs in com-

bination with CUPED in section 5. We would like to understand how VWEs may improve

the variance reduction observed from other approaches (such as machine learning based

methods), as analytically understand the interactions when using multiple variance reduction

approaches at once.
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