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Abstract

In this paper, we theoretically characterize graph neural network’s representation
power for high-order node set prediction problems (where a prediction is made
over a set of more than 1 node). In particular, we focus on one most important
second-order task—link prediction. There are two representative classes of GNN
methods for link prediction: GAE and SEAL. GAE (Graph Autoencoder) first
applies a GNN to the whole graph, and then aggregates the representations of the
source and target nodes as their link representation. SEAL extracts a subgraph
around the source and target nodes, labels the nodes in the subgraph, and then uses
a GNN to learn a link representation from the labeled subgraph. At first glance,
both GAE and SEAL use a GNN. However, their performance gap can be very
large. On the recent Open Graph Benchmark datasets, SEAL achieved 3 first places
out of 4 datasets, outperforming the best GAE method by up to 195% in Hits@100.
In this paper, by studying this performance gap between GAE and SEAL, we
first point out a key limitation of GAE caused by directly aggregating two node
representations as a link representation. To address this limitation, we propose the
labeling trick. Labeling trick unifies several recent successes to improve GNNs’
representation power, such as SEAL, Distance Encoding, and Identity-aware GNN,
into a single and most basic form. We prove that with labeling trick a sufficiently
expressive GNN can learn the most expressive structural representations for node
sets. Our work establishes a theoretical foundation for using GNNs for high-order
node set prediction.

1 Introduction

Graph neural networks (GNNs) [1–10] have achieved great success in recent years. While graph
neural networks have been well studied for single-node tasks (such as node classification) and whole-
graph tasks (such as graph classification), using GNNs to predict over a set of several nodes is less
studied and less understood. Among such high-order node set prediction problems, link prediction
(predicting the link existence between a set of two nodes) is perhaps the most important one. Link
prediction is to predict missing or future links between nodes in a network. It has wide applications,
such as friend recommendation in social networks [11], movie recommendation in Netflix [12],
protein interaction prediction [13], and drug response prediction [14]. In this paper, we use link
prediction as a medium to study GNN’s high-order node set representation ability. Note that although
our examples and experiments are all around link prediction, our main technique and theorem apply
to all high-order node set representation problems.

Traditional link prediction methods can be categorized into three classes: heuristic methods, em-
bedding methods, and feature-based methods. Heuristic methods compute some heuristic graph
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structure features as the likelihood of links [15]. Examples include common neighbors, preferential
attachment [16], and Katz index [17]. Embedding methods, including matrix factorization (MF)
and Node2vec [18], learn free-parameter node embeddings in a transductive manner, thus do not
generalize to unseen nodes and networks. Feature-based methods leverage explicit node features to
predict links. By learning from graph structure and node features in a unified way, GNNs have shown
superior link prediction performance than traditional methods in recent years [19–23].

There are two main types of GNN-based link prediction methods. One is Graph Autoencoder
(GAE) [19], where a GNN is first applied to the entire network to compute a representation for each
node. Then the representations of the source and target nodes are aggregated to predict the target link.
Its variational version is called VGAE. The second type is SEAL [20, 23], where a local enclosing
subgraph is extracted around each target link. Then the nodes in each enclosing subgraph are labeled
differently according to their distances to the source and target nodes. Finally a GNN is applied
to each enclosing subgraph to learn a link representation for link prediction. At first glance, GAE
and SEAL look very similar—they both use a GNN to learn neighborhood structures and features
around target links for link prediction. However, as we will see, SEAL has fundamentally better
link representation learning ability than GAE. The key lies in SEAL’s node labeling step.

𝑣2
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𝑣3

𝑣4

Figure 1: In this graph, nodes v2 and v3 are
isomorphic; links (v1, v2) and (v4, v3) are
isomorphic; link (v1, v2) and link (v1, v3)
are not isomorphic. However, if we aggre-
gate two node representations learned by a
GNN as the link representation, we will give
(v1, v2) and (v1, v3) the same prediction.

We first give a simple example to show when GAE fails. In
Figure 1, v2 and v3 have symmetric positions in the graph—
from their perspective points of view, they have exactly
the same h-hop neighborhood, no matter how large h is.
Thus, without node features, a GAE will learn the same
representation for v2 and v3. However, when we want to
predict which one of v2 and v3 is more likely to form a
link with v1, GAE will aggregate the representations of v1
and v2 as the link representation of (v1, v2), and aggregate
the representations of v1 and v3 to represent (v1, v3), thus
giving (v1, v2) and (v1, v3) the same representation and
prediction. The failure to distinguish links with apparently

different structural roles reflects one key limitation of GAE methods—they cannot capture the
association between nodes: v1 is much closer to v2 than v3 in the graph, and shares more common
neighbors with v2. By learning v1 and v2’s representations independently, GAE fails to detect these.

One way to alleviate the above failure is to use one-hot encoding of node indices or random initializa-
tion as the input node features [24, 25]. With such node-discriminating features, v2 and v3 will have
different node representations, thus (v1, v2) and (v1, v3) will also have different link representations
after aggregation. However, using node-discriminating features loses GNN’s inductive learning
ability to map nodes and links with identical neighborhoods (such as nodes v2 and v3, and links
(v1, v2) and (v4, v3)) to the same representation, which results in some loss of the generalization
ability. Is there a way to make GNNs discriminate the cases like (v1, v2) and (v1, v3), while still
maintaining their inductive learning ability, so that links (v1, v2) and (v4, v3) are mapped to the same
representation (so are nodes v2 and v3)?

In this paper, we aim to address the above problem from a structural link representation learning
point of view. Based on Theorem 1 of [26], the node set prediction problem on graphs ultimately
requires finding a (most expressive) structural representation of node sets which gives two node sets
the same representation if and only if they are isomorphic in the graph. For example, in Figure 1,
link (v1, v2) and link (v4, v3) are isomorphic (i.e., symmetric in positions). A (most expressive)
structural link representation should give any two isomorphic links the same representation while
discriminating all non-isomorphic links (such as (v1, v2) and (v1, v3)). According to our discussion
above, GAE fails to learn such a structural link representation. In this regard, we propose the labeling
trick (Section 4.1), which gives a particular label to each node as its additional feature according to
its structural relationship with the target node set to predict. We prove that combined with a labeling
trick, a sufficiently expressive GNN can learn structural link representations by aggregating its
pairwise node representations learned from the labeled graph. We further show that the techniques
used in SEAL [20], Distance Encoding [23], and ID-GNN [27] are all specific implementations of
the labeling trick, which explains their better link prediction performance than plain GAE.

Finally, we notice that isomorphic nodes/links might not be prevalent in real-world networks. There-
fore, a more practical definition called local isomorphism is proposed. We argue that GNNs for
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high-order node set prediction should focus on local isomorphism instead of (global) isomorphism,
and extend our theory to local isomorphism. Experiments on four Open Graph Benchmark (OGB)
link prediction datasets [28] demonstrate the effectiveness of the proposed labeling trick.

2 Preliminaries

In this section, we introduce some important concepts that will be used in the discussion of the paper,
including permutation, set isomorphism and structural representation.

We consider an undirected graph G = (V,E,A), where V = {1, 2, . . . , n} is the set of n vertices,
E ⊆ V ×V is the set of edges, and A ∈ Rn×n×k is a 3-dimensional tensor containing node and edge
features. The diagonal components Ai,i,: denote features of node i, and the off-diagonal components
Ai,j,: denote features of edge (i, j). We further use A ∈ {0, 1}n×n to denote the adjacency matrix of
G with Ai,j = 1 iff (i, j) ∈ E. If there are no node/edge features, we let A = A. Otherwise, A can
be regarded as the first slice of A, i.e., A = A:,:,1.

A permutation π is a bijective mapping from {1, 2, . . . , n} to {1, 2, . . . , n}. Depending on the
context, π(i) can mean assigning a new index to node i ∈ V , or mapping node i to node π(i) of
another graph. All n! possible π’s constitute the permutation group Πn. For joint prediction tasks
over a set of nodes, we use S to denote the target node set. For example, S = {i, j} if we want to
predict the link between i, j. We define π(S) = {π(i)|i ∈ S}. We further define the permutation of
A as π(A), where π(A)π(i),π(j),: = Ai,j,:.

Next, we define set isomorphism, which generalizes graph isomorphism to arbitrary node sets.

Definition 1. (Set isomorphism) Given two n-node graphs G = (V,E,A), G′ = (V ′, E′,A′),
and two node sets S ⊆ V , S′ ⊆ V ′, we say (S,A) and (S′,A′) are isomorphic (denoted by
(S,A) ' (S′,A′)) if ∃π ∈ Πn such that S = π(S′) and A = π(A′).

When (V,A) ' (V ′,A′), we say two graphs G and G′ are isomorphic (abbreviated as A ' A′ because
V = π(V ′) for any π). Note that set isomorphism is more strict than graph isomorphism, because it
not only requires graph isomorphism, but also requires the permutation maps a specific node set S to
another node set S′. In practice, when S 6= V , we are often more concerned with the case of A = A′,
where we are to find isomorphic node sets in the same graph (automorphism). For example, when
S = {i}, S′ = {j} and (i,A) ' (j,A), we say nodes i and j are isomorphic in graph A (or they
have symmetric positions/same structural role within the graph). An example is v2 and v3 in Figure 1.

We say a function f defined over the space of (S,A) is permutation invariant (or invariant for
abbreviation) if ∀π ∈ Πn, f(S,A) = f(π(S), π(A)). Similarly, f is permutation equivariant if
∀π ∈ Πn, π(f(S,A)) = f(π(S), π(A)).

Now we define (most expressive) structural representation of a node set, following [26, 23]. Basically,
it assigns a unique representation to each equivalence class of isomorphic node sets.

Definition 2. Given an invariant function Γ(·), Γ(S,A) is a most expressive structural representa-
tion for (S,A) if ∀S,A, S′,A′, Γ(S,A) = Γ(S′,A′)⇔ (S,A) ' (S′,A′).

For simplicity, we will briefly use structural representation to denote most expressive structural
representation in the rest of the paper. We will omit A if it is clear from context. We call Γ(i,A) a
structural node representation for i, and call Γ({i, j},A) a structural link representation for (i, j).

Definition 2 requires the structural representations of two node sets to be the same if and only if
they are isomorphic. That is, isomorphic node sets always have the same structural representation,
while non-isomorphic node sets always have different structural representations. This is in contrast
to positional node embeddings such as DeepWalk [29] and matrix factorization [30], where two
isomorphic nodes can have different node embeddings [31]. GAE using node-discriminating features
also learns positional node embeddings.

Why do we need structural representations? Formally speaking, Srinivasan and Ribeiro [26] prove
that any joint prediction task over node sets only requires a structural representation of node sets.
They show that for any graph prediction task, positional node embeddings carry no more information
beyond that of structural representations. Intuitively speaking, it is because two isomorphic nodes in a
network are perfectly symmetric and interchangeable with each other, and should be indistinguishable
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from any perspective. Learning a structural node representation can guarantee that isomorphic nodes
are always classified into the same class. Similarly, learning a structural link representation guarantees
isomorphic links, such as (v1, v2) and (v4, v3) in Figure 1, are always predicted the same, which is
not guaranteed by positional node embeddings.

3 GAE cannot learn structural link representations

In this section, we review GAE, and show one key limitation caused by directly aggregating node
representations, which prevents GAE from learning structural link representations.

3.1 GAE for link prediction

Given a graph A, GAE methods [19] first use a GNN to compute a node representation zi for each
node i, and then use f(zi, zj) to predict link (i, j):

Âi,j = f(zi, zj), where zi=GNN(i,A), zj=GNN(j,A).

Here Âi,j is the predicted score for link (i, j). The model is trained to maximize the likelihood
of reconstructing the true adjacency matrix. The original GAE uses a two-layer GCN [5] as the
GNN, and let f(zi, zj) := σ(z>i zj). In principle, we can replace GCN with any GNN, and replace
σ(z>i zj) with an MLP over any aggregation function over {zi, zj}. Besides inner product, other
aggregation choices include bilinear product, concatenation, mean and Hadamard product. In the
following, we will use GAE to denote a general class of GNN-based link prediction methods.

GAE uses a GNN to learn node representations and then aggregate pairwise node representations
as link representations. Two natural questions to ask are: 1) Is the node representation learned by
the GNN a structural node representation? 2) Is the link representation aggregated from two node
representations a structural link representation? We answer them respectively in the following.

3.2 GNN and structural node representation

Practical GNNs [32] usually simulate the 1-dimensional Weisfeiler-Lehman (1-WL) test [33] to
iteratively update each node’s representation by aggregating its neighbors’ representations. We use
1-WL-GNN to denote a GNN with 1-WL discriminating power, such as GIN [34].

A 1-WL-GNN ensures that isomorphic nodes always have the same representation. But the opposite
direction is not guaranteed. For example, a 1-WL-GNN always gives the same representation to
all nodes in an r-regular graph. Despite this, 1-WL is known to discriminate almost all non-
isomorphic nodes [35]. This indicates that a 1-WL-GNN can always give the same representation to
isomorphic nodes, and can give different representations to almost all non-isomorphic nodes.

We also define a node-most-expressive GNN, which gives different representations to all non-
isomorphic nodes.

Definition 3. A GNN is node-most-expressive if ∀i,A,j,A′, GNN(i,A) = GNN(j,A′) ⇔
(i,A) ' (j,A′).

That is, node-most-expressive GNN learns structural node representations2. We define such a GNN
because we want to answer: whether GAE, even equipped with a node-most-expressive GNN (so that
GNN’s node representation power is not a bottleneck), can learn structural link representations.

3.3 GAE cannot learn structural link representations

Suppose GAE is equipped with a node-most-expressive GNN which outputs structural node repre-
sentations. Then the question becomes: does the aggregation of structural node representations of
i and j result in a structural link representation of (i, j)? The answer is no, as shown in previous
works [26, 37]. We have also illustrated it in the introduction: In Figure 1, we have two isomorphic
nodes v2 and v3, thus v2 and v3 will have the same structural node representation. By aggregating

2Although a polynomial-time implementation is not known for node-most-expressive GNNs, many practical
softwares can discriminate all non-isomorphic nodes quite efficiently [36], which provides a promising direction.
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structural node representations, GAE will give (v1, v2) and (v1, v3) the same link representation and
prediction. However, (v1, v2) and (v1, v3) are not isomorphic in the graph. This indicates:

Proposition 1. Even with a node-most-expressive GNN, GAE cannot learn structural link represen-
tations.

The root cause of this problem is that GAE computes two node representations independently of
each other, without considering their relative positions and associations. Because of this, GAE even
cannot learn to count the common neighbors between two nodes (1 for (v1, v2) and 0 for (v1, v3)),
one most important link prediction heuristic [15]. This greatly hurts GAE’s link prediction ability.

4 How to learn structural representations

In this section, we first define the general form of the labeling trick, and then use a specific example,
zero-one labeling trick, to intuitively explain why labeling trick helps a GNN learn better link
representations. Next, we present our main theorem which states that labeling trick enables a
node-most-expressive GNN to learn structural link representations, thus formally characterizing
labeling trick’s power for high-order node set representation learning. Finally, we review SEAL and
show it exactly uses one labeling trick. We also show two recent successful techniques, Distance
Encoding [23] and ID-GNN [27], are also specific labeling tricks.

4.1 Labeling trick

Definition 4. (Labeling trick) Given (S,A), we stack a labeling tensor L(S) ∈ Rn×n×d in the third
dimension of A to get a new A(S) ∈ Rn×n×(k+d), where L satisfies: ∀S,A, S′,A′, π ∈ Πn,
(1) L(S) = π(L(S′))⇒ S = π(S′), and
(2) S = π(S′),A = π(A′)⇒ L(S) = π(L(S′)).

To explain a bit, labeling trick assigns a label vector to each node/edge in graph A, which constitutes
the labeling tensor L(S). By concatenating A and L(S), we get the new labeled graph A(S). By
definition we can assign labels to both nodes and edges. However, in this paper, we only consider
node labels for simplicity, i.e., we let the off-diagonal components L(S)

i,j,: be all zero.

The labeling tensor L(S) should satisfy two conditions in Definition 4. Condition (1) requires the
target nodes S to have distinct labels from those of the rest nodes, so that S is distinguishable from
others. This is because if a permutation π preserving node labels (i.e., L(S) = π(L(S′))) exists
between nodes of A and A′, then S and S′ must have distinct labels to guarantee S′ is mapped to S by
π (i.e., S = π(S′)). Condition (2) requires the labeling function to be permutation equivariant, i.e.,
when (S,A) and (S′, A′) are isomorphic under π (i.e., S = π(S′),A = π(A′)), the corresponding
nodes i ∈ S, j ∈ S′, i = π(j) must always have the same label (i.e., L(S) = π(L(S′))). In other
words, the labeling function should be consistent across different S.

Now we introduce a simplest labeling trick satisfying the two conditions in Definition 4, and use it to
illustrate how labeling trick helps GNNs learn better link representations.

Definition 5. (Zero-one labeling trick) Given a graph A and a set of nodes S to predict, we give it
a diagonal labeling matrix L(S) ∈ Rn×n×1 such that L(S)

i,i,1 = 1 if i ∈ S otherwise 0.

In other words, the zero-one labeling trick assigns label 1 to nodes in S, and label 0 to all nodes
not in S. It is a valid labeling trick, because firstly, nodes in S get distinct labels, and secondly, the
labeling function is consistent by always giving nodes in S a label 1. These node labels will be used
as additional node features, which are fed to a GNN together with original node features if available.

Let’s return to the example in Figure 1 to see how the zero-one labeling trick helps GNNs learn
better link representations. This time, when we want to predict link (v1, v2), we will mark v1, v2
with a different label from those of the rest nodes, as shown by the different color in Figure 2 left.
With the source and target nodes labeled, when the GNN is computing v2’s representation, it is also
“aware” of the source node v1, instead of the previous agnostic way that treats v1 the same as other
nodes. And when we predict link (v1, v3), we will again mark v1, v3 with a different label, as shown
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Figure 2: When we predict (v1, v2), we will label these two nodes differently from the rest, so that a GNN is
aware of the target link when learning v1 and v2’s representations. Similarly, when predicting (v1, v3), nodes v1
and v3 will be labeled differently. This way, the representation of v2 in the left graph will be different from that
of v3 in the right graph, enabling GNNs to distinguish the non-isomorphic links (v1, v2) and (v1, v3).

in Figure 2 right. This way, v2 and v3’s node representations are no longer the same in the two
differently labeled graphs (due to the presence of the labeled v1), and we are able to predict (v1, v2)
and (v1, v3) differently. The key difference from GAE is that the node representations are no longer
learned independently, but are conditioned on each other in order to capture two nodes’ association.

At the same time, isomorphic links, such as (v1, v2) and (v4, v3), will still have the same representa-
tion, since the zero-one labeled graph for (v1, v2) is still symmetric to the zero-one labeled graph for
(v4, v3). This brings an exclusive advantage over GAE using node-discriminating features.

Now we introduce our main theorem showing that with a valid labeling trick, a node-most-expressive
GNN can learn structural link representations.
Theorem 1. Given a node-most-expressive GNN and an injective set aggregation function AGG, for
any S,A, S′,A′, GNN(S,A(S)) = GNN(S′,A′(S

′))⇔ (S,A)' (S′,A′), where GNN(S,A(S)) :=

AGG({GNN(i,A(S))|i ∈ S}).

Theorem 1 implies that AGG({GNN(i,A(S))|i ∈ S}) is a structural representation for (S,A). The
significance of Theorem 1 is that it closes the gap between GNN’s node representation nature and
link prediction’s link representation requirement. Remember that directly aggregating structural node
representations learned from the original graph A does not lead to structural link representations.
Theorem 1 shows that aggregating over the structural node representations learned from the labeled
graph A(S), somewhat surprisingly, results in a structural representation for S.

Theorem 1 also characterizes GNNs’ node set representation learning ability, i.e., with labeling trick
GNNs can indeed learn (most expressive) structural representations for node sets. This answers
the open question raised in [26] questioning GNNs’ link prediction ability: are structural node
representations in general–and GNNs in particular–fundamentally incapable of performing link
(dyadic) and multi-ary (polyadic) prediction tasks? With Theorem 1, we argue the answer is no.
Although GNNs alone can at most learn structural node representations, GNNs combined with a
labeling trick can learn structural link representations too.

Theorem 1 assumes a node-most-expressive GNN. To augment Theorem 1, we give the following
theorem, which demonstrates labeling trick’s power for 1-WL-GNNs.
Theorem 2. In any non-attributed graphs with n nodes, if the degree of each node in the graph
is between 1 and O(log

1−ε
2h n) for any constant ε > 0, then there exists ω(n2ε) many pairs of non-

isomorphic links (u,w), (v, w) such that an h-layer 1-WL-GNN gives u, v the same representation,
while with labeling trick the 1-WL-GNN gives u, v different representations.

Theorem 2 shows that labeling trick helps a 1-WL-GNN discriminate a large number of non-
isomorphic links which are previously not distinguishable without a labeling trick.

4.2 SEAL uses a valid labeling trick

SEAL [20] is a state-of-the-art link prediction method based on GNNs. It first extracts an enclosing
subgraph (h-hop subgraph) around each target link to predict.
Definition 6. (Enclosing subgraph) Given (S,A), the h-hop enclosing subgraph A(S,h) of S is
the subgraph induced from A by ∪j∈S{i | d(i, j) ≤ h}, where d(i, j) is the shortest path distance
between nodes i and j.

Then, SEAL applies Double Radius Node Labeling (DRNL) to give an integer label to each node in
the enclosing subgraph. DRNL assigns different labels to nodes with different distances to both the
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source and target nodes. It works as follows: The source and target nodes are always labeled 1. Nodes
farther away from the source and target nodes get larger labels (starting from 2). For example, nodes
with distances 1 and 1 to the source and target nodes will get label 2, and nodes with distances 1 and
2 to the source and target nodes will get label 3. So on and so forth. Finally the labeled enclosing
subgraph is fed to a GNN to learn the link representation and output the probability of link existence.
Theorem 3. DRNL is a valid labeling trick.

Theorem 3 is easily proved by noticing: across different subgraphs, 1) nodes with label 1 are always
the source and target nodes, and 2) nodes with the same distances to the source and target nodes
always have the same label. Thus, SEAL exactly uses a specific labeling trick to enhance its power.

SEAL only uses a subgraph A(S,h) within h hops from the source and target nodes instead of using the
whole graph. This is not a constraint but rather a practical consideration (just like GAE typically uses
less than 3 message passing layers in practice), and its benefits will be discussed in detail in Section 5.
When h → ∞, the subgraph becomes the entire graph, and SEAL is able to learn structural link
representations from the labeled (entire) graph.
Proposition 2. When h → ∞, SEAL can learn structural link representations with a node-most-
expressive GNN.

Remark 1 (Distance Encoding and DRNL) Recently, SEAL’s distance-based node labeling scheme
is generalized to Distance Encoding, or DE, in [23]. Basically, DRNL is equivalent to DE-2
using shortest path distance. Instead of encoding two distances into one integer label, DE directly
concatenate the two distances as a size-2 label vector. For example, nodes with distances 1 and 2
to the source and target nodes will be directly labeled by a vector [1, 2]. DE is also a valid labeling
trick, as it can also distinguish the target set S and is permutation equivariant. Nevertheless, there
are some subtle differences in their implementations, which are discussed in Appendix D.

Remark 2 (ID-GNN and zero-one labeling trick) Concurrent to our work, You et al. [27] propose
Identity-aware GNN (ID-GNN), which assigns a unique color to the “identity” nodes (the target node
set to predict) and then performs message passing for them with a different set of parameters. If the
unique colors are 1 and 0, ID-GNN’s coloring scheme is equivalent to the zero-one labeling trick.

In summary, labeling trick unifies recent successful practices to improve the power of GNNs based
on node labeling, including SEAL, DE, and ID-GNN, into a single framework. Moreover, labeling
trick gives the most basic and general form for such techniques to reach theoretically the highest
node set representation learning power. We discuss its computational complexity in Appendix F.

5 Local isomorphism: a more practical view of isomorphism

In the previous sections, we establish our theory based on assigning node sets the same representation
if and only if they are isomorphic to each other in the graph. However, exact isomorphism is not
very common. For example, Babai and Kucera [35] prove that at least (n− log n) nodes in almost
all n-node graphs are non-isomorphic to each other. In practice, 1-WL-GNN also takes up to O(n)
message passing layers to reach its maximum power for discriminating non-isomorphic nodes, making
it very hard to really target on finding exactly isomorphic nodes/links.
Lemma 1. Given a graph with n nodes, a 1-WL-GNN takes up to O(n) message passing layers to
discriminate all the nodes that 1-WL can discriminate.

In this regard, we propose a more practical concept, called local isomorphism.
Definition 7. (Local h-isomorphism) ∀S,A, S′,A′, we say (S,A) and (S′,A′) are locally h-
isomorphic to each other if (S,A(S,h)) ' (S′,A′(S′,h)).

Local h-isomorphism only requires the h-hop enclosing subgraphs around S and S′ are isomorphic,
instead of the entire graphs. We argue that this is a more useful definition than isomorphism, because:
1) Exact isomorphism is rare in real-world graphs. 2) Algorithms targeting on exact isomorphism are
more likely to overfit. Only assigning the same representations to exactly isomorphic nodes/links
may fail to identify a large amount of nodes/links that are not isomorphic but have very similar
neighborhoods. Instead, nodes/links locally isomorphic to each other may better indicate that they
should have the same representation. With local h-isomorphism, all our previous conclusions based
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on standard isomorphism still apply. For example, GAE (without node-discriminating features) still
cannot discriminate locally h-non-isomorphic links. And a node-most-expressive GNN with labeling
trick can learn the same representation for two links if and only if they are locally h-isomorphic:

Corollary 1. Given a node-most-expressive GNN and an injective set aggregation function AGG,
then for any S,A, S′,A′, h, GNN(S,A(S)

(S,h)) = GNN(S′,A′(S
′)

(S′,h))⇔ (S,A(S,h))'(S′,A′(S′,h)).

Corollary 1 demonstrates labeling trick’s power for local isomorphism discriminating, too. To switch
to local h-isomorphism, all we need to do is to extract the h-hop enclosing subgraph around a link,
and apply the labeling trick and GNN only to the extracted subgraph. This is exactly what SEAL did.

6 Related work

There is emerging interest in studying the representation power of graph neural networks recently.
Xu et al. [34] and Morris et al. [38] first show that the discriminating power of GNNs performing
neighbor aggregation is bounded by the 1-WL test. Many works have since been proposed to
increase the power of GNNs by simulating higher-order WL tests [38–40]. However, most previous
works focus on improving GNN’s whole-graph representation power. Little work has been done to
analyze GNN’s node/link representation power. Srinivasan and Ribeiro [26] first formally studied the
difference between structural representations of nodes and links. Although showing that structural
node representations of GNNs cannot perform link prediction, their way to learn structural link
representations is to give up GNNs and instead use Monte Carlo samples of node embeddings learned
by network embedding methods. In this paper, we show that GNNs combined with a simple labeling
trick can as well learn structural link representations, which reassures using GNNs for link prediction.

Many works have implicitly assumed that if a model can learn node representations well, then
combining the pairwise node representations can also lead to good link representations [18, 19, 41].
However, we argue in this paper that simply aggregating node representations fails to discriminate a
lot of non-isomorphic links, and with labeling trick the aggregation of structural node representations
lead to structural link representations. Li et al. [23] proposed distance encoding (DE), which is shown
to be a particular labeling trick. They proved that DE can improve 1-WL-GNNs’ discriminating power,
enabling them to differentiate almost all (S,A) tuples sampled from r-regular graphs. Our paper’s
theoretical contribution is orthogonal to that of DE: 1) Our theory focuses on the gap between a GNN’s
node and node set representation power, instead of improving one particular GNN’s discriminating
power. We show even a GNN has maximum node representation power, it still fails to learn structural
link representations unless combined with a labeling trick. 2) Our theory is not restricted to r-regular
graphs, but applies to any graphs. 3) The proposed labeling trick is more general than DE. We show
that labeling trick is not necessarily distance based—a valid labeling trick need only be permutation
equivariant and S-discriminating. More discussion on DE’s theory is given in Appendix E.

You et al. [21] also noticed that the structural node representations of GNNs cannot encode the
associations and distances between nodes. To learn position-aware node embeddings, they propose
P-GNN, which randomly chooses some anchor nodes and aggregates messages only from the anchor
nodes. In P-GNN, nodes of similar distances to the anchor nodes, instead of nodes with similar
neighborhoods, will have similar embeddings. Thus, P-GNN cannot learn structural node/link
representations. P-GNN also cannot scale to large datasets. You et al. [27] recently proposed
ID-GNN. As discussed in Remark 2, ID-GNN’s node coloring is also a specific labeling trick.

7 Experiments

In this section, we empirically validate the effectiveness of labeling trick on Open Graph Benchmark
(OGB) [28] datasets. We use all the four link prediction datasets in OGB: ogbl-ppa, ogbl-collab,
ogbl-ddi, and ogbl-citation2. These datasets are open-sourced, large-scale (up to 2.9M nodes
and 30.6M edges), adopt realistic train/validation/test splits, and have standard evaluation procedures,
thus providing an ideal place to benchmark an algorithm’s realistic link prediction power. The
evaluation metrics include Hits@K and MRR. Hits@K counts the ratio of positive edges ranked
at the K-th place or above against all the negative edges. MRR (Mean Reciprocal Rank) computes
the reciprocal rank of the true target node against 1,000 negative candidates, averaged over all the
true source nodes. Both metrics are higher the better. We include more details and statistics of
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Table 1: Results for ogbl-ppa, ogbl-collab, ogbl-ddi and ogbl-citation2.
ogbl-ppa ogbl-collab ogbl-ddi ogbl-citation2

Hits@100 (%) Hits@50 (%) Hits@20 (%) MRR (%)

Category Method Validation Test Validation Test Validation Test Validation Test

Non-GNN

CN 28.23±0.00 27.6±0.00 60.36±0.00 61.37±0.00 9.47±0.00 17.73±0.00 51.19±0.00 51.47±0.00
AA 32.68±0.00 32.45±0.00 63.49±0.00 64.17±0.00 9.66±0.00 18.61±0.00 51.67±0.00 51.89±0.00
MLP 0.46±0.00 0.46±0.00 24.02±1.45 19.27±1.29 – – 29.03±0.17 29.06±0.16
Node2vec 22.53±0.88 22.26±0.88 57.03±0.52 48.88±0.54 32.92±1.21 23.26±2.09 61.24±0.11 61.41±0.11
MF 32.28±4.28 32.29±0.94 48.96±0.29 38.86±0.29 33.70±2.64 13.68±4.75 51.81±4.36 51.86±4.43

Plain GAE
GraphSAGE 17.24±2.64 16.55±2.40 56.88±0.77 54.63±1.12 62.62±0.37 53.90±4.74 82.63±0.23 82.60±0.36
GCN 18.45±1.40 18.67±1.32 52.63±1.15 47.14±1.45 55.50±2.08 37.07±5.07 84.79±0.23 84.74±0.21
GCN+LRGA 25.75±2.82 26.12±2.35 60.88±0.59 52.21±0.72 66.75±0.58 62.30±9.12 66.48±1.61 66.49±1.59

Labeling Trick
GCN+DE 36.31±3.59 36.48±3.78 64.13±0.16 64.44±0.29 29.85±2.25 26.63±6.82 60.17±0.63 60.30±0.61
GCN+DRNL 46.43±3.03 45.24±3.95 64.51±0.42 64.40±0.45 29.47±1.54 22.81±4.93 81.07±0.30 81.27±0.31
SEAL 51.25±2.52 48.80±3.16 63.89±0.49 63.64±0.71 28.49±2.69 30.56±3.86 87.57±0.31 87.67±0.32

these datasets in Appendix G. Note that knowledge graph completion datasets are not used because
knowledge graph link prediction is a different problem from the homogeneous graph link prediction
problem studied in this paper. Their baselines and datasets are not interchangeable with each other.

Baselines. We use the following baselines for comparison. We use 5 non-GNN methods: CN
(common neighbor), AA (Adamic-Adar), MLP, MF (matrix factorization) and Node2vec. Among
then, CN and AA are two simple link prediction heuristics based on counting common neighbors,
which are used for sanity checking. We use 3 plain GAE baselines: GraphSAGE [41], GCN [19], and
GCN+LRGA [42]. These methods use the Hadamard product of pairwise node representations output
by a GNN as link representations, without using a labeling trick. Finally, we compare 3 GNN methods
using labeling tricks: GCN+DE [23], GCN+DRNL, and SEAL [20]. GCN+DE/GCN+DRNL enhance
GCN with the DE/DRNL labeling trick. SEAL uses a GCN and the DRNL labeling trick, with an
additional subgraph-level readout SortPooling [9]. More details are in Appendix H. Moreover, we
test the zero-one labeling trick in our ablation experiments. Results can be found in Appendix I.

Results and discussion. We present the main results in Table 1. Firstly, we can see that GAE
methods without labeling trick do not always outperform non-GNN methods. For example, on
ogbl-ppa and ogbl-collab, simple heuristics CN and AA outperform plain GAE methods by large
margins. This suggests that GAE methods cannot learn simple heuristics like common neighbors
which require capturing the associations between nodes, matching our analysis in Section 3.3. In
contrast, when GNNs are enhanced by labeling trick, they are able to beat heuristics. With labeling
trick, GNN methods achieve new state-of-the-art performance on 3 out of 4 datasets. In particular, we
observe that SEAL outperforms GAE and positional embedding methods, sometimes by surprisingly
large margins. For example, in the challenging ogbl-ppa graph, SEAL achieves an Hits@100 of
48.80, which is 87%-195% higher than GAE methods without using labeling trick. On ogbl-ppa,
ogbl-collab and ogbl-citation2, labeling trick methods achieve new state-of-the-art results.

Despite obtaining the best results on three datasets, we observe that labeling trick methods do not
perform well on ogbl-ddi. ogbl-ddi is considerably denser than the other graphs. It has 4,267
nodes and 1,334,889 edges, resulting in an average node degree of 500.5. In ogbl-ddi, labeling trick
methods fall behind GAE methods using trainable node embeddings. One possible explanation is that
ogbl-ddi is so dense that a practical GNN with limited expressive power is hard to inductively learn
any meaningful structural patterns. In comparison, the transductive way of learning free-parameter
node embeddings makes GAEs no longer focus on learning inductive structural patterns, but on
optimizing node embeddings. The added parameters also greatly increase GAEs’ model capacity. An
interesting future topic is to study how to improve labeling tricks’ performance on dense graphs.

We present more ablation experiments in Appendix I to study the power of different labeling tricks,
the effect of subgraph pooling, and the number of hops/layers, etc.

8 Conclusions

In this paper, we theoretically characterized GNNs’ representation learning ability for high-order
node sets, such as links. We first pointed out a key limitation of GAE caused by directly aggregating
node representations of a GNN as node set representations. To address the problem, we proposed
the labeling trick and theoretically proved its power. We also showed that several existing methods,
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including SEAL, DE and ID-GNN, all essentially used some labeling trick, explaining their strong
performance. Experiments on OGB datasets demonstrated labeling trick’s effectiveness.
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A Proof of Theorem 1

We restate Theorem 1: Given a node-most-expressive GNN and an injective set aggregation func-
tion AGG, for any S,A, S′,A′, GNN(S,A(S)) = GNN(S′,A′(S

′)) ⇔ (S,A) ' (S′,A′), where
GNN(S,A(S)) := AGG({GNN(i,A(S))|i ∈ S}).

Proof. We need to show AGG({GNN(i,A(S))|i ∈ S}) = AGG({GNN(i,A′(S
′)|i ∈ S′}) iff

(S,A) ' (S′,A′).

To prove the first direction, we notice that with an injective AGG,

AGG({GNN(i,A(S)))|i ∈ S}) = AGG({GNN(i,A′(S
′)))|i ∈ S′})

=⇒ ∃ v1 ∈ S, v2 ∈ S′, such that GNN(v1,A(S)) = GNN(v2,A′(S
′)) (1)

=⇒ (v1,A(S)) ' (v2,A′(S
′)) (because GNN is node-most-expressive) (2)

=⇒ ∃ π ∈ Πn, such that v1 = π(v2),A(S) = π(A′(S
′)). (3)

Remember A(S) is constructed by stacking A and L(S) in the third dimension, where L(S) is a tensor
satisfying: ∀π ∈ Πn, (1) L(S) = π(L(S′))⇒ S = π(S′), and (2) S = π(S′),A = π(A′)⇒ L(S) =

π(L(S′)). With A(S) = π(A′(S
′)), we have both

A = π(A′), L(S) = π(L(S′)).

Because L(S) = π(L(S′))⇒ S = π(S′), continuing from Equation (3), we have

AGG({GNN(i,A(S))|i ∈ S}) = AGG({GNN(i,A′(S
′))|i ∈ S′})

=⇒ ∃ π ∈ Πn, such that A = π(A′), L(S) = π(L(S′)) (4)

=⇒ ∃ π ∈ Πn, such that A = π(A′), S = π(S′) (5)

=⇒ (S,A) ' (S′,A′). (6)

Now we prove the second direction. Because S = π(S′),A = π(A′)⇒ L(S) = π(L(S′)), we have:

(S,A) ' (S′,A′)

=⇒ ∃ π ∈ Πn, such that S = π(S′),A = π(A′) (7)

=⇒ ∃ π ∈ Πn, such that S = π(S′),A = π(A′),L(S) = π(L(S′)) (8)

=⇒ ∃ π ∈ Πn, such that S = π(S′),A(S) = π(A′(S
′)) (9)

=⇒ ∃ π ∈ Πn, such that ∀v1 ∈ S, v2 ∈ S′, v1 = π(v2), we have GNN(v1,A(S)) = GNN(v2,A′(S
′))

(10)

=⇒ AGG({GNN(v1,A(S))|v1 ∈ S}) = AGG({GNN(v2,A′(S
′))|v2 ∈ S′}), (11)

which concludes the proof.
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B Proof of Theorem 2

We restate Theorem 2: In any non-attributed graphs with n nodes, if the degree of each node in
the graph is between 1 and O(log

1−ε
2h n) for any constant ε > 0, then there exists ω(n2ε) many

pairs of non-isomorphic links (u,w), (v, w) such that an h-layer 1-WL-GNN gives u, v the same
representation, while with labeling trick the 1-WL-GNN gives u, v different representations.

Proof. Our proof has two steps. First, we would like to show that there are ω(nε) nodes that are
locally h-isomorphic (see Definition 7) to each other. Then, we prove that among these nodes,
there are at least ω(n2ε) pairs of nodes such that there exists another node constructing locally h
non-isomorphic links with either of the two nodes in each node pair.

Step 1. Consider an arbitrary node v and denote the subgraph induced by the nodes that are at
most h-hop away from v as G(h)

v (the h-hop enclosing subgraph of v). As each node is with degree
d = O(log

1−ε
2h n), then the number of nodes in G(h)

v , denoted by |V (G
(h)
v )|, satisfies

|V (G(h)
v )| ≤

h∑
i=0

di = O(dh) = O(log
1−ε
2 n).

We set the max K = maxv∈V |V (G
(h)
v )| and thus K = O(log

1−ε
2 n).

Now we expand subgraphs G(h)
v to Ḡ(h)

v by adding K − |V (G
(h)
v )| independent nodes for each

node v ∈ V . Then, all Ḡ(h)
v have the same number of nodes, which is K, though they may not be

connected graphs.

Next, we consider the number of non-isomorphic graphs over K nodes. Actually, the number of
non-isomorphic graph structures over K nodes is bounded by 2(K2 ) = exp(O(log1−ε n)) = o(n1−ε).

Therefore, due to the pigeonhole principle, there exist n/o(n1−ε) = ω(nε) many nodes v whose
Ḡ

(h)
v are isomorphic to each other. Denote the set of these nodes as Viso, which consist of nodes that

are all locally h-isomorphic to each other. Next, we focus on looking for other nodes to form locally
h-non-isomorphic links with nodes Viso.

Step 2. Let us partition Viso = ∪qi=1Vi so that for all nodes in Vi, they share the same first-hop
neighbor sets. Then, consider any pair of nodes u, v such that u, v are from different Vi’s. Since
u, v share identical h-hop neighborhood structures, an h-layer 1-WL-GNN will give them the same
representation. Then, we may pick one u’s first-hop neighbor w that is not v’s first-hop neighbor.
We know such w exists because of the definition of Vi. As w is u’s first-hop neighbor and is not v’s
first-hop neighbor, (u,w) and (v, w) are not isomorphic. With labeling trick, the h-layer 1-WL-GNN
will give u, v different representations immediately after the first message passing round due to w’s
distinct label. Therefore, we know such a (u,w), (v, w) pair is exactly what we want.

Based on the partition Viso, we know the number of such non-isomorphic link pairs (u,w) and (v, w)
is at least:

Y ≥
q∏

i,j=1,i6=j

|Vi||Vj | =
1

2

[
(

q∑
i=1

|Vi|)2 −
q∑
i=1

|Vi|2
]
. (12)

Because of the definitions of the partition,
∑q
i=1 |Vi| = |Viso| = ω(nε) and the size of each Vi

satisfies

1 ≤ |Vi| ≤ dw = O(log
1−ε
2h n),

where w is one of the common first-hop neighbors shared by all nodes in Vi and dw is its degree.

By plugging in the range of |Vi|, Eq.12 leads to

Y ≥ 1

2
(ω(n2ε)− ω(nε)O(log

1−ε
2h n)) = ω(n2ε),

which concludes the proof.
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C Proof of Lemma 1

We restate Lemma 1: Given a graph with n nodes, a 1-WL-GNN takes up to O(n) message passing
layers to discriminate all the nodes that 1-WL can discriminate.

Proof. We first note that after one message passing layer, 1-WL-GNN gives different embeddings to
any two nodes that 1-WL gives different colors to after one iteration. So we only need to show how
many iterations 1-WL takes to converge in any graph.

Note that if two nodes are given different colors by 1-WL at some iteration (they are discriminated
by 1-WL), their colors are always different in any future iteration. And if at some iteration, all
nodes’ colors are the same as their colors in the last iteration, then 1-WL will stop (1-WL fails to
discriminate any more nodes and has converged). Therefore, before termination, 1-WL will increase
its total number of colors by at least 1 after every iteration. Because there are at most n different
final colors given an n-node graph, 1-WL takes at most n− 1 = O(n) iterations before assigning all
nodes different colors.

Now it suffices to show that there exists an n-node graph that 1-WL takesO(n) iterations to converge.
Suppose there is a path of n nodes. Then by simple calculation, it takes dn/2e iterations for 1-WL to
converge, which concludes the proof.

D Comparisons between DRNL and DE

In this section, we discuss the relationships and differences between DRNL [20] and DE [23] (using
shortest path distance). Although they are theoretically equivalent in the context of link prediction,
there are some subtle differences that might result in significant performance differences.

Suppose x and y are the source and target nodes. DRNL (Double Radius Node Labeling) always
assigns label 1 to x and y. Then, for any node i with (d(i, x), d(i, y)) = (1, 1), it assigns a label 2.
Nodes with radius (1, 2) or (2, 1) get label 3. Nodes with radius (1, 3) or (3, 1) get 4. Nodes with
(2, 2) get 5. Nodes with (1, 4) or (4, 1) get 6. Nodes with (2, 3) or (3, 2) get 7. So on and so forth.
In other words, DRNL iteratively assigns larger labels to nodes with a larger radius w.r.t. both the
source and target nodes. The DRNL label fl(i) of a node i can be calculated by the following hashing
function:

fl(i) = 1 + min(dx, dy) + (d/2)[(d/2) + (d%2)− 1], (13)
where dx := d(i, x), dy := d(i, y), d := dx + dy, (d/2) and (d%2) are the integer quotient and
remainder of d divided by 2, respectively. This hashing function allows fast closed-form computations
of DRNL labels. For nodes with d(i, x) = ∞ or d(i, y) = ∞, DRNL assigns them a null label
0. Later, the one-hot encoding of these labels are fed to a GNN as the initial node features, or
equivalently, we can feed the raw integer labels to an embedding layer first.

Instead of encoding (d(i, x), d(i, y)) into a single integer label, DE (distance encoding) directly uses
the vector [d(i, x), d(i, y)] as a size-2 label for node i. Then, these size-2 labels will be transformed
to two-hot encoding vectors to be used as the input node features to GNN. Equivalently, we can also
input the size-2 labels to an embedding layer and use the sum-pooled embedding as the initial node
features.

These two ways of encoding (d(i, x), d(i, y)) theoretically have the same expressive power. However,
DRNL and DE have some subtle differences in their implementations. The first difference is that
DE sets a maximum distance dmax (a small integer such as 3) for each d(i, x) or d(i, y), i.e., if
d(i, x) ≥ dmax, DE will let d(i, x) = dmax. This potentially can avoid some overfitting by reducing
the number of possible DE labels as claimed in the original paper [23].

The second difference is that when computing the distance d(i, x), DRNL will temporarily mask
node y and all its edges, and when computing the distance d(i, y), DRNL will temporarily mask
node x and all its edges. The reason for this “masking trick” is because DRNL aims to use the pure
distance between i and x without the influence of y. If we do not mask y, d(i, x) will be upper
bounded by d(i, y) + d(x, y), which obscures the “true distance” between i and x and might hurt the
node labels’ ability to discriminate structurally-different nodes. As we will show in Appendix I, this
masking trick has a great influence on the performance, which explains DE’s inferior performance
than DRNL in our experiments.
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As we will show in Table 1, DRNL has significantly better performance than DE on some datasets. To
study what is the root cause for these in-principle equivalent methods’s different practical performance,
we propose DE+, which adopts DRNL’s masking trick in DE. We also try to not set a maximum
distance in DE+. This way, there are no more differences in terms of the expressive power between
DE+ and DRNL. And we indeed observed that DE+ is able to catch up with DRNL in those datasets
where DE does not perform well, as we will show in Appendix I.2.

E More discussion on the differences between DE’s theory and ours

Inspired by the empirical success of SEAL [20], Li et al. [23] proposed distance encoding (DE). It
generalizes SEAL’s distance-based node labeling (DRNL) for link prediction to arbitrary node set pre-
diction, and theoretically studies how the distance information improves 1-WL-GNN’s discriminating
power. The main theorem in [23] (Theorem 3.3) proves that under mild conditions, a 1-WL-GNN
combined with DE can discriminate any (S,A), (S′,A′) pair sampled uniformly from all r-regular
graphs, with high probability. This is a significant result, as 1-WL-GNN’s discriminating power is
bounded by 1-WL, which fails to discriminate any nodes or node sets from r-regular graphs. DE’s
theory shows that with DE we can break the limit of 1-WL and 1-WL-GNN on this major class of
graphs where without DE they always fail.

Despite the success, DE’s theory also has several limitations. Firstly, its analysis leverages one
particular random graph model, namely random regular graphs, thus does not show DE’s power for
arbitrary graphs. Secondly, DE’s theory does not answer whether a GNN combined with DE can
learn structural representations, which are the core for joint node set prediction tasks such as link
prediction according to [26]. Thirdly, the definition of DE relies on distance. It is unknown whether
other node labeling tricks (including those do not rely on distance) are also useful.

Our theory partly addresses these limitations and is orthogonal to DE’s theory, as: 1) We give a more
general definition than DE, namely labeling trick. Labeling trick is not restricted to be distance-
based—it only needs to be permutation equivariant and target-node-set-discriminating. In fact, we
show even a simple zero-one labeling trick is still very powerful. 2) We show with a sufficiently
expressive GNN, labeling trick enables learning structural representations of node sets, answering the
open question in [26] which DE’s theory fails to address. 3) We show labeling trick’s usefulness for
arbitrary graphs, instead of only regular graphs.

Nevertheless, we are uncertain whether DE’s power for regular graphs can transfer to any valid
labeling trick, including those not based on distance. Thus, we leave an open question here for
future research: whether an arbitrary labeling trick enables a 1-WL-GNN to discriminate any
(S,A), (S′,A′) pair sampled uniformly from all r-regular graphs, with high probability? Our guess
is that the answer is yes for |S| = 1 and |S| = 2. This is because, with an injective message
passing layer, we can propagate the unique labels of S to other nodes, thus “recovering” the distance
information through iterative message passing. We leave a rigorous proof or disproof to future work.

F Computational complexity of labeling trick

Despite the power, labeling trick introduces extra computational complexity. The reason is that for
every link (vi, vj) to predict, we need to relabel the graph according to (vi, vj). The same node v
will be labeled differently depending on which one is the target link, and will be given a different
node representation by the GNN when it appears in different links’ labeled graphs. This is different
from GAE, where we do not relabel the graph and each node only has a single representation. For
a graph with n nodes and m links to predict, GAE only needs to apply a GNN O(n) times to get a
representation for each node, while SEAL (and other GNNs using labeling trick) need to apply a
GNN O(m) times for all links. When m� n, SEAL has worse time complexity than GAE, which is
the price for learning better link representations.

G More details about the datasets

We compare the link prediction performance of different baselines on ogbl-ppa, ogbl-collab,
ogbl-ddi, and ogbl-citation2. Among them, ogbl-ppa is a protein-protein association graph
where the task is to predict biologically meaningful associations between proteins. ogbl-collab is
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an author collaboration graph, where the task is to predict future collaborations. ogbl-ddi is a drug-
drug interaction network, where each edge represents an interaction between drugs which indicates
the joint effect of taking the two drugs together is considerably different from their independent
effects. ogbl-citation2 is a paper citation network, where the task is to predict missing citations.
We present the statistics of these OGB datasets in Table 2. More information about these datasets can
be found in [28].

Table 2: Statistics and evaluation metrics of OGB link prediction datasets.

Dataset #Nodes #Edges Avg. node deg. Density Split ratio Metric
ogbl-ppa 576,289 30,326,273 73.7 0.018% 70/20/10 Hits@100
ogbl-collab 235,868 1,285,465 8.2 0.0046% 92/4/4 Hits@50
ogbl-ddi 4,267 1,334,889 500.5 14.67% 80/10/10 Hits@20
ogbl-citation2 2,927,963 30,561,187 20.7 0.00036% 98/1/1 MRR

We choose OGB datasets for benchmarking our methods because these datasets adopt realistic
train/validation/test splitting methods, such as by resource cost in laboratory (ogbl-ppa), by time
(ogbl-collab and ogbl-citation2), and by drug target in the body (ogbl-ddi). They are also
large-scale (up to 2.9M nodes and 30.6M edges), open-sourced, and have standard evaluation metrics.
OGB has an official leaderboard3, too, providing a place to fairly compare different methods’ link
prediction performance.

H More details about the baselines

We include baselines achieving top places on the OGB leaderboard. All the baselines have their
open-sourced code and paper available from the leaderboard. We adopt the numbers published on the
leaderboard if available, otherwise we run the method ourselves using the open-sourced code. Note
that there are other potentially strong baselines that we have to omit here, because they cannot easily
scale to OGB datasets. For example, we have contacted the authors of P-GNN [21], and confirmed
that P-GNN is not likely to scale to OGB datasets due to the computation of all-pairs shortest path
distances.

All the compared methods are in the following. We briefly describe how each method obtains its final
node representations.

• MLP: Node features are directly used as the node representations without considering graph
structure.

• Node2vec [29, 18]: The node representations are the concatenation of node features and Node2vec
embeddings.

• MF (Matrix Factorization): Use free-parameter node embeddings trained end-to-end as the node
representations.

• GraphSAGE [41]: A GAE method with GraphSAGE as the GNN.
• GCN [19]: A GAE method with GCN as the GNN.
• LRGA [42]: A GAE method with LRGA-module-enhanced GCN.
• GCN+DE: Apply GCN to the DE [23] labeled graphs.
• GCN+DRNL: Apply GCN to the DRNL [20] labeled graphs.
• SEAL [20]: The same as GCN+DRNL with an additional subgraph-level readout. Note that we

reimplemented SEAL in this paper with a greatly improved efficiency and flexibility than the
original implementation4. The code will be released in the future.

Except SEAL, all models use the Hadamard product between pairwise node representations as the link
representations. The link representations are fed to an MLP for final prediction. All the GAE methods’
GNNs have 3 message passing layers with 256 hidden dimensions, with a tuned dropout ratio in
{0, 0.5}. All the labeling trick methods (GCN+DE, GCN+DRNL and SEAL) extract 1-hop enclosing
subgraphs. The GCNs in GCN+DRNL and GCN+DE also use 3 message passing layers with 256
hidden dimensions for consistency. The GNN in SEAL follows the DGCNN in the original paper,

3https://ogb.stanford.edu/docs/leader_linkprop/
4https://github.com/muhanzhang/SEAL
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which has 3 GCN layers with 32 hidden dimensions each, plus a SortPooling layer [9] and several
1D convolution layers after the GCN layers to readout the subgraph. The use of a subgraph-level
readout instead of only reading out two nodes is not an issue for SEAL, because 1) the two center
nodes’ information is still included in the output of the subgraph-level readout, and 2) the inclusion of
additional neighborhood node representations may help learn better neighborhood features than only
reading out two center nodes. As we will show in Appendix I.3, a subgraph-level readout sometimes
improves the performance.

The ogbl-ddi graph contains no node features, so MLP is omitted, and the GAE methods here use
free-parameter node embeddings as the GNN input node features and train them together with the
GNN parameters. For labeling trick methods, the node labels are input to an embedding layer and
then concatenated with the node features (if any) as the GNN input. Note that the original SEAL
can also include pretrained node embeddings as additional features. But according to [26], node
embeddings bring no additional value given structural representations. This is also consistent with
our observation and the experimental results of [20], where including node embeddings gives no
better results. Thus, we give up node embeddings in SEAL.

For the baseline GCN+LRGA, its default hyperparameters result in out of GPU memory on
ogbl-citation2, even we use an NVIDIA V100 GPU with 32GB memory. Thus, we have to
reduce its hidden dimension to 16 and matrix rank to 10. It is possible that it can achieve better
performance with a larger hidden dimension and larger matrix rank using a GPU with a larger
memory.

We implemented the labeling trick methods (GCN+DE, GCN+DRNL and SEAL) using the PyTorch
Geometric [43] package. For all datasets, labeling trick methods only used a fixed 1% to 10% of all
the available training edges as the positive training links, and sampled an equal number of negative
training links randomly. Labeling trick methods showed excellent performance even without using
the full training data, which indicates its strong inductive learning ability. Due to using different
labeled subgraphs for different links, labeling trick methods generally take longer running time than
GAE methods. On the largest ogbl-citation2 graph, SEAL takes about 7 hours to finishing its
training of 10 epochs, and takes another 28 hours to evaluate the validation and test MRR each. For
ogbl-ppa, SEAL takes about 20 hours to train for 20 epochs and takes about 4 hours for evaluation.
The other two datasets are finished within hours. We will release all our code for reproducing the
experimental results.

I Ablation study

In this section, we conduct several ablation experiments to more thoroughly study the effect of
different components around labeling trick on the final link prediction performance.

I.1 How powerful is the zero-one labeling trick?

Firstly, we aim to understand how powerful the proposed zero-one labeling (Definition 5) is. Although
zero-one labeling is a also valid labeling trick that theoretically enables a node-most-expressive GNN
to learn structural representations, in practice our GNNs may not be expressive enough. Then how
will the zero-one labeling trick perform compared to those more sophisticated ones such as DE and
DRNL? We conduct experiments on ogbl-collab and ogbl-citation2 to answer this question.
In Table 3, we compare GCN (1-hop) + all-zero labeling (not a valid labeling trick), GCN (1-hop) +
zero-one labeling trick, and GCN (1-hop) + DRNL. All methods use the same 3 GCN layers with
256 hidden dimensions, 1-hop enclosing subgraphs, and Hadamard product of the source and target
nodes as the link representations. All the remaining settings follow those of GCN+DRNL.

From Table 3, we can see that GCN+zero-one labeling trick indeed has better performance than GCN
without labeling trick, which aligns with our theoretical results that even a simple zero-one labeling is
also a valid labeling trick that enables learning structural representations. Nevertheless, the zero-one
labeling trick is indeed less powerful than DRNL, as shown by the performance gaps especially on
the ogbl-citation2 dataset. We are then interested in figuring out what could cause such large
performance differences between two (both valid) labeling tricks, because as Theorem 1 shows, any
valid labeling trick can enable a node-most-expressive GNN to learn structural link representations.
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Table 3: Ablation study on the power of the zero-one labeling trick.

ogbl-collab ogbl-citation2
Hits@50 (%) MRR (%)

Method Validation Test Validation Test
GCN (1-hop) + all-zero labeling 24.35±1.28 25.92±1.47 36.97±0.56 36.98±0.57
GCN (1-hop) + zero-one labeling trick 44.45±1.39 44.79±1.26 38.73±0.86 38.78±0.88
GCN (1-hop) + DRNL 64.51±0.42 64.40±0.45 81.07±0.30 81.27±0.31

GIN (1-hop) + zero-one labeling trick 60.31±0.81 59.48±1.17 78.32±1.07 78.50±1.08

We suspect that the insufficient expressive power of GCN is the cause. Therefore, we change GCN to
Graph Isomorphism Network (GIN) [34]. By replacing the linear feature transformations in GCN
with MLPs, GIN is one of the most expressive GNNs based on message passing. The results are
shown in the last column of Table 3. As we can see, GIN (1-hop) + zero-one labeling trick has much
better performance than GCN (1-hop) + zero-one labeling trick, and is almost catching up with GCN
(1-hop) + DRNL. The results very well align with our theory—as long as we have a sufficiently
expressive GNN, even a simple zero-one labeling trick can be very powerful in terms of enabling
learning structural representations. Nevertheless, in practice when we only have less powerful GNNs,
we should better choose those more sophisticated labeling tricks such as DE and DRNL for better
link prediction performance.

I.2 DE vs. DE+ vs. DRNL

In Appendix D, we have discussed the differences of the implementations of DE and DRNL. That is,
although DE and DRNL are equivalent in theory, there are two differences in their implementations:
1) DE sets a maximum distance dmax (by default 3) while DRNL does not, and 2) DRNL masks the
source node when computing the distances to the target node and vice versa, while DE does not.
To study whether it is these implementation differences between DE and DRNL that result in the
large performance differences in Table 1, we propose DE+ which no longer sets a maximum distance
in DE and additionally does the masking trick like DRNL. We compare DE, DE+, and DRNL on
ogbl-ppa and ogbl-citation2 (where DE shows significantly lower performance than DRNL in
Table 1). All of them use GCN as the GNN with the same hyperparameters. The results are shown in
Table 4.

Table 4: Comparison of DE, DE+ and DRNL.

ogbl-ppa ogbl-citation2
Hits@100 (%) MRR (%)

Method Validation Test Validation Test
GCN+DE (dmax = 3) 36.31±3.59 36.48±3.78 60.17±0.63 60.30±0.61
CCN+DE+ (dmax = 3) 47.17±1.84 45.70±3.46 74.75±1.18 75.00±1.20
CCN+DE+ (dmax =∞) 45.81±3.53 43.88±5.18 79.37±4.50 78.85±0.17
GCN+DRNL 46.43±3.03 45.24±3.95 81.07±0.30 81.27±0.31

We can observe that DE+ outperforms DE by large margins. This indicates that the masking trick
used in DRNL is very important. Intuitively, temporarily masking the target node y when computing
distances to the source node x can give more diverse node labels. Without the masking, d(i, x) will
be upper bounded by d(i, y) +d(x, y). Because the distance between x and y can be small in positive
links, without the masking d(i, x) will be restricted to small numbers, which hurts their ability to
detect subtle differences between nodes’ relative positions within the subgraph. Nevertheless, the
benefit of the masking trick is not observed in smaller datasets such as ogbl-collab (Table 1).

We can also find that DE+ without setting a maximum distance has very close performance to DRNL,
which aligns with our discussion in Appendix D. By removing the maximum distance restriction,
DE+ essentially becomes DRNL. However, there are still small performance differences, possibly
because DRNL has a larger embedding table than DE+ (DRNL’s maximum label is larger) which
results in a slightly larger model capacity. Nevertheless, this can be alleviated by doubling the
embedding dimension of DE+. In summary, we can conclude that the masking trick used in DRNL is
crucial to the performance on some datasets. Compared to DE, DE+ and DRNL show better practical
performance. Studying more powerful labeling tricks is also an important future direction.
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I.3 Is a subgraph-level readout useful?

In Table 1, we observe that SEAL is generally better than GCN+DRNL. SEAL also uses GCN and the
DRNL labeling trick, so the main difference is the subgraph-level readout in SEAL. That is, instead
of only reading out the two center nodes’ representations as the link representation, SEAL performs
a readout over all the nodes in the enclosing subgraph. Here we study this effect further by testing
whether a subgraph-level sum-pooling readout is also useful. We replace the Hadamard product of
two center node representations in GCN+DRNL with the sum over all node representations within
the enclosing subgraph. The results are shown in Table 5.

Table 5: Ablation study on subgraph-level readout.

ogbl-collab ogbl-citation2
Hits@50 (%) MRR (%)

Method Validation Test Validation Test
GCN+DRNL 64.51±0.42 64.40±0.45 81.07±0.30 81.27±0.31
GCN+DRNL (sum-pooling) 64.64±0.24 63.26±0.35 84.98±0.23 85.20±0.26
SEAL 63.89±0.49 63.64±0.71 87.57±0.31 87.67±0.32

As we can see, using sum-pooling has a similar effect to the SortPooling in SEAL, i.e., it
greatly improves the performance on ogbl-citation2, while slightly reduces the performance
on ogbl-collab. This means, using a subgraph-level readout can sometimes be very helpful. Al-
though according to Theorem 1 we only need to aggregate the representations of the center two
nodes (source and target nodes) as the link representation, in practice, because our GNNs only have
limited expressive power, reading out all nodes within the enclosing subgraph could help GNNs learn
better subgraph-level features thus better detecting the target link’s local h-isomorphism class. Such
subgraph representations can be more expressive than only the two center nodes’ representations,
especially when the number of message passing layers is small so that the center nodes have not
gained enough information from the whole subgraph.

I.4 Is it helpful to make number of layers larger than number of hops?

In all labeling trick methods, we have used a fixed enclosing subgraph hop number h = 1, and a
fixed number of message passing layers l = 3. Using a number of message passing layers larger
than the number of hops is different from the practice of previous work. For example, in GAE, we
always select h = l hops of neighbors if we decide to use l message passing layers. So is it really
helpful to use l > h? Intuitively, using l > h layers can make GNNs more sufficiently absorb the
entire enclosing subgraph information and learn better link representations. Theoretically, as we have
shown in Lemma 1, to reach the maximum representation power of 1-WL-GNN, we need to useO(n)
number of message passing layers, where n is the number of nodes in the enclosing subgraph. Thus,
using l > h can enhance GNN’s representation power and learn more expressive link representations.

Table 6: Ablation study on subgraph-level readout.

ogbl-ppa ogbl-collab ogbl-citation2
Hits@100 (%) Hits@50 (%) MRR (%)

Method Validation Test Validation Test Validation Test
GCN+DRNL (l = 3) 46.43±3.03 45.24±3.95 64.51±0.42 64.40±0.45 81.07±0.30 81.27±0.31
GCN+DRNL (l = 1) 31.59±2.79 33.57±3.06 64.38±0.13 63.95±0.42 77.77±0.42 78.02±0.44

To validate the above , we conduct experiments on GCN+DRNL by using l = 1 message passing
layers (and still h = 1). The results are shown in Table 6. As we can observe, using l = 1 results in
lower performance than using l = 3 in all three datasets. On ogbl-collab, this effect is very small.
However, on ogbl-ppa and ogbl-citation2, the performance gaps are significant. These results
demonstrate the usefulness of using more message passing layers than hops.

Nevertheless, we are unsure whether it is still helpful to make l > h when we use a large h, such as
h = 2 or h = 3. We cannot generally verify this because increasing h will exponentially increase
our subgraph sizes. And considering the huge computation cost on two relatively large datasets
ogbl-ppa and ogbl-citation2, using h = 1 is currently the maximum h we can afford. We
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thus only conduct experiments using different h’s on the smallest ogbl-collab dataset. We have
tried different combinations of (l, h) from (1, 1) all the way up to (4, 3), and the testing scores are
consistently around 63 to 64. This seems to indicate increasing h or l is not helpful in this dataset.
Nevertheless, ogbl-collab may not be representative enough to derive a general conclusion. For
example, in the original SEAL paper [20], the authors found using h = 2 is helpful for many datasets.
Thus, fully answering this question might need further investigations. But when h = 1, we can
conclude that using l > h is better.
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