
Masked Autoencoders As Spatiotemporal Learners

Christoph Feichtenhofer∗ Haoqi Fan∗ Yanghao Li Kaiming He
Meta AI, FAIR

https://github.com/facebookresearch/mae_st

Abstract

This paper studies a conceptually simple extension of Masked Autoencoders (MAE)
[31] to spatiotemporal representation learning from videos. We randomly mask out
spacetime patches in videos and learn an autoencoder to reconstruct them in pixels.
Interestingly, we show that our MAE method can learn strong representations
with almost no inductive bias on spacetime (only except for patch and positional
embeddings), and spacetime-agnostic random masking performs the best. We
observe that the optimal masking ratio is as high as 90% (vs. 75% on images [31]),
supporting the hypothesis that this ratio is related to information redundancy of the
data. A high masking ratio leads to a large speedup, e.g., > 4× in wall-clock time
or even more. We report competitive results on several challenging video datasets
using vanilla Vision Transformers [18]. We observe that MAE can outperform
supervised pre-training by large margins. We further report encouraging results
of training on real-world, uncurated Instagram data. Our study suggests that the
general framework of masked autoencoding (BERT [15], MAE [31], etc.) can be a
unified methodology for representation learning with minimal domain knowledge.

1 Introduction

The deep learning community is experiencing a trend of unifying methodologies for solving problems
in different areas, such as language, vision, speech, and more. For architectures, Transformers
[67] have been successfully introduced into computer vision [18] and established as a general
building block in both language and vision. For self-supervised representation learning, the
denoising/masked autoencoding methodology [68] in BERT [15] has been shown effective on
learning visual representations from images [31]. Towards unifying methodologies, less domain
knowledge (“fewer inductive biases” [18]) is introduced for a specific problem, which urges the
models to learn useful knowledge almost purely from data.

Following this philosophy, we study extending Masked Autoencoders (MAE) [31] to the problem
of spatiotemporal representation learning. Our method is simple: we randomly mask out spacetime
patches in videos and learn an autoencoder to reconstruct them (Fig. 1). Our method has minimal
domain knowledge: the only spacetime-specific inductive bias is on embedding the patches and their
positions; all other components are agnostic to the spacetime nature of the problem. In particular, our
encoder and decoder are both vanilla Vision Transformers [18] with no factorization or hierarchy, and
our random mask sampling is agnostic to the spacetime structures. Our method predicts pixel values
and uses no extra problem-specific tokenizer. In a nutshell, our method is simply MAE applied to the
set of spacetime patches. Despite minimal inductive biases, our method achieves strong empirical
results, suggesting that useful knowledge can be learned from data.

It is hypothesized in [31] that the masking ratio (i.e., percentage of removed tokens) in masked
autoencoding methods is related to the information redundancy of the problems. For example, natural
images are more information-redundant than languages and thus the optimal masking ratio is higher
(e.g., than BERT [15]). Our observations on video data support this hypothesis. We find that the
optimal masking ratio of MAE is 90% for videos (Fig. 2), higher than the masking ratio of 75% for
its image counterpart [31]. This can be understood as a consequence of natural video being correlated.
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Figure 1: Masked Autoencoders as spatiotemporal learners. We mask a large subset (e.g., 90%)
of random patches in spacetime. An encoder operates on the set of visible patches. A small decoder
then processes the full set of encoded patches and mask tokens to reconstruct the input. Except for
patch and positional embeddings, neither the encoder, the decoder, nor the masking strategy, has any
spatiotemporal inductive bias.

To the extreme, if a video has T identical static frames, randomly sampling 1/T of all spacetime
patches would reveal most of the static frame. Because slow motion is more likely than fast motion
in natural videos, the masking ratio can be very high as we observe empirically.

The higher masking ratio leads to a more efficient solution in practice. Following the MAE in [31]
that applies the encoder only on visible tokens, a masking ratio of 90% reduces the encoder time and
memory complexity to <1/10. Put together with a small decoder [31], the MAE pre-training can
achieve a theoretically 7.7× reduction in computation vs. encoding all tokens. In fact, the computation
reduction is so large that the data loading time becomes a new bottleneck; even so, we record a 4.1×
wall-clock speedup. Such a significant speedup is of great importance for video research that is
large-scale and time-consuming.

We report strong results on a variety of video recognition datasets. Our MAE pre-training greatly
improves generalization performance: on Kinetics-400 [35], it increases the accuracy of ViT-Large
[18] by absolute 13% vs. training from scratch, while it takes less wall-clock training time overall
(pre-training plus fine-tuning). Our MAE pre-training can outperform its supervised pre-training
counterpart by big margins. Using vanilla ViT [18], our method achieves competitive results
with previous state-of-the-art methods that incorporate more domain knowledge. We also report
encouraging results using MAE pre-trained on 1 million random, uncurated Instagram videos.
These results suggest that self-supervised learning on videos can be tackled in a way similar to its
counterparts on language [15] and images [31], under a unified framework.

2 Related Work

Denoising autoencoders. Denoising autoencoders (DAE) [68, 69] present a general methodology
for learning representations by reconstructing clean signals from corrupted inputs. Masking as a type
of noise dates back to at least a decade ago [69]. One of its most successful developments is BERT
[15], which is conceptually masked autoencoding on language tokens.

Denoising/masked autoencoding methods for computer vision have been making continuous progress
[50, 9, 18, 31]. A series of recent methods are based on Transformer architectures [67] and are
towards a unified solution between vision and language. iGPT [9] pioneers this direction by training
Transformers on pixels as tokens. The ViT paper [18] makes a revolutionary step forward by using
patches as tokens. It not only establishes strong Transformer architectures for vision tasks, but also
explores masked prediction with patches. MAE [31] returns to the basics of the autoencoding concept
[68] and draws attention to the decoding aspect. The presence of a meaningful decoder provides
more flexibility, e.g., enabling the encoder to operate only on visible patches and leading to a more
efficient solution. It empirically shows that a high masking ratio is essential for image tasks [31]. Our
study follows this line of research.
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Figure 2: Visualizations on the Kinetics-400 [35] validation set (masking ratio 90%). We show the original
video (top), masked video (middle), and MAE output (bottom) for each sample. This model reconstructs the
original pixels. The video size is 16×224×224 and the spacetime patch size is 2×16×16 (the temporal patch
size of 2 is not visualized here). Each sample has 8×14×14=1568 tokens with 156 being visible. For better
visualizations, the known patches in the output are from the original input. Fig. 7 shows more examples.

Figure 3: Visualizations of the same pre-trained model in Fig. 2 but with a masking ratio of 95%.

Instead of predicting pixels [9, 18, 31, 80], another line of research focuses on the tokenization
of the prediction targets [3, 17, 77]. BEiT [3] proposes to use pre-trained dVAE [47, 55] as the
reconstruction target. The dVAE tokenizer can be improved by perceptual or adversarial losses [17].
MaskFeat [77] shows that HoG [13] as prediction targets performs strongly.

Self-supervised learning on videos. The presence of the temporal dimension is a focus of self-
supervised learning on video data. Related topics include temporal coherence (‘slowness’) [79, 25],
future prediction [61, 72, 70, 45, 44, 71, 16], object motion [1, 75, 49, 76], temporal ordering [46,
23, 38, 78, 81], spatiotemporal contrast [58, 62, 30, 22, 51, 56], etc.

Our method also relies on the temporal coherence of videos, but it approaches this goal implicitly.
In fact, as our method is largely agnostic to spacetime, the main opportunity for it to make use of
the temporal coherence is a higher masking ratio (e.g., 90%), which assumes that videos are more
information-redundant than images.
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Figure 4: Mask sampling. (a): Random sampling that is spacetime-agnostic. (b): Space-only
random sampling, broadcasted to all time steps (“tube” masking [77]). (c): Time-only random
sampling, broadcasted to all spatial locations (“frame” masking [77]). (d): Block-wise sampling
[3] in spacetime, removing large regions (“cube” masking [77]). In this illustration, T×H×W is
8×14×14; green tokens are kept and others are masked out.

There has been growing interest in masking-based methods for self-supervised learning on videos.
Previous works focus on tokenizing the prediction targets for the use of videos [65, 73, 77]. Our
autoencoding method operates on pixels, which is simpler and requires no extra data or domain
knowledge on the tokenizer. Importantly, our method greatly improves the efficiency of learning. The
practical speedup is of central importance for video-related research, which is in general larger-scale
and more time-consuming.

Our work is done independently and concurrently with [66] on a related method.

3 Method

Our method is a simple extension of MAE [31] to spacetime data (Fig. 1). Our goal is to develop the
method under a general and unified framework, with as little domain knowledge as possible.

Patch embedding. Following the original ViT [18], given a video clip, we divide it into a regular
grid of non-overlapping patches in spacetime [4, 2, 19, 77]. The patches are flattened and embedded
by linear projection [18]. Positional embeddings [67] are added to the embedded patches. The patch
and positional embedding process is the only process that is spacetime-aware.

Masking. We sample random patches without replacement from the set of embedded patches. This
random sampling is agnostic to the spacetime structure (Fig. 4 (a)). This structure-agnostic sampling
strategy is analogous to that of BERT in 1D [15] and MAE in 2D [31].

It is hypothesized in [31] that the optimal masking ratio is related to the information redundancy of
the data. With unstructured random masking, BERT [15] uses a masking ratio of 15% for language
and MAE [31] uses a ratio of 75% for images, suggesting that images are more information-redundant
than language. Our empirical results on videos support this hypothesis. The optimal masking ratio we
observe is 90%. This is in line with the common assumption that natural videos are more information-
redundant than images because of temporal coherence. Fig. 2 and 3 present our MAE reconstruction
results on unseen validation data with a masking ratio of 90% and 95%.

The spacetime-agnostic sampling can be more effective than structure-aware sampling strategies, e.g.,
space-only, time-only, or block-wise sampling (Fig. 4 (b-d)). As neighboring patches in space or in
time (Fig. 4(b, c)) are coherent, with a very high masking ratio, space-only or time-only sampling
may retain less information and yield an overly difficult pre-training task. For example, time-only
sampling from 8 frames with a masking ratio of 87.5% means keeping only a single frame, which
presents an overly challenging task of predicting the future and past given only one frame. We
observe that optimal masking ratios for structure-aware sampling are in general lower. In contrast,
the spacetime-agnostic sampling better utilizes the limited number of visible patches and thus allows
to use a higher masking ratio.

Autoencoding. Our encoder is a vanilla ViT [18] applied only on the visible set of embedded
patches, following [31]. This design greatly reduces time and memory complexity and leads to a
more practical solution. A masking ratio of 90% reduces the encoder complexity to <1/10 (noting
that self-attention is quadratically-complex w.r.t. the token set size).
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Our decoder is another vanilla ViT on the union of the encoded patch set and a set of mask tokens
[31]. Decoder-specific positional embeddings are added to this set [31]. The decoder is designed
to be smaller than the encoder [31]. Although the decoder processes the full set, its complexity is
smaller than the encoder (e.g., ∼1/20 per token). In our default setting, the overall autoencoder has a
complexity reduction of 7.7× vs. full encoding (more discussions are in Sec. 5.1 and Table 1).

The decoder predicts the patches in the pixel space. In principle we can simply predict a full spacetime
patch (e.g., t×16×16); in practice, we find it sufficient to predict a single time slice of the patch
(16×16), which keeps the prediction layer’s size manageable. We predict the original pixels or their
per-patch normalized values [31] (compared in Table 2b). The training loss function is the mean
squared error (MSE) between the prediction and its target, averaged over unknown patches [15].

The encoder and decoder are agnostic to the spacetime structure of the problem. There is no hierarchy
or spacetime factorization, in contrast to the leading architectures [4, 2, 19]. Our method relies on the
global self-attention to learn useful knowledge from data, following the spirit of [18].

4 Implementation

Data pre-processing. For MAE pre-training, our default input size is 16 frames each with 224×224
pixels (i.e., 16×224×224). The 16 frames are sampled from the raw video with a temporal stride
of 4 (i.e., 16×4 sampling in the literature [21]), and the starting frame is randomly sampled. In the
spatial domain, we perform random resized cropping [63] with a scale range of [0.5, 1], and random
horizontal flipping. We do not apply other data augmentations unless noted.

Our MAE pre-training is so fast in computation that data loading becomes a new bottleneck that
dominates running time in our setup. We adopt repeated sampling [33]1 to alleviate this problem.
Each time a raw video is loaded and decompressed, we take multiple (4 by default) samples from it.
This reduces the data loading and decompressing time per sample. We note that repeated sampling
does not change the number of samples seen; it only influences the orders of the samples seen during
training. We always count epochs as “effective epochs”, i.e., how many times each raw video is
sampled throughout training.

Architecture. Our encoder and decoder are the vanilla ViT architectures [18]. We use a temporal
patch size of 2 [2, 19, 77] and a spatial patch size of 16×16 [18], denoted as 2×16×16. We use the
same patch size for ViT-B/L/H [18] for simplicity. For a 16×224×224 input, this patch size produces
8×14×14 tokens.

We adopt separable positional embeddings for the encoder. We have two positional embeddings, one
for space and the other for time. The spacetime positional embeddings are the sum of them. This
separable implementation prevents the size of positional embeddings growing too large in 3D. We
use learnable positional embeddings; the sin-cos variant [67] works similarly.

Settings. Our MAE pre-training configuration mostly follows [31]. We use the AdamW optimizer
[43] with a batch size of 512. We evaluate the pre-training quality by end-to-end fine-tuning. The
choice of evaluating by fine-tuning (instead of linear probing) follows [3, 31]. Our inference process
follows the common practice of multi-view testing [74, 21]: it takes K temporal clips (by default
K=7 on Kinetics) to cover the video length, and for each clip it takes 3 spatial views to cover
the longer spatial axis (denoted as K×3). The final prediction is the average of all views. The
implementation details and hyper-parameters are in the appendix.

5 Experiments

In Sec. 5.1 and Sec. 5.2 we perform ablation experiments on Kinetics-400 (K400) [35]. We do MAE
self-supervised pre-training and then fine-tune the encoder with supervision for evaluation. We report
top-1 classification accuracy (%) on the K400 validation set. In Sec. 5.3 we study more pre-training
datasets and downstream tasks.

1In our use case, repeated sampling involves data augmentation and mask sampling.
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Figure 5: MAE pre-training plus fine-tuning is much more accurate and faster than training from
scratch. Here the x-axis is the wall-clock training time (128 A100 GPUs), and the y-axis is the 1-view
accuracy on Kinetics-400 validation. The table shows the final accuracy. The model is ViT-L.

MAE w/ acc. FLOPs compute load+compute
encoder w/ [M] 84.3 627.5 G 141.1 hr 147.5 hr
encoder w/o [M] 84.4 81.0 G 24.5 hr 35.8 hr
gain 7.7× 5.8× 4.1×

Table 1: Training time comparison between a dense encoder (w/ [M]) and a sparse encoder (w/o
[M]) in MAE. The encoder is ViT-L (1024-d, 24-block); the decoder is our default (512-d, 4-block).
With a masking ratio of 90%, the sparse variant reduces FLOPs by 7.7×. This reduces computation
time by 5.8×. In our infra, computation is so fast that data loading becomes a bottleneck, which leads
to an actual speedup of 4.1×. Profiling is with synchronized SGD over 16 nodes, each with 8 A100
GPUs and 80 CPU cores. The training length is 800 epochs.

5.1 Performance

Fig. 5 compares MAE pre-training vs. no pre-training (i.e., training from scratch), using vanilla ViT-L
[18]. The from-scratch recipe follows [77] and has 71.4% accuracy.2 As a comparison, using MAE
pre-training for 800 epochs, the same vanilla ViT-L achieves 84.4% accuracy, which has a large
increase of 13.0% absolute vs. training from scratch. This gap is much larger than that on image
recognition tasks (∼3% [31]), suggesting that MAE pre-training is more helpful for video recognition.

In addition to the accuracy gain, MAE pre-training can reduce the overall training cost, as plotted
in Fig. 5. The 800-epoch MAE pre-training only takes 35.8 hours. A short fine-tuning (100 epochs
here), which takes 16.3 hours, achieves good accuracy thanks to pre-training. The overall training
time can be shorter than training from scratch (e.g., 400 epochs, 65.2 hours), which converges more
slowly without pre-training. This shows that MAE is a practical solution to video recognition.

MAE pre-training is fast because its encoder is only applied on the sparse set of visible patches,
without the mask token [M]. We profile the pre-training performance in Table 1. With a masking
ratio of 90%, the sparse encoder reduces the FLOPs (floating-point operations) by >10×. After
counting the decoder, the sparse design of MAE reduces FLOPs by 7.7×. In our implementation, this
reduction should produce a 5.8×computational speedup, if the video data were already pre-processed
and loaded in memory. Our speedup ratio is so high that the video pre-processing and loading time
becomes a new bottleneck. In our system, the data loading step increases the wall-clock training time
from 24.5 hours to 35.8 hours. Nevertheless, this still leads to a significant speedup of 4.1×.3

5.2 Ablation experiments

Masking ratio. Fig. 6 shows the influence of the masking ratio jointly with the pre-training length.
The ratio of 90% works the best. The ratio of 95% performs surprisingly well, which can catch up
if trained long enough (Fig. 6 left). A higher masking ratio leads to fewer tokens encoded by the
encoder; to have a more comprehensive look, we plot the results w.r.t. the total number of encoded
tokens (Fig. 6 right). Under this measure, the ratios of 90% and 95% perform closely.

The lower masking ratios of 75% and 50% perform worse, even though the encoder sees more
tokens and has higher computation cost. The ratio of 75% is optimal for its image counterpart [31],
but not for videos. This observation can be explained by the assumption that video data is more
information-redundant.

2The ViT-B result is 68.5% [77] trained from scratch using this recipe.
3The speedup is closer to 5.8× if using slower GPUs (V100 instead of A100) that can hide the loading time.
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Figure 6: Masking ratio. Every point represents a single pre-training and fine-tuning experiment. Left: x-axis
is the epochs (proportional to the number of decoded tokens). Right: x-axis is the number of encoded tokens.

case ratio acc.
agnostic 90 84.4
space-only 90 83.5
time-only 75 79.1
block 75 83.2

(a) Mask sampling. See also Fig. 4.
Random sampling that is spacetime-
agnostic works the best.

case acc.
pixel (w/o norm) 83.8
pixel (w/ norm) 84.4
HOG 84.0
dVAE token 83.8

(b) Reconstruction target. Pixels as
reconstruction targets work well with
no domain knowledge.

case acc.
center crop 83.9
rand crop 84.4
rand crop (stronger) 83.4
rand crop + color jit 83.8

(c) Data augmentation. Strong
augmentation is unnecessary.

rep. acc. speed
1 83.7 1.0×
2 84.3 1.8×
4 84.4 3.0×

(d) Repeated sampling. All entries
see the same # samples. Data loading
overhead is reduced.

dim acc.
128 80.8
256 83.1
512 84.4
1024 83.7

(e) Decoder width. Unlike the image
counterpart [31], an overly narrow
decoder degrades accuracy noticeably.

blocks acc.
1 83.2
2 83.6
4 84.4
8 84.3

(f) Decoder depth. Unlike the image
counterpart [31], an overly shallow
decoder degrades accuracy.

Table 2: Ablation experiments on Kinetics-400. The model is ViT-L, with an input size of 16×224×224 and a
spacetime patch size of 2×16×16. The pre-training length is 800 epochs. The entries marked in gray are the
same, which specify the default settings. This table format follows [31].

Mask sampling strategy. Our method follows the structure-agnostic random sampling methodology
in BERT [15] and MAE [31]. Table 2a reports that this simple solution works the best in our method.

We compare with other strategies as illustrated in Fig. 4. Space-only sampling, which samples on the
2D spatial axes and broadcasts along the temporal axis, works reasonably well (83.5%). Time-only
sampling, with a masking ratio of 75% (i.e., keep 2 time steps out of 8), performs poorly (79.1%);
if we increase its masking ratio to 87.5% (keep 1 out of 8), the accuracy drops further to 75.4%.
Time-only sampling is related to future/past frame prediction, which can be an overly difficult task in
our scenario. Block-wise sampling [3], in its spacetime variant [77], has 83.2% accuracy with 75%
masking ratio (a higher ratio is worse).

Reconstruction target. Our method performs decently by reconstructing the original, unmodified
pixels (83.8%, Table 2b). Using per-patch normalized pixels [31] improves by 0.6%. This observation
is similar to that of its image counterpart [31]. Using HOG [13] as the target [77] works strongly too.

The autoencoding nature of our method (i.e., predicting pixels) provides a self-contained solution. In
contrast, an extra tokenizer (e.g., dVAE [47, 9]), as is used in [3, 73], may require external data to
train and additional domain knowledge to design (e.g., the dVAE used is a ConvNet [37]). Applying
the extra dVAE tokenizer to each frame is computationally heavy, which slows down training by
1.6× in our implementation. Our pixel-based method is simpler and performs better (Table 2b).

Data augmentation. Temporal data can provide natural augmentation, e.g., on view points, motion,
deformation, occlusion. These forms of natural augmentation have been incorporated by random
temporal sampling. Table 2c compares additional augmentation on the spatial domain. Even using no
spatial augmentation (center crop only) works competitively, similar to the observation on images
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pre-train set # pre-train data pre-train method K400 AVA SSv2
- - none (from scratch) 71.4 - -
IN1K 1.28M supervised 78.6 17.3 50.2
IN1K 1.28M MAE 82.3 26.3 65.6
K400 240k supervised - 21.6 55.7
K400 240k MAE 84.8 31.1 72.1
K600 387k MAE 84.9 32.5 73.0
K700 537k MAE n/a† 33.1 73.6
IG-uncurated 1M MAE 84.4 34.2 73.6

Table 3: Influence of pre-training data, evaluated on K400, AVA, and SSv2 as the downstream tasks.
The MAE pre-training length is 1600 epochs on K400/600/700 and IG-uncurated. No intermediate
fine-tuning is used. The model is ViT-L. †: The K700 training set has 13.9k duplicated videos with the K400
validation set (19.9k), so it is not legitimate to train on K700 to get K400 results.

[31]. Random cropping with a mild scale range of [0.5, 1] works well, while stronger cropping (range
[0.08, 1], [63]) reduces accuracy; adding color jittering reduces accuracy too, similar to [31].

It is practically valuable for self-supervised learning methods to be less dependent on data
augmentation. There are a variety of applications in which augmentation is not valid or is hard
to induce, e.g., medical imaging, hyper-spectral imaging, remote sensing, geometric data (point cloud,
key points, etc.), and their temporal extensions. Our method could be generalized to these cases.

Repeated sampling. As our method is fast in computation, we adopt repeated sampling [33] to
reduce the data loading overhead. Table 2d reports its influence. Using 2 or 4 repetitions increases
wall-clock speed by 1.8× or 3.0×, as a loaded and decompressed file is reused multiple times.

Decoder capacity. Table 2e and 2f report the influence of the decoder width and depth. Using an
overly small decoder degrades accuracy by large margins. This is unlike its image counterpart [31],
in which a 128-d or 1-block decoder has no degradation if fine-tuning is applied. We hypothesize that
the higher-dimensional video data are more complex and thus require higher decoding capacity. On
the other hand, our optimal decoder (512-d, 4-block) is still substantially smaller than the encoder
(1024-d, 24-block). This is similar to the observation on its image counterpart [31].

5.3 Influence of Data

Transfer learning ablation. Table 3 studies pre-training on different datasets and transferring
to various downstream tasks. The pre-training datasets include ImageNet-1K (IN1K) [14] and
Kinetics-400, 600, and 700 [35, 6, 7]. The downstream tasks include K400, AVA [29], and
SomethingSomething v2 (SSv2) [27]. We do not perform any intermediate fine-tuning (see appendix),
so the comparison here is influenced by the data scale/distribution but not by the number of their
labels.

First we compare with pre-training on the IN1K images. MAE pre-training on IN1K4 is 3.7% better
than IN1K supervised pre-training (78.6% to 82.3%); this image-based MAE is even better than
K400 supervised pre-training, on both AVA (21.6% to 26.3%) and SSv2 (55.7% to 65.6%).

MAE pre-training on K400 has massive gains over supervised pre-training on K400: it improves
by 9.5% on AVA (21.6% to 31.1%) and 16.4% on SSv2 (55.7% to 72.1%). MAE pre-training on
K400 videos also substantially outperforms MAE pre-training on IN1K images: it increases by 2.5%
on K400 (82.3% to 84.8%), 4.8% on AVA (26.3% to 31.1%), and 6.5% on SSv2 (65.6% to 72.1%),
suggesting that MAE pre-training on videos is highly beneficial for these video tasks.

With more pre-training data (K600/K700) without labels, we observe noticeable improvements on
AVA and SSv2: comparing with K400 pre-training, MAE with K700 has an extra gain of 2.0% gain
on AVA (31.1% to 33.1%) and 1.5% on SSv2 (72.1% to 73.6%).

Real-world data. We further study MAE pre-training on real-world Instagram videos. We study two
sets: (i) Instagram videos curated (IG-curated) [24] with hashtags similar to K400 classes, and (ii)
random, uncrated Instagram videos (IG-uncurated). Both sets have 1 million videos.

4The IN1K pre-trained model is from https://github.com/facebookresearch/mae.

8

https://github.com/facebookresearch/mae


data # videos 200-ep. 400-ep. 800-ep.
K400 240k 81.5 83.3 84.4
IG-curated 240k 79.0 81.6 83.2
IG-curated 512k 81.9 83.5 83.9
IG-curated 1M 83.5 84.1 84.2
IG-uncurated 1M 83.2 84.5 84.4

Table 4: Real-world Instagram data for MAE pre-training. We pre-train MAE on each individual
set for 200, 400, and 800 epochs. We compare fine-tuning accuracy on K400. The model is ViT-L.

Table 3 (last row) reports transfer learning results on AVA and SSv2 using IG-uncurated pre-training.
Notably, on AVA, MAE with IG-uncurated is better than MAE with curated Kinetics pre-training
(e.g., by 3.1/1.7/1.1% over K400/600/700 pre-training); on SSv2, MAE with IG-uncurated is among
the best, on par with the K700 counterpart.

Table 4 presents more results on the dataset size and training epochs. Pre-training on a 240k subset of
IG-curated (the same size as K400) performs worse on K400 classification, which can be caused by
the domain shift of data. However, increasing the dataset size of IG-curated to 512k and 1M shows
good gains: under the same number of pre-training epochs (200 and 400), it can outperform K400
pre-training even when evaluating on K400. IG-uncurated performs similarly well as IG-curated,
although the videos are randomly sampled and unrelated to K400 classes. This behavior is not
observed on contrastive learning methods for videos: e.g., in [22] it is empirically shown that data
curation has a major impact on contrastive learning [32, 10, 28] performance.

We believe that our exploration with real-world data has encouraging results. It is a more realistic use
case of unsupervised learning at scale. We hope this exploration will shed light on future study.

5.4 System-level Comparisons

We provide system-level comparisons with the leading results on K400, AVA, and SSv2. The detailed
tables are in the appendix (Table 7, 8, 9). These results are multifaceted, involving architecture
designs, computational complexity, model sizes, input resolution, pre-training data and methods, etc.,
as we summarize in the tables. Our results are competitive and are close to the leading entries. In
particular, our results are based only on vanilla ViT architectures, while the leading methods are
hierarchical or specialized for videos. Our results demonstrate the potential of using fewer inductive
biases and learning more from data, which is a pursuit of self-supervised learning.

5.5 Video Pre-training for Image Recognition

Finally, we report preliminary results on video pre-training for image recognition. The usage of
vanilla ViT allows to convert to 2D easily: we only “deflate” patch embeddings by summing in time.
Using ViT-L pre-trained by MAE on K400 / IG-uncurated, we obtain 83.7% / 84.1% accuracy on
IN1K image classification. This is better than training ViT-L from scratch on IN1K (82.6% [31]),
though lower than MAE pre-training on IN1K (85.9% [31]). Considering the large domain gap, we
believe this result is decent and its improvement over training from scratch is encouraging. We hope it
will motivate the community to explore video pre-training for general visual representation learning.

6 Conclusion

We have explored a simple extension of MAE [31] to video data. We have drawn several interesting
observations. (i) We find that it is possible to learn strong representations with minimal domain
knowledge or inductive biases. This follows the spirit of the ViT paper [18]. Similar to BERT [15]
and MAE [31], we show that self-supervised learning on videos can be tackled in a conceptually
unified framework. (ii) We empirically show that the masking ratio is an important factor for general
masked autoencoding methods [69], and its optimal values may depend on the nature of the data
(language, images, videos, etc.). (iii) We report encouraging results of pre-training on real-world,
uncurated data. It achieves strong performance, close to pre-training on controlled, curated data (e.g.,
Kinetics). To the best of our knowledge, promising results on uncurated data are rare in the literature.

In spite of these observations, open problems remain. The scale of data we have explored is orders
of magnitudes smaller than the language counterparts [52, 15, 53, 5]. While our method has largely
improved the efficiency of self-supervised learning, the high-dimensional video data still present a
major challenge for scaling up. We hope our study will provide initial signals for future research.
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A Implementation Details

Kinetics action classification. Our settings mainly follow [31, 77]. Table 5a summarizes our pre-
training settings on Kinetics. Table 5b shows the corresponding fine-tuning settings for ViT-B/L/H.
For fine-tuning, we add a linear classifier layer to the encoder’s averaged tokens [18].

For fine-tuning the intermediately fine-tuned checkpoints from K600 in Table 7, we use the setting in
Table 5b with a lower learning rate (8e-4) and shorter duration (40 epochs for ViT-L; 30 for ViT-H)
and an increased drop path rate of 0.3 for ViT-H.

AVA action detection. Table 6a summarizes our fine-tuning settings on AVA [29]. The settings
mainly follow [39, 77]. We follow the detection architecture in [21, 39, 77] that adapts Faster R-
CNN [57] for video action detection. Only for the AVA results in Table 8, we use relative positions
[59, 54] (as implemented in [39]) during fine-tuning.

SSv2 action classification. Table 6b summarizes our fine-tuning settings on SSv2 [27]. The settings
mainly follow [39, 77]. For the frame sampling, we split each video into segments, and sample one
frame from each segment to form a clip following [39, 19].

Fine-tuning from image pre-training. In Table 3 we have compared with ImageNet-based
supervised/MAE pre-training. When fine-tuning these variants for videos, we inflate the 2D kernel of
the patch embedding layer to 3D [8] and initialize the temporal position embeddings by zero.

config value
optimizer AdamW [43]
optimizer momentum β1, β2=0.9, 0.95 [9]
weight decay 0.05
learning rate 1.6e-3
learning rate schedule cosine decay [42]
warmup epochs [26] 120
epochs default 800
repeated sampling [33] 4
augmentation hflip, crop [0.5, 1]
batch size 512
gradient clipping 0.02

(a) Kinetics pre-training

config ViT-B ViT-L ViT-H
optimizer AdamW [43]
optimizer momentum β1, β2=0.9, 0.999
weight decay 0.05
learning rate 1.6e-2 4.8e-3 1.6e-3
learning rate schedule cosine decay [42]
warmup epochs [26] 5
epochs 150 100 75
repeated sampling [33] 2 2 1
augmentation RandAug (9, 0.5) [12]
batch size 768 256 256
mixup [86] 0.8
cutmix [84] 1.0
label smoothing [64] 0.1
drop path [34] 0.1 0.2 0.2
dropout [60] 0.3 0.3 0.5
layer-wise decay [11] 0.65 0.75 0.8

(b) Kinetics fine-tuning

Table 5: Settings on Kinetics.

config values
optimizer SGD
weight decay 1e-8
learning rate 7.2(L), 4.8(H)
learning rate schedule cosine decay [42]
warmup epochs [26] 5
epochs 30
batch size 128
drop path [34] 0.2
dropout [60] 0.5
layer-wise decay [11] 0.75 (L) 0.85 (H)

(a) AVA fine-tuning

config values
optimizer SGD
weight decay 1e-4
learning rate 0.64 (L) 0.32 (H)
learning rate schedule cosine decay [42]
warmup epochs [26] 3
epochs 40
augmentation RandAug (9,

0.5) [12]
batch size 256
mixup [86] 0.8
cutmix [84] 1.0
label smoothing [64] 0.1
drop path [34] 0.2
dropout [60] 0.5
layer-wise decay [11] 0.75 (L) 0.85 (H)

(b) SSv2 fine-tuning

Table 6: Settings on AVA and SSv2. (L) and (H) stands for ViT-L and ViT-H, respectively.

10



pre-train extra data architecture input size top-1 top-5 FLOPs param.

scratch SlowFast [21] 64 × 2242 79.8 93.9 234 × 3 ×10 60
scratch X3D-XL [20] 16 × 3122 79.1 93.9 48 × 3 ×10 11
scratch MoViNet [36] 120 × 3202 81.5 95.3 386 × 1 × 1 31
scratch MViT-B [19] 64 × 2242 81.2 95.1 455 × 3 × 3 37
scratch MViTv2-B [19] 32 × 2242 82.9 95.7 255 × 1 × 5 51
supervised IN21K Swin-B [41] 32 × 2242 82.7 95.5 282 × 3 × 4 88
supervised IN21K Swin-L [41] 32 × 2242 83.1 95.9 604 × 3 × 4 197
supervised IN21K Swin-L [41] 32 × 3842 84.9 96.7 2107 × 5 ×10 200
BEVT [73] IN1K+DALLE Swin-B [41] 32 × 2242 81.1 n/a 282 × 3 × 4 88
MaskFeat [77] MViTv2-L [39] 16 × 2242 84.3 96.3 377 × 1 ×10 218
MaskFeat [77] MViTv2-L [39] 40 × 3522 86.7 97.3 3790 × 3 × 4 218
MaskFeat [77] K600 MViTv2-L [39] 40 × 3522 87.0 97.4 3790 × 3 × 4 218
MAE ViT-B 16 × 2242 81.3 94.9 180 × 3 × 7 87
MAE ViT-L 16 × 2242 84.8 96.2 598 × 3 × 7 304
MAE ViT-H 16 × 2242 85.1 96.6 1193 × 3 × 7 632
MAE ViT-L 40 × 3122 85.8 96.9 4757 × 3 × 7 304
MAE ViT-H 32 × 3122 86.0 97.0 6382 × 3 × 7 632
MAE K600 ViT-L 16 × 2242 86.5 97.2 598 × 3 × 7 304
MAE K600 ViT-H 16 × 2242 86.8 97.2 1193 × 3 × 7 632
using in-house data for supervision:
supervised JFT-300M ViViT-L [2] 32 × 3202 83.5 94.3 3980 × 3 × 1 308
supervised JFT-300M ViViT-H [2] 32 × 3202 84.9 95.8 3981 × 3 × 4 654
supervised + text FLD-900M Florence [83] n/a × 3842 86.5 97.3 n/a × 3 × 4 647
SimMIM [80] + sup. IN21K+70M SwinV2-G [40] 8 × 3842 86.8 n/a n/a × 5 × 4 3000
supervised JFT-3B+SSv2+MiT+IN CoVeR [85] 16 × 4482 87.2 n/a n/a × 3 × 1 n/a
supervised WTS-60M MTV-H [82] 32 × 2802 89.9 98.3 6130 × 3 × 4 n/a

Table 7: System-level comparisons on Kinetics-400 action classification. We report top-1 and
top-5 accuracy on the validation set. The input size is T×H×W . FLOPs (in 109) are presented as
“FLOPs per view × spatial views × temporal views”, following the literature. Parameters are in 106.
The “extra data” column specifies the data used in addition to K400. Entries using spatial resolution
>2242 are noted in gray; entries using in-house data for supervision are in light blue. Our results
with K600 are with intermediate fine-tuning.
∗This table does not include results using K700, because the K700 training set has 13.9k videos duplicated with
the K400 validation set (19.9k). Results with K700 are in Table 8 (AVA) and Table 9 (SSv2).

B Additional Experimental Results

B.1 System-level Comparisons

Kinetics-400. Table 7 compares on Kinetics-400 (K400). Our results are competitive with the leading
ones. Importantly, our method is much simpler than many other entries. Our method is the only
leading entry based on vanilla ViT, while others were based on hierarchical or specialized designs
for videos. Our model does not use relative position embedding, which could have extra gains that
are orthogonal to our thesis. Our results can compete with some strong results that were based on
in-house data for supervision. Our models achieve this at standard 224×224 spatial resolution, while
higher-resolution fine-tuning and testing may improve results at a higher cost, as shown in gray
indicating entries using spatial resolution >2242.

AVA. Table 8 compares on AVA [29] action detection. Using only a resolution of 16×2242, our results
are close to those of MaskFeat on higher-resolution inputs (40×3122). Importantly, our architectures
are plain ViT models without feature hierarchies, yet they perform strongly on this detection task.

SSv2. Table 9 compares on SSv2 [27] action classification. On the resolution of 16×2242 and using
vanilla ViT, our results compare favorably with those of MaskFeat on 40×3122 inputs.
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pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K400 SlowFast [21] 32 × 2242 23.8 - 138 53
supervised K400 MViTv1-B [19] 64 × 2242 27.3 - 455 36
supervised K400 MViTv2-B [39] 32 × 2242 28.1 29.0 225 51
MaskFeat [77] K400 MViTv2-L [39] 40 × 3122 36.3 37.5 2828 218
MAE K400 ViT-L 16 × 2242 34.8 35.7 598 304
MAE K400 ViT-H 16 × 2242 35.7 36.2 1193 632

(a) AVA results using Kinetics-400 pre-training

pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K600 SlowFast [21] 64 × 2242 27.5 - 296 59
supervised K600 X3D-XL [20] 16 × 3122 27.4 - 48 11
supervised K600 MViT-B [19] 32 × 2242 28.7 - 236 53
supervised K600 MViTv2-B [39] 32 × 2242 29.9 30.5 225 51
supervised K600 ACAR [48] 64 × 2242 - 31.4 n/a n/a
MaskFeat [77] K600 MViTv2-L [39] 40 × 3122 37.8 38.8 2828 218
MAE K600 ViT-L 16 × 2242 36.5 37.2 598 304
MAE K600 ViT-H 16 × 2242 38.0 39.1 1193 632

(b) AVA results using Kinetics-600 pre-training

pre-train pre-train data architecture input size mAP
center

mAP
full FLOPs param.

supervised K700 MViTv2-B [39] 32 × 2242 31.3 32.3 225 51
supervised K700 ACAR [48] 64 × 2242 - 33.3 n/a n/a
supervised K700 + IN21K MViTv2-L [39] 40 × 3122 33.5 34.4 2828 213
MAE K700 ViT-L 16 × 2242 37.3 38.3 598 304
MAE K700 ViT-H 16 × 2242 38.2 39.0 1193 632

(c) AVA results using Kinetics-700 pre-training

Table 8: System-level comparisons on AVA v2.2 action detection. We report mAP using center-crop
or full-resolution inference, following the literature. FLOPs (in 109) are measured with center-crop
inference. Parameter numbers are in 106. Only in this table, following MaskFeat [77], our results are
with intermediate fine-tuning and with relative positions [59, 54] during fine-tuning.

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

supervised K400 SlowFast [21] 32 × 2242 63.1 87.6 106 × 3 × 1 53
supervised K400 MViTv1-B [19] 64 × 2242 67.7 90.9 454 × 3 × 1 37
supervised K400 MViTv2-B [39] 32 × 2242 70.5 92.7 225 × 3 × 1 51
supervised K400 + IN21K Swin-B [41] 32 × 2242 69.6 92.7 321 × 3 × 1 89
supervised K400 + IN21K MViTv2-B [39] 32 × 2242 72.1 93.4 225 × 3 × 1 51
supervised K400 + IN21K MViTv2-L [39] 40 × 2242 73.3 94.1 2828 × 3 × 1 213
BEVT [73] K400 + IN1K Swin-B [41] 32 × 2242 71.4 n/a 321 × 3 × 1 88
MaskFeat [77] K400 MViTv2-L [39] 40 × 3122 74.4 94.6 2828 × 3 × 1 218
MAE K400 ViT-L 16 × 2242 72.1 93.9 598 × 3 × 1 304
MAE K400 ViT-H 16 × 2242 74.1 94.5 1193 × 3 × 1 632

(a) SSv2 results using Kinetics-400 pre-training

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

supervised K600 MViTv1-B [19] 32 × 2242 67.7 90.9 454 × 3 × 1 37
MaskFeat [77] K600 MViTv2-L [39] 40 × 3122 75.0 95.0 2828 × 3 × 1 218
MAE K600 ViT-L 16 × 2242 73.0 94.2 598 × 3 × 1 304
MAE K600 ViT-H 16 × 2242 75.2 94.9 1193 × 3 × 1 632

(b) SSv2 results using Kinetics-600 pre-training

pre-train pre-train data architecture input size top-1 top-5 FLOPs param.

MAE K700 ViT-L 16 × 2242 73.6 94.4 598 × 3 × 1 304
MAE K700 ViT-H 16 × 2242 75.5 95.0 1193 × 3 × 1 632

(c) SSv2 results using Kinetics-700 pre-training

Table 9: System-level comparisons on SSv2 action classification. Notations of FLOPs (109) and
parameters (106) follow Table 7. We do not use intermediate fine-tuning here (see Table 10).
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B.2 Ablation on Intermediate Fine-tuning

In Table 3 we have shown results of self-supervised pre-training directly transferred to downstream
datasets. Following the literature, we also investigate an another scenario: after self-supervised pre-
training, we perform intermediate fine-tuning on the pre-training set using labels, before transferring.
Table 10 studies its influence. Intermediate fine-tuning has substantial improvements on AVA, while
on SSV2 its effect is marginal.

pre-train data # intermediate FT K400 AVA SSv2
K400 240k 84.8 31.1 72.1
K400 240k ✓ - 35.6 72.6
K600 387k 84.9 32.5 73.0
K600 387k ✓ 86.5 36.8 73.1
K700 537k n/a 33.1 73.6
K700 537k ✓ n/a 38.2 73.7

Table 10: Influence of intermediate fine-tuning, evaluated on AVA and SSv2. The model is ViT-L.
The MAE pre-training length is 1600 epochs on K400/600/700. Using K700 training set for K400
validation is not legitimate due to the duplications in these training and validation sets.

B.3 Masking during fine-tuning

We perform an ablation that applies masking during the supervised fine-tuning phase. We explore a
masking ratio of 50% that is annealed to 0% with a cosine schedule during fine-tuning. The result is
84.1%, comparred to 84.4% for full fine-tuning without masking, but at a 1.2× speedup. If we start
fine-tuning with a masking ratio of 50% and anneal it to 0%, the accuracy is 83.8% at a speedup of
1.3×. The experiments are summarized in Table 11. We think this is an interesting result showing
that masking can also speedup fine-tuning.

start fine-tune masking ratio K400 accuracy speed
0% 84.4 1.0×

50% 84.1 1.2×
75% 83.8 1.3×

Table 11: Masking during fine-tuning on Kinetics-400. We use Cosine annealing of masking ratio
during fine-tuning. The starting masking ratio is varied between 0% (baseline without masking), 50%
and 75%. The annealing is towards 0% at the end of fine-tuning. The model is ViT-L and the MAE
pre-training length is 800 epochs on K400; cf . Table 2.

B.4 Ablation on SSv2

We perform a subset of the ablations that were carried out for Kinetics in Table 2 on the SSv2 dataset.
We directly pre-train and fine-tune on SSv2 and use a short pre-training schedule of 200 epochs to
save training resources. The results in Table 12 indicate that the default choices for Kinetics also lead
to good performance on SSv2. Namely, spacetime agnostic mask sampling (Table 12a) as well as
decoder width (12b) of 512 and depth (12c) of 4 provide better accuracy than other design choices.

case ratio acc.
agnostic 90 63.4
space-only 90 59.5
time-only 75 61.9

(a) Mask sampling. See also Fig. 4
and Table 2. Random sampling that is
spacetime-agnostic works best.

dim acc.
128 59.4
256 63.2
512 63.4

(b) Decoder width. Similar to
Table 2, a narrow decoder (128-d)
drops accuracy.

blocks acc.
1 63.9
2 63.4
4 63.4
8 62.0

(c) Decoder depth. Four or two
decoder layers provides good accuracy
on SSv2.

Table 12: Ablation experiments on SSv2. We use a short pre-training length of 200 epochs. The model is
ViT-L, with an input size of 16×224×224 and a spacetime patch size of 2×16×16. This table format follows
[31] and Table 2. The entries marked in gray are the same, which specify the default settings, and achieve
best performance (similar to the results for Kinetics in Table 2).
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Figure 7: More visualizations on Kinetics-400 following Fig. 2 (masking ratio 90%).
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