CompilerGym: Robust, Performant Compiler
Optimization Environments for Al Research

Chris Cummins, Bram Wasti,
Somya Jain, Jia Liu,

Jiadong Guo,
Olivier Teytaud, Benoit Steiner,

Sahir Gomez,
Hugh Leather

Brandon Cui, Jason Ansel,
Yuandong Tian,

Facebook
cummins @fb.com

Abstract—Interest in applying Artificial Intelligence (AI) tech-
niques to compiler optimizations is increasing rapidly, but com-
piler research has a high entry barrier. Unlike in other domains,
compiler and AI researchers do not have access to the datasets
and frameworks that enable fast iteration and development
of ideas, and getting started requires a significant engineering
investment. What is needed is an easy, reusable experimental
infrastructure for real world compiler optimization tasks that
can serve as a common benchmark for comparing techniques,
and as a platform to accelerate progress in the field.

We introduce CompilerGynﬂ a set of environments for real
world compiler optimization tasks, and a toolkit for exposing
new optimization tasks to compiler researchers. CompilerGym
enables anyone to experiment on production compiler optimiza-
tion problems through an easy-to-use package, regardless of their
experience with compilers. We build upon the popular OpenAl
Gym interface enabling researchers to interact with compilers
using Python and a familiar APL

We describe the CompilerGym architecture and implemen-
tation, characterize the optimization spaces and computational
efficiencies of three included compiler environments, and provide
extensive empirical evaluations. Compared to prior works, Com-
pilerGym offers larger datasets and optimization spaces, is 27 x
more computationally efficient, is fault-tolerant, and capable of
detecting reproducibility bugs in the underlying compilers.

In making it easy for anyone to experiment with compilers —
irrespective of their background — we aim to accelerate progress
in the AI and compiler research domains.

I. INTRODUCTION

There is a growing body of work that shows how the
performance and portability of compiler optimizations can
be improved through autotuning [1l], machine learning [2],
and reinforcement learning [3], [4], [S]. The goal of these
approaches is to supplement or replace the optimization
decisions made by hand-crafted heuristics with decisions
derived from empirical data. Autotuning makes these decisions
by automatically searching over a space of configurations. This
is effective, but search may be prohibitively costly for large
search spaces, and must be repeated from scratch for each new
problem instance. The promise of supervised and reinforcement
learning techniques is to reduce or completely eliminate this
search cost by inferring optimization decisions from patterns
observed in past data.

Despite many strong experimental results showing that
these techniques outperform human experts [2], [[1], [6], the
complexity of experimental infrastructure for compiler research

! Available at: |https://compilergym.ai

r \ ‘
cOn!pﬂerGym Action
Environment
———— —

| ; |
\ Compiler APIs) User

-—— = =

(Python API,
web interface,
or commandline)

=
| Feature |
\ Extractors |

—— e = = =

\ Datasets |

-——— e - -

Observation
View of Program
Reward
Performance Metric

Action Space
Optimization Decisions

Fig. 1: The CompilerGym interaction loop. A CompilerGym
environment exposes an observation, reward, and action space.
The user’s goal is to select the action that will lead to
the greatest cumulative reward. This may be through hand-
crafted heuristics, search, supervised machine learning, or
reinforcement learning.

hampers progress in the field. In many other fields there are
simple environments, each using standard APIs that machine
learning researchers can interact with. From Atari games to
physics simulations, a known interface abstracts the problems
to the point that Al researchers do not need deep knowledge
of the problem to apply their machine learning techniques.
CompilerGym provides just that for compilers. Al researchers
can solve compiler problems without being compiler experts,
and compiler experts can integrate state-of-the-art ML without
being Al experts.

To support this ease of use and performance CompilerGym
offers the following key features:

1) Easy to install. Precompiled binaries for Linux and
macOS can be installed with a single command.

2) Easy to use. Builds on the Gym [7] API that is easy to
learn and widely used by researchers.

3) Comprehensive. Includes a full suite of millions of
benchmarks. Provides multiple kinds of pre-computed
program representations and appropriate optimization
targets and reward functions out of the box.

4) Reproducible. Provides validation for correctness of
results and public leaderboards to aggregate results.

5) Accessible. Includes code-free ways to explore Compil-

https://compilergym.ai

Frontend

<:> LLVM Service

Compilation

Session <:> GCC Service
RPC

<:> Other compiler

C++ / Python / other

Interface

Python !

Fig. 2: The client-server architecture. The dashed line indicates
the boundary between the frontend Python process that the
user interacts with and the backend compiler services. The pro-
cesses communicate over RPC, providing simple distribution,
parallelization, and fault tolerance.

erGym environments, such as an interactive command
line shell and a browser-based graphical user interface.

6) Performant. Supports the high throughput required for
large-scale experiments on massive datasets.

7) Fault-tolerant. Detects and gracefully recovers from
flaky compiler errors that can occur during autotuning.

8) Extensible. Removes the substantial engineering effort
required to expose new compiler problems for research
and integrate new machine learning techniques.

In this paper, we make the following contributions:

o We introduce CompilerGym, a Python library that for-
mulates compiler optimization problems as easy-to-use
Gym [7]] environments with a simple APL.

o We provide environments for three compiler optimization
problems: LLVM phase ordering, GCC flag selection, and
CUDA loop nest generation. The environments are de-
signed from the ground up for large-scale experimentation:
they are 27 faster than prior works, expose larger search
spaces, include millions of programs for training, and
support optimizing for both code size and runtime.

o We demonstrate the utility of CompilerGym as a platform
for research by evaluating a multitude of autotuning and
reinforcement learning techniques. By using a standard
interface, CompilerGym seamlessly integrates with third
party libraries, offering a substantial reduction in the
engineering effort required to create compiler experiments.

o We release a suite of tools to lower the barrier-to-entry to
compiler optimization research: the core CompilerGym
library and environments, a toolkit for integrating new
compiler optimization problems, public leaderboards to
aggregate and verify research results, a web interface
and API, extensive command line tools, and large offline
datasets comprising millions of performance results.

II. SYSTEM ARCHITECTURE

CompilerGym’s architecture comprises two components: a
Python frontend that implements the Gym APIs and other
user-facing tools, and a backend that provides the integrations
with specific compilers.

Frontend: The CompilerGym frontend is a Python library
that exposes compiler optimization tasks using the OpenAl

env = compiler_gym.make (

"llvm-v0",
benchmark="cbench-vl/gsort",
observation_space="Autophase",
reward_space="IrInstructionCount",

Start a new compilation session:

)
observation = env.reset ()

for _ in range (1000):
observation, reward, done, info = env.step(
env.action_space.sample () # User selects action.
)
if done:
env.reset ()

env.write_bitcode ("/tmp/output.bc"

Listing 1: Example of the CompilerGym environment API. A
CompilerGym environment builds on gym.Env, formulating
a compiler optimization task as a Markov Decision Process,
and provides additional compiler-specific functionality such as
saving the compiled program to disk.

Gym [7] environment interface. Figure (1| shows the interaction
loop for the Gym environments. This allows researchers to
interact with important compiler optimization problems in
a familiar language and vocabulary with which many are
comfortable. The frontend is described in Section [l

Backend: CompilerGym uses a client-server architecture,
shown in Figure 2| This design provides separation of concerns
as systems developers can easily add support for new compiler
problems by implementing a simple Compilation Session
interface that comprises only four methods. The backend is
described in Section [[V]

III. FRONTEND API AND TOOLS

This section describes CompilerGym’s user-facing tools. We
first describe the core formulation of compiler optimization
problems as Gym environments, then the API extensions and
other features tailored for compiler optimization research.

A. OpenAl Gym Environments

We formulate compiler optimization tasks as Markov Deci-
sion Processes (MDPs) and expose them as environments using
the popular OpenAl Gym [7]] interface. A Gym environment
comprises five ingredients:

1) An Action Space defines the set of possible actions that
can be taken from a given MDP state. In CompilerGym, action
spaces can be composed of discrete choices (e.g. selecting an
optimization pass from a finite set), continuous choices (e.g.
selecting a function inlining threshold), or any combination of
the two. The action space can change between states, such as
in the case where one optimization precludes another.

2) An Observation Space from which observations of the
MDP state are drawn. CompilerGym environments support
multiple observation types such as numeric feature vectors
generated by compiler analyses, control flow graphs, and strings

of compiler IR. Each environment exposes multiple observation
spaces that can be selected from or composed.

3) A Reward Space defines the range of values generated by
the reward function, used to provide feedback on the quality of
a chosen action, either positive or negative. In CompilerGym,
reward spaces can be nondeterministic (e.g. change in program
runtime), platform specific (e.g. change in the size of a compiled
binary), or entirely deterministic.

4) A Step operator applies an action at the current state and
responds with a new observation, a reward, and a signal that
indicates whether the MDP has reached a terminal state. Not
all compiler optimization problems have terminal states.

5) A Reset operator resets the environment to an initial state
and returns an initial observation.

Listing |1| demonstrates how the core CompilerGym API
is used. A make () function instantiates a subclass of the
gym.Env environment that represents a particular compiler op-
timization task. The Gym interface is self describing: the action
space and observation spaces are described by action_space
and observation_space attributes, respectively. This enables
CompilerGym environments to be integrated directly with
techniques that are compatible with other Gym environments.
Listing [2] shows one such integration.

In interacting with an environment the user’s goal is to
select the sequence of actions that maximizes the cumulative
reward. Although Gym is designed primarily for reinforcement
learning research, it makes no assumptions about the structure
of user code and therefore can be used with a wide range of
approaches. For a single environment, the best sequence of
actions may be found through search. To generalize a solution
that works for unseen environments, a policy is learned to map
from observation to optimal actions, or a Q)-function is learned
to give expected cumulative rewards for state-action pairs.

B. API Extensions for Compiler Optimization

The advantage of the Gym interface is that it is simple and
can be used across a range of domains. We supplement this
interface with additional APIs that are specific to compilers.

1) Benchmark Datasets: An instance of a compiler optimiza-
tion environment requires a program to optimize. We refer to
these programs as benchmarks, and collections of benchmarks
as datasets. We designed an API to manage datasets that
efficiently scales to millions of benchmarks, and a mechanism
for downloading datasets from public servers. This API supports
program generators (like CSmith [8]]), compiling user-supplied
code to use as benchmarks, iterating and looping over sets
of benchmarks, and specifying an input dataset and execution
environment for running compiled binaries.

2) State Serialization: We provide a mechanism to save and
restore environment state that includes the benchmark, action
history, and cumulative reward.

3) Validating States: Serialized states can be replayed to
validate that results are reproducible. We use this to ensure
reproducibility of the underlying compiler infrastructure. For

import compiler_gym
from ray import tune
from ray.rllib.agents.ppo import PPOTrainer

def make_env (config) :

compiler_gym.make ("llvm-autophase-ic-vO0")

env

env = compiler_gym.wrappers.TimeLimit (env, 45)
Loo ver the NPB benchmark suite for traini

dataset = env.datasets["benchmark://npb-v0"]

env = compiler_gym.wrappers.CycleOverBenchmarks (

env, dataset.benchmarks ()

)

return env

tune.register_env ("CompilerGym", make_env)
tune.run (PPOTrainer, config={"env": "CompilerGym"})

Listing 2: Using RLIib [9] to train a reinforcement learning
agent on one of the CompilerGym environments.

example, we detected a nondeterminism bug in an LLVM
optimization passﬂ; we removed this pass from CompilerGym.

4) Validating Semantics: For runnable benchmarks, we pro-
vide an additional layer of results validation that automatically
applies a differential testing [[10] regime to detect correctness
errors in the compiled binaries. For the LLVM environments we
also integrate LLVM’s address, thread, and undefined behavior
sanitizers to detect program logic errors.

5) Lazy and batched operations: Typically, the observation
and reward spaces of a Gym environment are determined at
construction time, and each step () operation takes a single
action and produces a single observation and reward. We extend
this method in CompilerGym environments to optionally accept
multiple actions, and a list of observation and reward spaces
to compute and return. Passing multiple actions enables the
backend to more efficiently execute them in a single batch
and return a final state and reward, evaluated in Section
Specifying the observation and reward spaces as arguments to
step () enables efficient lazy computation of observations or
rewards in cases where the values are not needed at every step,
or to flexibly change observation and reward space during the
liftetime of an environment.

6) Lightweight deep copy operator: CompilerGym envi-
ronments provide a fork () operator that efficiently creates
independent deep copies of environment states. This can be
used to optimize backtracking or other techniques that require
frequently evaluating a common subsequence of actions. For
example, a greedy search can be implemented by creating n
forks of an environment with an n-dimensional action space,
running a single action in each fork, and selecting the one
which produced the greatest reward. Backtracking is especially
expensive in compilers because most actions have no “undo”.

C. Customizing Environment Behavior

The Gym [7]] library defines environment wrapper classes
to mutate the MDP formulation of a wrapped environment.

ILLVM’s —gvn-sink pass contains an operation that sorts a vector of
basic block pointers by address, causing inconsistent output.

Fig. 3: CompilerGym Explorer, a website that enables users
to interact with the LLVM phase ordering environment. The
left side of the page renders the phase ordering search space
as an interactive tree; the right side of the page visualizes the
program features and their trends.

CompilerGym provides an additional suite of environment
wrappers for a broad range of compiler research uses. These
include specifying a subset of command line flags to use in an
action space, iterating over a suite of benchmarks, and defining
derived observation spaces such as using custom compiler
analyses on compiler IR. These wrappers can be composed.
Listing [2] shows integration with the popular RLIib [9] library
using two of these wrappers.

D. Command Line Tools

We include a complete set of command line tools for
CompilerGym, including scripts to run parallelized searches,
replay and validate results from past runs, and an interactive
shell that includes inline documentation and tab completion,
enabling users to interact with the compiler optimization
environments without writing any code.

E. Web Service and CompilerGym Explorer

We designed a REST API to enable CompilerGym environ-
ments to be used over a network, and CompilerGym Explorelﬂ
a web frontend that makes it easy to navigate compiler
optimization spaces, implemented using React. CompilerGym
Explorer presents a visualization of the search tree, shown in
Figure [3] and asynchronously calls the REST API to update
the tree in real time as the user interacts with it.

A key feature of the tool is to visualize not only the current
state, but also historical trends of the rewards and observation
metrics. This allows users to easily pinpoint interesting actions
in a large search tree and trigger new explorations. We expect
this to be valuable for feature engineering, debugging the
behavior of agents, and as a general educational tool.

! Available at: |https://compilergym.ai/explorer

Steps Observations

benchmark_uri: str 1| state_id: sha1
actions: int[] I compressed_ir: bytes
state_id: shat instcounts: int[]
end_of_episode: bool

rewards: float[]

|n

StateTransitions

\)

state_id: shat
action: int
next_state_id: sha1l
rewards: float[]

Fig. 4: The relational database schema for state transitions
in LLVM environments. Fields that comprise unique primary
keys are emboldened. We are releasing an instance of this
database comprising over 1M unique states that can be used
for pre-training, off-policy learning, or general offline analysis.

F. State Transition Dataset

We designed a relational database schema to log the state
transitions of CompilerGym environments for later offline
analysis, shown in Figure f] A steps table records every
unique action sequence for a particular benchmark and a hash of
the environment state. An Observations table stores various
representations of each unique state, indexed by state hash.
A StateTransitions table encodes the unique transitions
between states and the rewards received for each.

We implemented a wrapper class for CompilerGym en-
vironments that asynchronously populates the Steps and
Observations tables of a state transition database upon every
step of an environment. A post-processing script de-duplicates
and populates the stateTransitions table.

We are releasing a large instance of this database (50+GB)
which contains over 1M unique LLVM environment states,
suitable for a range of offline supervised and unsupervised
learning tasks. We evaluate an example usage in Section

IV. BACKEND RUNTIME AND INTERFACE

The CompilerGym backend comprises a CompilationSession
interface for integrating compilers and a common client-server
runtime that map this interface to the Gym APIL.

A. The CompilationSession Interface

CompilerGym is designed for seamless compiler integration.
The integration centers around implementing a state machine to
interact with the compiler called a CompilationSession. A Com-
pilationSession exposes actions and observations using a simple
schema and must implement two methods, apply_action
and get_observation, as shown in Figure 5] We provide
CompilationSession interfaces for Python and C++. Listing [3]
demonstrates an example implementation.

B. Compiler Service Runtime

A common runtime maps implementations of the Compila-
tionSession interface (Listing [3) to the Gym API (Listing [I).
This runtime is shared by all compiler integrations and is
architected to be performant and scalable. The design is

https://compilergym.ai/explorer

CompilationSession.ActionSpaces Dataset

CompilationSession.ObservationSpaces

w CompilationSession()

CompilationSession.get_observation

=

Reward —» Agent

CompilationSession.apply_action

Fig. 5: A graphical representation of the CompilationSession
integration. To add a new compiler to CompilerGym, users
need only define the boxes highlighted in blue. Grey boxes
demonstrate the integration of the CompilerSession with a
typical reinforcement learning loop.

resilient to failures, crashes, infinite loops, and nondeterministic
behavior in backend compiler services. All compiler service
operations have appropriate timeouts, graceful error handling,
or retry loops. Improvements to the runtime can be made
without changing compiler integration or user code.

A key design point of the CompilerGym runtime is that the
service that provides the compiler integration is isolated in a
separate process to the user’s Python interpreter. The Python
interpreter invokes operations on the compiler service through
Remote Procedure Calls (RPCs). The benefits of this are fault
tolerance and recovery in cases where the compiler crashes or
terminates abruptly; support for compiling on a different system
architecture than the host by running the compiler service on
a remote machine; and scalability as the expensive compute
work is offloaded, enabling many user threads to interact with
separate compiler environments without contention on Python’s
global interpreter lock.

V. ENVIRONMENTS

This section describes three compiler integrations shipped
in CompilerGym.

A. LLVM Phase Ordering

LLVM [11] is a modular compiler infrastructure used
throughout academia and industry. After parsing an input source
program to a language-agnostic Intermediate Representation
(IR), the LLVM optimizer applies a configurable pipeline of
optimization passes to the IR. The selection and ordering of
compiler optimizations — known as phase ordering — greatly
impacts the quality of the final binary and has been the focus
of much research [1]], [12]].

We include a phase ordering environment in CompilerGym
as an example of a challenging, high-dimensional optimization
problem in which significant gains can be achieved.

#include "compiler_gym/service/CompilationSession.h"
#include "compiler_gym/service/runtime/Runtime.h"
using namespace compiler_gym;

struct MyCompilationSession: public CompilationSession({
vector<ActionSpace> getActionSpaces() {...}
vector<ObservationSpace> getObservationSpaces() {...}

Status init (

const ActionSpace& actionSpace,

const Benchmarké& benchmark) {...}
Status applyAction (

const Actioné& action,

bools endOfEpisode,

bools actionSpaceChanged) {...}
Status setObservation (

const ObservationSpace& observationSpace,

Observation& observation) {...}

bi

int main(int argc, charxx argv) ({
runtime: :createAndRunService<MyCompilationSession> (
argc, argv, "My compiler service");

}

Listing 3: A C++ implementation of the CompilationSession
interface to add support for a new compiler. Method bodies
are omitted for brevity. There is an equivalent API for Python.

Actions: The action space consists of a discrete choice from
124 optimization passes extracted automatically from LLVM.
There is no maximal episode length as episodes can run forever
(except in the case of a compiler bug leading to an error), the
user must estimate when no further gains can be achieved and
no further actions should be taken. For any particular program
the optimal phase ordering may omit or repeat actions.

Rewards: We support optimizing for three metrics: code
size, which is the number of instructions in the IR; binary
size, which is the size of the .text section in the compiled
object file; and runtime, which is the wall time of the compiled
program when run using a specific configuration of inputs
on the machine hosting the CompilerGym backend. When
used as a reward signal each metric returns the change in
value between the previous environment state and the new
environment state. Each reward signal can optionally be scaled
against the gains achieved by the compiler’s default phase
orderings, —Oz for size reduction and —0O3 for runtime. Code
size is platform-independent and determinsitic, binary size
is platform-dependent and deterministic, and runtime is both
platform-specific and nondeterministic.

Observations: We provide five observation spaces for LLVM
ranging from counter-based numeric feature vectors [4] to
sequential language models [13]] up to graph-based program
representations [14]. See Table [T for a comparison.

Datasets: We provide millions of programs for evaluation,
summarized in Table [l We aggregate C, C++, OpenCL,
and Fortran programs from benchmark suites in a variety
of domains, open source programs, and synthetic program
generators. Accessing these datasets within CompilerGym is
as simple as specifying the name of the dataset and optionally
the name of a specific benchmark. Presently only cBench [15]]
and Csmith [8] support optimizing for runtime.

Number of Benchmarks

Dataset Autophase [4] | MLGO [3] | CompilerGym
AnghaBench [16] 1,041,333
BLAS [17] 300
cBench [15] 23
CHStone [18] 9 12
CLgen [19] 996
GitHub [14] 49,738
Linux kernel 13,894
MiBench [20] 40
NPB [21] 122
OpenCV 442
POJ-104 [22] 49,816
TensorFlow [23] 1,985
Csmith [8] 100 2324
llvm-stress [11]] 2324
Proprietary 28,000

TABLE I: LLVM benchmark datasets included in Compiler-
Gym, compared to the number of benchmarks used in two
recent machine learning works. { denotes random program
generators with 32-bit seeds. Excluding the program generators,
the total number of benchmarks is 1,145,499.

B. GCC Flag Tuning

We include an environment that exposes the optimization
space defined by GCC’s command line flags. The environment
works with any version of GCC from 5 up to and including the
current version at time of writing, 11.2. The environment uses
Docker images to enable hassle free install and consistency
across machines. Alternatively, any local installation of the
compiler can be used. This selection is made by simple string
specifier of the path or docker image name. The only change
that an RL agent needs to make to work with GCC instead of
LLVM is to call env = gym.make ("gcc—v0"), instead of
using "1lvm-vO".

While the LLVM phase ordering action space is unbounded
as passes may be executed forever, the number of GCC
command line configurations is bounded. GCC’s action space
consists of all the available optimization flags and parameters
that can be specified from the command line. These are automat-
ically extracted from the “help” documentation of whichever
GCC version is used. For GCC 11.2. the optimization space
includes 502 options:

o the six —0<n> flags, e.g. -00, -03, -Ofast, -Os.

e 242 flags such as —fpeel-loops, each of which may be
missing, present, or negated (e.g. —~fno-peel-loops).
Some of these flags may take integer or enumerated
arguments which are also included in the space.

e 260 parameterized command line flags such as --param
inline-heuristics—hint-percent=<number>. The
number of options for each of these varies. Most take
numbers, a few take enumerated values.

This gives a finite optimization space with a modest size of
approximately 10461, Earlier versions of GCC report their
parameter spaces less clearly and so the tool finds smaller

111.2.0 is the latest stable version of GCC at time of writing.

for a in 1048576 : LO

for a’ in 1 : L1
for a’’ in 1 : L2
%0[a] <- read()
for a’’ in 1 : L4
$1[a] <- read()
for a’’ in 1 : L6
%2[a] <- add(%0, %1)
for a’’ in 1 : L8
%$3[a] <— write(%2)

[thread]

Listing 4: An example loop tree in the loop_tool environment.

spaces when pointed at those. For example, on GCC 5, the
optimization space is only 10%3,

Actions: We provide two action spaces that can be used
interchangeably. The first directly exposes the optimization
space via a list of integers, each encoding the choice for one
option with a known cardinality. A second action space is
intended to make it easy for RL tools that operate on a flat
list of categorical actions. For every option with a cardinality
of fewer than ten, we provide actions that directly set the
choice for that action. For options with greater cardinalities
we provide actions that add and subtract 1, 10, 100, and 1000
to the choice integer corresponding to the option. For GCC
11.2.0, this creates a set of 2281 actions that can modify the
choices of the current state.

Rewards: We provide two deterministic reward signals: the
sizes in bytes of the assembly or the object code.

Observations: We provide four observation spaces: a nu-
meric instruction count observation, the Register Transfer
Language code at the end of compilation, the assembly code
as text, and the object code as a binary.

C. CUDA Loop Nest Code Generation

Manually tuning CUDA code requires sweeping over many
parameters. Due to the sheer size of the tunable space, the
problem of generating fast CUDA is well suited for automated
techniques [24], [25]. As a flexible compilation environment,
CompilerGym is well equipped to handle compilers for tuning
GPU workloads. We integrated 1oop_tool, a simple dense
linear algebra compiler [26]. 1oop_tool takes a minimalist
approach to linear algebra representations by decomposing
standard BLAS-like routines into a DAG of n-dimensional
applications of arithmetic primitives. The DAG is then anno-
tated with three pieces of information about loop ordering: the
order in which loops are emitted, the nesting structure of each
loop, and the reuse of loops by subsequent operations. This is
lowered to a loop tree that can be annotated with which loop
should be run in parallel. These four annotations across a slew
of point-wise operations represent a large optimization space.

Actions: We map interacting with the loop structure for
point-wise additions to a cursor-based discrete action space.
At any point the cursor will refer to an individual loop in the
loop hierarchy and will have an associated “mode” to control
either moving the cursor or modifying the current loop. There
is an action “toggle_mode” to swap between these two. When
moving the cursor, the actions “up” and “down” will shift

the cursor inward and outward respectively. When modifying
the current loop, the action “up” will increase its size by
one. This is done by changing the size of the parent loop
to accommodate the new inner size. Often this induces tail
logic, which is handled automatically. Finally, any loop can
be changed to be threaded. This will schedule loop execution
across CUDA threads which may span multiple warps or even
multiple streaming multiprocessors. A second, extended action
space allows loops to be split, creating a larger hierarchy.

Rewards: The environment reward signal is a measurement
of floating point operations per second (FLOPs) achieved by
benchmarking the loop nest in the given state. This is both
platform dependent and non-deterministic due to the noise
involved in benchmarking.

Observations: There are two observations spaces: action
state, which describes the cursor position and mode, and loop
tree structure, which is a textual dump of the current state of
the 1oop_tool environment, as shown in Listing [Z_f}

VI. IMPLEMENTATION

CompilerGym is implemented in a mixture of Python and
C++. The core runtime comprises 12k lines of code. The
compiler integrations comprise 6k lines of code for LLVM,
3k for GCC and 0.5k for 1oop_tool. CompilerGym is open
source and available under a permissive license.

Binary Releases: Periodic versioned releases are made from
a stable branch. We ship pre-compiled release binaries for
macOS and Linux (Ubuntu 18.04, Fedora 28, Debian 10 or
newer equivalents) that can be installed as Python wheels.

Documentation: Our public facing documentation includes
full API references for Python and C++, a getting started
guide, FAQ, and code samples demonstrating integration with
RLIib [9], implementations of exhaustive, random, and greedy
searches, and Q-learning [27] and Actor Critic [28]].

Testing: We have a comprehensive unittest suite with 85.8%
branch coverage that is run on every code change across a test
matrix of all supported operating systems and Python versions.
Additionally, a suite of fuzz and stress tests are ran daily by
continuous integration services to proactively identify issues.

VII. EVALUATION

We evaluate CompilerGym first by comparing the computa-
tional efficiency of the environments to prior works. We then
show how the simplicity of the CompilerGym APIs enables
large-scale autotuning and reinforcement learning experiments
to be engineered with remarkably few lines of code.

Experimental Platforms: Results in this section are obtained
from shared compute servers equipped with Intel Xeon 8259CL
CPUs, NVIDIA GP100 GPUs, and flash storage.

A. Computational Efficiency

A key design goal of CompilerGym is to provide the best
performance possible, enabling researchers to train larger mod-
els, try more configurations, and get better results in less time.
We evaluate the computational efficiency of CompilerGym’s
LLVM phase ordering environment and compare to two prior
works: Autophase [4]] and OpenTuner [29]].

1.00
0.75 A
0.50 1

Probability

0.25 1

0.00

T e

Step time (ms, log axis)
Fig. 6: Cumulative density plot of step times for each of the 23
programs in cBench [15]]. Each line shows a different program.
The difference between the median step times of the fastest
program (crc32) and the slowest (ghostbench) is 560.3x.

We use code size rewards signals for all three platforms
and the observation space used in [4] for Autophase and
CompilerGym; OpenTuner is a black box search framework
and so does not provide observation spaces. We measure the
computational efficiencies of each environment by measuring
the wall times of operations during 1M random trajectories.
For CompilerGym, which uses a client-server architecture, we
also measure the initial server startup time.

Table [lI| shows the results. CompilerGym achieves a much
higher throughput than Autophase while offering the same
interface, observation space, and reward signal. This is enabled
by CompilerGym’s client-server architecture. After initially
reading and parsing the bitcode file from disk, the Compiler-
Gym server incrementally applies an individual optimization
pass at each step. In contrast, Autophase and OpenTuner must,
at each step, read and parse the IR, apply the entire sequence
of passes, and then serialize the result. OpenTuner, which
was designed for uses where the search time is dominated by
compilation time, has the highest environment initialization
cost, as it requires several disk operations and the creation
of a database. The CompilerGym server maintains a cache of
parsed unoptimized bitcodes that enables an amortized O(1)
cost of environment initialization.

The distribution of operation wall times depends on the action
being performed and the program being optimized. Figure [6]
shows the wide distribution of wall times within the benchmarks
of a single dataset.

B. Computational Efficiency of Observation Spaces

This experiment evaluates the computational efficiency of
the LLVM environment observation and reward spaces. We
recorded 1M wall times of each using random trajectories.

Table [T summarizes the results. There is a 192X range
in observation space times, demonstrating a tradeoff between
observation space computational cost and fidelity; and 4727 x
range in reward space times, motivating the development of
fast approximate proxy rewards and cost models [30], [31].

C. Autotuning LLVM Phase Ordering

We evaluate various autotuning techniques on the LLVM
phase ordering task to demonstrate the ease and speed of
CompilerGym. We use the following autotuning techniques:
Greedy search, which at each step evaluates all possible actions

Service Startup
Cost

Environment Initialization Environment Step

p50 P99 B Cost p50 p99 wo Cost p50 P99 m
Autophase [4] — — — — O(n) 22.4ms 388.4ms 533ms | O(nm) 71.0ms 2489.8ms 205.9ms
OpenTuner [29] — — — — O(n) 269.6ms 85153ms 777.5ms | O(nm) 50.7ms 1,491.1ms 131.2ms
CompilerGym O(1) 1197ms 131.8ms 120.8ms | O(1)t 2.2ms 198.6ms 21.3ms O(n) 1.0ms 108.6ms 7.5ms
CompilerGym-batched | ” ” ” 7| ” " ” 0.2ms 37.4ms 2.6ms

TABLE II: Computational costs of CompilerGym operations compared to prior works when computing the same actions,
observations, and rewards. After paying a one-off startup penalty, CompilerGym is 27x faster than an equivalent prior work.
This much higher throughput enables training larger models with larger datasets. Cost denotes average-case time complexities
wrt. n the size of the program being compiled and m the number of actions in the episode. T denotes amortized cost, achieved
by caching initial environment states. p5S0 and p99 denote the 50th and 99th percentile of wall times, respectively. p denotes
the arithmetic mean wall time. We also measured the throughput of CompilerGym when batches of actions are processed in a
single environment step, denoted CompilerGym-batched above. This improves throughput by a further 2.9x by reducing RPC
round trips, but loses intermediate observations and rewards. Measurements taken from 1M randon trajectories, evenly divided

across all benchmark datasets.

Type p50 p99 i
LLVM-IR String 0.9ms 72.1ms 5.9ms
InstCount 70-D int64 vector 0.5ms 6.9ms 0.9ms
Autophase [4] 56-D int64 vector 0.7ms 38.0ms 3.4ms
inst2vec [[13]] 200-D float vector list 15.8ms 31,847ms 738.1ms
ProGraML [14] Directed multigraph 104.5ms 14,194ms 821.5ms
Code size Int64 count 0.4ms 3.6ms 0.4ms
Binary size Int64 byte count 56.2ms 703.7ms 98.1ms
Runtime Float wall time 75.9ms 8,406ms 614.4ms

TABLE III: Computational costs of the observation and
reward spaces of LLVM environments from 1M wall time
measurements, evenly divided across all benchmark datasets.
p50 and p99 denote the 50th and 99th percentile, respectively,
and p denotes the arithmetic mean.

and selects the action which provides the greatest reward,
terminating once no positive reward can be achieved by any
action; LaMCTS [32]], an extension of Monte Carlo Tree
Search [33] that partitions the search space on the fly to
focus on important search regions [33]]; Nevergrad [34] and
OpenTuner [29], two black box optimization frameworks that
contain ensembles of techniques; and Random Search, which
selects actions randomly until a configurable number of steps
have elapsed without a positive reward.

We run single threaded versions of each autotuning technique
on each benchmark in the cBench [15] suite for one hour.
Hyperparameters for all techniques were tuned on a validation
set of 50 Csmith [8]] benchmarks. We evaluate each technique
when optimizing for three different targets: code size, binary
size, and runtime. For runtime we use the median of three
measurements to provide the reward signals during search, and
the median of 30 measurements for final reported values. Each
experiment was repeated 10 times.

The standard interface exposed by CompilerGym makes
it simple to integrate with third party autotuning libraries or
to develop new autotuning approaches. Table shows the
number of lines of code required to integrate each search
technique, and the performance achieved.

Phase ordering is challenging because the optimization space

is unbounded, high-dimensional, and contains sparse rewards.

Nevertheless, autotuning — when furnished with a sufficiently

. Geomean Geomean Geomean
Lines
code size binary size runtime
of code . X

reduction reduction speedup

Greedy Search 10 1.053 x 1.267x 1.059 %
LaMCTS [32] 35 1.051% 1.273x 1.053 %
Nevergrad [34] 41 1.083 % 1.318 % 1.093 %
OpenTuner [29] 165 1.060x 1.102x 0.822x
Random Search 24 1.048 % 1.278x 1.078x

TABLE IV: Lines of code required to integrate or implement
autotuning techniques for the LLVM phase ordering task, and
performance achieved when optimizing for three targets on
the cBench suite [15] given a lhr search budget. Results are
compared against —Oz for size reduction and —O3 for runtime.

generous search budget — outperforms the default compiler
heuristics by tailoring the configuration to each benchmark.
We note that the optimal configuration differs between all
benchmarks and optimization targets.

D. Autotuning GCC Command Line Flags

For GCC we show a different aspect of the CompilerGym.
For these experiments we explore the GCC environment’s
high-dimensional action space using a number of simple
search techniques. These experiments are performed using
GCC version 11.2.0 in Docker. That version of GCC has 502
optimization settings that can be selected. We evaluate three
search techniques on the the CHstone [[18]] suite:

1) Random search. A random list of 502 integers from the
allowable range is selected at each step.

2) Hill climbing search. At each step a small number of
random changes are made to the current choices. If this
improves the objective then the current state is accepted and
future steps modify from there.

3) Genetic algorithm (GA). A population of 100 ran-
dom choices is maintained. We use the Python library
geneticalgorithm [35] with its default parameters.

Table |[V| shows the geometric mean of the object code size
objective across the benchmarks in CHstone [18]], averaged
over 3 searches. Each search was allowed 1000 compilations.

. Geomean binary size
Lines of code y

reduction
Genetic Algorithm [335] 27 1.27X%
Hill Climbing 14 1.04x
Random Search 9 1.21x

TABLE V: Lines of code required to integrate or implement
autotuning techniques for the GCC flag tuning task, and
performance achieved when optimizing the CHstone suite [18]],
given a search budget of 1000 compilations per benchmark.
Results are compared against —Os.

N SgHeeE
4€10 - o=t
@ 3e10 A 524.29K elements
9 1.05M elements
& 2el0 - 2.10M elements
4.19M elements
1el0 A

8.39M elements

10° 10°

Size of Threaded Inner Loop
Fig. 7: A sweep over a particular configuration in the Com-
pilerGym provided search space for point-wise addition on a

GPU using loop_tool to generate CUDA.

103

E. Autotuning CUDA Loop Nests

The 1oop_tool environment provides an easily accessible
interface to being exploring the landscape of GPU optimizations.
Tuning a simple space by searching threading and then sizing
the inner loop reaches 73.5% of theoretical peak performance
on our GP100 test hardware (~6e10 FLOPs or ~750GB/s for
two 4-byte floating point reads and one write), and parity with
PyTorch performance on the same operation across a variety
of problem sizes. Figure [/| shows the results for different loop
configurations, demonstrating potentially useful hardware and
compiler characteristics, notably a drop in performance near
100k threads.

F. Learning a Cost Model using the State Transition Dataset

Auxiliary tasks are commonly used in reinforcement learn-
ing to produce better representation learning and help with
downstream tasks [36], [37]. This experiment demonstrates
using the State Transition Dataset (Section to learn a
cost model of instruction count from a graph representation of
program state.

We implemented a Gated Graph Neural Network [38]] in
PyTorch [39] and used Mean Squared Error loss to train a
regressor to predict the instruction count of a program after
two rounds of message passing on the PROGRAML [14] graph
representation built into CompilerGym. We trained on 80% of
the State Transition Database by iterating over pairs of (graph,
instruction count) from the database. We used the remaining
20% of the database as a validation set. Figure [§] shows the
convergence of the neural network. The network achieves a
relative error of 0.025, while a naive mean prediction scores
1.393.

0.08 1

0.06

0.04 1

Mean Relative Error

0 5 10 15 2|0 25 30 35

Num Epochs
Fig. 8: Predicting program instruction using a Graph Neural
Networks trained on CompilerGym’s State Transition Dataset.
This shows performance on a holdout validation set as a
function of the number of training epochs.

Geomean code size reduction

Test Dataset A2C [40) APEX [41] IMPALA [@] PPO [43]
AnghaBench [16] 0.951x 0.659 % 0.958 X 0.776 X
BLAS [17] 0.928x 0.934 X 0.861x 0.906 x
cBench [15] 0.804 x 0.698 x 0.814x 0.964 X
CHStone [18] 0.823 % 0.704 x 0.707x 1.014 X%
CLgen [19] 0.950 % 0.687 x 0.916 x 0.843x
Csmith [8] 1.023x 0.692 x 1.144x 1.245X%
GitHub [14] 0.975x 0.987 X 0.976 % 0.984 x
Linux kernel 0.987x 0.998 X 0.983 % 0.995x
llvm-stress [11] 0.838 X 0.493x 0.736x 0.097x
MiBench [20] 0.996 x 0.996 x 0.996 x 1.000 X%
NPB [21] 0.961 X 0.816x 0.958 x 0.923x
OpenCV 0.976x 0.969 x 0.986 X 0.945x
POJ-104 [22] 0.778 0.651x 0.805 X 0.801x
TensorFlow [23] 0.976 x 0.976 X 0.966 x 0.933x

TABLE VI: Comparison of four reinforcement learning al-
gorithms, trained for 100k episodes on Csmith [8] programs,
when evaluated on datasets from a range of program domains.
The programs used for testing on Csmith are different from
those used for training. Results are compared to —Oz.

G. Reinforcement Learning for LLVM Phase Ordering

CompilerGym offers seamless integration with third party
reinforcement learning frameworks. For example, by changing
a single parameter value in Listing [2] we can use any of the
26 reinforcement learning algorithms included in RLIib [9].

We use CompilerGym to replicate the LLVM phase ordering
environment used in [4]. Specifically: we fix episode lengths
to 45 steps, use the same observation space comprising a
feature vector concatenated with a histogram of the agent’s
previous actions, and we use a subset of the full action space['}
We note that each of these modifications to the base LLVM
environment can be achieved using the wrapper classes built
into CompilerGym (Section [[II-C). Our environment differs
from [4] in that we use a code size reward signal rather than
simulated cycle counts.

We train three different reinforcement learning algorithms
for 100k episodes and periodically evaluate performance on a
holdout validation set. We use Csmith to generate both training
and validation sets, as in [4].

Table |VI| shows the performance of the trained agents when
evaluated on a random 50 programs from each of the datasets
available out of the box in CompilerGym. 3 of the 4 algorithms

I'We use 42 actions (out of 124 total) rather than the 45 actions used in [4]
as three of the actions have been removed in recent versions of LLVM.

Training Set
Csmith [8]

Github [14] TensorFlow [23]
g Csmith [8]] 1.245% 0.567x 0.723x
2 Github [14] 0.984 x 0.981 % 0.995x
& TensorFlow [23] 0.932x 0.950x 0.998 X

TABLE VII: CompilerGym includes millions of programs to
train on that can be selected by simply specifying the name of
the dataset(s) to use. Here we cross-validate the generalization
performance of a PPO [43] agent by varying the training and
test sets. The row indicates the dataset used for training, the
column indicates the dataset used for testing. The values are
geomean code size reduction relative to —Oz.

achieve positive results when generalizing to programs within
the same domain (Csmith), but only PPO [43] is able to achieve
a positive score on two of the 13 other datasets. This highlights
the challenge of generalization across program domains.

H. Effect of Training Set on RL

The generalization of reinforcement learning agents across
domains is the subject of active research [44], [43], [46]. As
demonstrated in the previous experiment, the performance of
agents trained on one dataset can differ wildly on datasets
from other domains. We evaluate the effect of training set on
generalization by training a PPO [43] agent on different training
sets and then evaluating their generalization performance on test
sets from different domains. All other experimental parameters
are as per the previous experiment.

Table |VII| shows the results. As can be seen, each algorithm
performs best when generalizing to benchmarks from within
the same dataset, suggesting the importance of training on
benchmarks across a wide range of program domains.

1. Effect of Program Representation on Learning

Representation learning and feature engineering is an area
of much research [47], [48]], [2]. CompilerGym environments
provide multiple state representations for each environment.
We evaluate the performance of two different program repre-
sentations, and their performance when concatenated with a
histogram of the agent’s previous actions, as used in [4]. We
use the same experimental setup as in the prior sections.

The results are shown in Figure [9] In both cases stronger
performance is achieved when coupling the program repre-
sentation with a histogram of the agent’s previous actions.
The Autophase representation encodes more attributes of the
structure of programs than InstCount and achieves greater
performance. We believe that representation learning is one of
the most exciting areas for future research, and CompilerGym
provides the supporting infrastructure for this research.

VIII. RELATED WORK

We present a suite of tools for compiler optimization research.
Other compiler research tools include OpenTuner [29]] and
YaCoS [49]], autotuning frameworks that include an ensemble
of techniques for compiler optimizations; cTuning [50], a
framework for distributing autotuning results; TenSet [S1] and

C
'g 1.00 e~ N\ Y
s o omm A ot
0751 el - ~?
g e
$ 0.50
8
2 0254 — Autophase w. hist InstCount w. hist
b -=-- Autophase InstCount
E T
le+03 le+04 1le+05

#. training episodes (log)

Fig. 9: The convergence rate and final performance of learned
agents depends on the observation space. CompilerGym
includes several observation spaces out of the box. By changing
one line of code we trained four PPO [43] agents on different
observation spaces. This plot shows the performance on a
holdout validation set as a function of the number of training
episodes. We applied a Gaussian filter (¢ = 5) to aid in
visualizing the trends.

LS-CAT [52], large-scale performance datasets suitable for
offline learning; and ComPy-Learn [53]], a library of program
representations for LLVM. CompilerGym has a broader set
of features than these prior works, providing several compiler
problems, program representations, optimization targets, and
offline datasets all in a single package.

There is a growing body of research that applies Al
techniques to compilers optimizations [2]. Many approaches
have been proposed to phase ordering, including collaborative
filtering [54], design space exploration [55]], and Bayesian
Networks [56]]. Even removing passes from standard opti-
mization pipelines has been shown to sometimes improve
performance [S7]]. Autophase [4] and CORL [58]] use reinforce-
ment learning to tackle the LLVM phase ordering problem.
Both works identify generalization across programs as a key
challenge. Our work aims to accelerate progress on this problem
by combining several observation spaces with millions of
training programs to serve as a platform for research.

Other reinforcement learning compiler works include
MLGO [3] which learns a policy for a function inling heuristic,
NeuroVectorizer [|5] which formulates instruction vectorization
as single-step environments, and PolyGym [59] which targets
Polyhedral loop transformations. Compared to these works, the
search spaces in CompilerGym environments are far larger.

CompilerGym is not limited to reinforcement learning.
Prior work has cast compiler optimization tasks as supervised
learning problems using classification to select optimization
decisions [60], [2] or regression to learn cost models [61]], [30],
[31]. CompilerGym is as an ideal platform for gathering the
data to train and evaluate these approaches, including both
offline datasets and the infrastructure to generate new ones.

IX. CONCLUSIONS

We aim to lower the barrier-to-entry to compiler optimization
research. We present CompilerGym, a suite of tools that
removes the significant engineering investment required try out
new ideas on production compiler problems.

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and
Cristina Silvano. A Survey on Compiler Autotuning using Machine
Learning. CSUR, 51(5), 2018.

Hugh Leather and Chris Cummins. Machine Learning in Compilers:
Past, Present and Future. In FDL, 2020.

Mircea Trofin, Yundi Qian, Eugene Brevdo, Zinan Lin, Krzysztof
Choromanski, and David Li. MLGO: a Machine Learning Guided
Compiler Optimizations Framework. arXiv:2101.04808, 2021.

Ameer Haj-Ali, Qijing Huang, William Moses, John Xiang, John
Wawrzynek, Krste Asanovic, and Ion Stoica. Autophase: Juggling hls
phase orderings in random forests with deep reinforcement learning. In
MLSys, 2020.

Ameer Haj-Ali, Nesreen K Ahmed, Ted Willke, Yakun Sophia Shao, Krste
Asanovic, and Ton Stoica. Neurovectorizer: End-to-end vectorization
with deep reinforcement learning. In CGO, 2020.

Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles

Sutton. A Survey of Machine Learning for Big Code and Naturalness.

CSUR, 51(4), 2018.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba.
arXiv:1606.01540, 2016.

Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and
Understanding Bugs in C Compilers. In PLDI, 2011.

Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox,
Ken Goldberg, Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLIib:
Abstractions for Distributed Reinforcement Learning. In /CML, 2018.
William M McKeeman. Differential Testing for Software. Digital
Technical Journal, 10(1), 1998.

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In CGO, 2004.

Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng,
Olivier Temam, and Chengyong Wu. Evaluating Iterative Optimization
Across 1000 Datasets. In PLDI, 2010.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural

Code Comprehension: A Learnable Representation of Code Semantics.

In NeurIPS, 2018.

Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler,
Michael O’Boyle, and Hugh Leather. ProGraML: A Graph-based Program
Representation for Data Flow Analysis and Compiler Optimizations. In
ICML, 2021.

Grigori Fursin, John Cavazos, Michael O’Boyle, and Olivier Temam.
MiDataSets: Creating the conditions for a more realistic evaluation of
iterative optimization. In HiPEAC, 2007.

Anderson Faustino da Silva, Bruno Conde Kind, José Wesley
de Souza Magalhdes, Jerdbnimo Nunes Rocha, Breno Campos Ferreira
Guimaraes, and Fernando Magno Quindo Pereira. AnghaBench: A Suite
with One Million Compilable C Benchmarks for Code-Size Reduction.
In CGO, 2021.

Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.
Krogh. Basic Linear Algebra Subprograms for Fortran Usage. TOMS,
5(3), 1979.

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and
Katsuya Ishii. CHStone: A Benchmark Program Suite for Practical
C-based High-Level Synthesis. In ISCAS, 2008.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
Synthesizing Benchmarks for Predictive Modeling. In CGO, 2017.
Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. MiBench: A Free, Commercially
Representative Embedded Benchmark Suite. In WWC, 2001.

David Bailey, Tim Harris, William Saphir, Rob Van Der Wijngaart, Alex
Woo, and Maurice Yarrow. The NAS Parallel Benchmarks 2.0. Technical
report, Technical Report NAS-95-020, NASA Ames Research Center,
1995.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional Neural
Networks Over Tree Structures for Programming Language Processing.
In AAAI 2016.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. TensorFlow: A System for Large-Scale Machine
Learning. In OSDI, 2016.

OpenAl Gym.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu, Cody Hao Yu,
Ameer Haj-Ali, Yida Wang, Jun Yang, Danyang Zhuo, Koushik Sen,
et al. Ansor: Generating High-Performance Tensor Programs for Deep
Learning. In OSDI, 2020.

Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputation in
Image Processing Pipelines. In PLDI, 2013.

Bram Wasti. loop_tool. https://github.com/facebookresearch/loop_tool,
2021.

Christopher JCH Watkins and Peter Dayan.
learning, 8(3-4), 1992.

Vijay R Konda and John N Tsitsiklis. Actor-Critic Algorithms. In
NeurIPS, 2000.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-
Kelley, Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe.
OpenTuner: An Extensible Framework for Program Autotuning. In PACT,
2014.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin.
Ithemal: Accurate, Portable and Fast Basic Block Throughput Estimation
using Deep Neural Networks. In /CML, 2019.

Benoit Steiner, Chris Cummins, Horace He, and Hugh Leather. Value
Learning for Throughput Optimization of Deep Learning Workloads. In
MLSys, 2021.

Linnan Wang, Rodrigo Fonseca, and Yuandong Tian. Learning Search
Space Partition for Black-Box Optimization using Monte Carlo Tree
Search. In NeurIPS, 2020.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.
Monte-Carlo Tree Search: A New Framework for Game Al. AIIDE, 8,
2008.

Jeremy Rapin and Olivier Teytaud. Nevergrad - A Gradient-Free
Optimization Platform. https://github.com/facebookresearch/nevergrad,
2018.

Ryan Solgi. geneticalgorithm. https://pypi.org/project/geneticalgorithm/,
2020.

Marc G. Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga,
Pablo Samuel Castro, Nicolas Le Roux, Dale Schuurmans, Tor Lattimore,
and Clare Lyle. A Geometric Perspective on Optimal Representations
for Reinforcement Learning. CoRR, abs/1901.11530, 2019.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom
Schaul, Joel Z. Leibo, David Silver, and Koray Kavukcuoglu. Re-
inforcement Learning with Unsupervised Auxiliary Tasks. CoRR,
abs/1611.05397, 2016.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated
Graph Sequence Neural Networks. arXiv:1511.05493, 2015.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. PyTorch: An Imperative Style, High-performance Deep
Learning Library. arXiv:1912.01703, 2019.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu.
Asynchronous Methods for Deep Reinforcement Learning. In ICML,
2016.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo
Hessel, Hado Van Hasselt, and David Silver. Distributed Prioritized
Experience Replay. In ICML, 2018.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad
Mnih, Tom Ward, Yotam Doron, Vlad Firoiu, Tim Harley, Iain Dunning,
et al. IMPALA: Scalable Distributed Deep-RL with Importance Weighted
Actor-Learner Architectures. In ICML, 2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms. arXiv:1707.06347,
2017.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taechoon Kim, and John Schulman.
Quantifying Generalization in Reinforcement Learning. In ICML, 2019.
Kaixin Wang, Bingyi Kang, Jie Shao, and Jiashi Feng. Improving
Generalization in Reinforcement Learning with Mixture Regularization.
In NeurIPS, 2020.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley,
Sebastian Nowozin, Joshua V Dillon, Balaji Lakshminarayanan, and
Jasper Snoek. Can You Trust Your Model’s Uncertainty? Evaluating
Predictive Uncertainty under Dataset Shift. In NeurIPS, 2019.

Q-Learning. Machine

https://github.com/facebookresearch/loop_tool
https://github.com/facebookresearch/nevergrad
https://pypi.org/project/geneticalgorithm/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi.
Learning and Evaluating Contextual Embedding of Source Code. In
ICML, 2020.

Hong Jin Kang, Tegawendé F Bissyandé, and David Lo. Assessing the
Generalizability of code2vec Token Embeddings. In ASE, 2019.

André Felipe Zanella, Anderson Faustino da Silva, and Fernando Magno
Quintdo. YaCoS: a Complete Infrastructure to the Design and Exploration
of Code Optimization Sequences. In SBLP, 2019.

Grigori Fursin. Collective Tuning Initiative: Automating and Accelerating
Development and Optimization of Computing Systems. In GCC
Developers’ Summit, 2009.

Lianmin Zheng, Ruochen Liu, Ameer Haj Ali, Junru Shao, Tiangi Chen,
Joseph E Gonzalez, and Ion Stoica. TenSet: A Large-scale Program
Performance Dataset for Learned Tensor Compilers. In NeurIPS, 2021.
Lars Bjertnes, Jacob O Tgrring, and Anne C Elster. LS-CAT: A Large-
Scale CUDA AutoTuning Dataset. arXiv:2103.14409, 2021.

Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. ComPy-
Learn: A toolbox for exploring machine learning representations for
compilers. In FDL, 2020.

Stefano Cereda, Gianluca Palermo, Paolo Cremonesi, and Stefano Doni.
A Collaborative Filtering Approach for the Automatic Tuning of Compiler
Optimisations. In LCTES, 2020.

Ricardo Nobre, Luiz GA Martins, and Jodo MP Cardoso. A graph-based
iterative compiler pass selection and phase ordering approach. In LCTES,
2016.

Amir Hossein Ashouri, Giovanni Mariani, Gianluca Palermo, Eunjung
Park, John Cavazos, and Cristina Silvano. nCOBAYN: Compiler
Autotuning Framework Using Bayesian Networks. TACO, 13(2), 2016.
Kyriakos Georgiou, Craig Blackmore, Samuel Xavier-de Souza, and
Kerstin Eder. Less is more: Exploiting the standard compiler optimization
levels for better performance and energy consumption. In SCOPES, 2018.
Rahim Mammadli, Ali Jannesari, and Felix Wolf. Static Neural Compiler
Optimization via Deep Reinforcement Learning. In LLVM-HPC, 2020.
Alexander Brauckmann, Andrés Goens, and Jeronimo Castrillon. A
Reinforcement Learning Environment for Polyhedral Optimizations.
arXiv:2104.13732, 2021.

Chris Cummins, Pavlos Petoumenos, Zheng Wang, and Hugh Leather.
End-to-end Deep Learning of Optimization Heuristics. In PACT, 2017.
Rahim Mammadli, Marija Selakovic, Felix Wolf, and Michael Pradel.
Learning to Make Compiler Optimizations More Effective. In MAPS,
2021.

	Introduction
	System Architecture
	Frontend API and Tools
	OpenAI Gym Environments
	API Extensions for Compiler Optimization
	Benchmark Datasets
	State Serialization
	Validating States
	Validating Semantics
	Lazy and batched operations
	Lightweight deep copy operator

	Customizing Environment Behavior
	Command Line Tools
	Web Service and CompilerGym Explorer
	State Transition Dataset

	Backend Runtime and Interface
	The CompilationSession Interface
	Compiler Service Runtime

	Environments
	LLVM Phase Ordering
	GCC Flag Tuning
	CUDA Loop Nest Code Generation

	Implementation
	Evaluation
	Computational Efficiency
	Computational Efficiency of Observation Spaces
	Autotuning LLVM Phase Ordering
	Autotuning GCC Command Line Flags
	Autotuning CUDA Loop Nests
	Learning a Cost Model using the State Transition Dataset
	Reinforcement Learning for LLVM Phase Ordering
	Effect of Training Set on RL
	Effect of Program Representation on Learning

	Related Work
	Conclusions
	References

