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Abstract. We present a method for the generation of Midi files of piano
music. The method models the right and left hands using two networks,
where the left hand is conditioned on the right hand. This way, the
melody is generated before the harmony. The Midi is represented in a
way that is invariant to the musical scale, and the melody is represented,
for the purpose of conditioning the harmony, by the content of each bar,
viewed as a chord. Finally, notes are added randomly, based on this chord
representation, in order to enrich the generated audio. Our experiments
show a significant improvement over the state of the art for training on
such datasets, and demonstrate the contribution of each of the novel
components.

Keywords: Music Generation · Midi processing · Recurrent Neural Net-
works

1 Introduction

We present a new method of symbolic music generation called A-Muze-Net. The
method employs relatively low-capacity models, such as LSTM networks, and is
trained on a relatively small dataset. In order to generalize well despite the lack
of training data, it employs various techniques that are inspired by the common
practices of human composers.

First, the harmony is composed after the melody is determined, and is con-
ditioned on the melody. Second, the notes are represented in a way that is scale
invariant, by considering the gap in pitch between the notes. Third, instead of
separating notes to pitch and length, a single token captures both.

A crucial component of the method is that the melody is encoded by consid-
ering the notes at each generated bar and identifying the closest chord to this
set of notes. Finally, a heuristic that employs the same chord-view adds random
notes in order to make the generated audio more complete.

We demonstrate the advantage of our method over existing methods using a
collection of 243 Midi files of Bach music. In addition, an ablation study demon-
strates the value of each of the above mentioned contributions.
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2 Related Work

Music generation methods can be divided into a few categories based on the gen-
eration domain. Many of the recent works, generate raw audio. WaveNet [14] is
a convolutional neural network which inputs are raw audio files, and it generates
new raw audio files. Since each raw audio timestamp is represented as a 16-
bit integer, quantization is applied to reduce the output space [16]. A followup
research by Manzelli et al. [12] employs the same quantization method but em-
ploys a biaxial LSTM model [10] which is built as two different LSTM models,
one for the time-axis and one for the note-axis. The note-axis LSTM takes two
inputs, the previous input as well as the final output from the time-axis LSTM
model. MP3net [2] generates new mp3 files given mp3 files by using a CNN,
their representation is based on the mp3 compression. The most evolved out of
these methods is Jukebox [4], which compresses the raw audio data to discrete
representation and apply high capacity transformer networks [18] to generate
songs from many music genres, such as rock and jazz. It is trained on massive
amounts of recorded data.

Many of the classical music composition approaches generate music scores [21,15,20],
and this line of work has continued into the era of deep learning. MidiNet [21]
employs a GAN in which both the generator and the discriminator are CNN
models, FlowComposer [15] which uses Constrained Markov Models [17]. The
Part-Invariant model [20] is a single RNN layer model that generates a compo-
sition based on an initial part.

Our model generates Midi notes given a prompt that it continues. Recent
works that perform the same task include MuseGan [6] by Dong et al., which
generates novel multi-track Midi files using a GAN model [7] trained on a large
scale dataset. A multi-track Midi file contains a separate track for multiple in-
struments, such as guitar, piano, and drums. It is represented as a Multi-Track
Piano-Roll. A single Piano-Roll is illustrated in Fig. 1, which is a binary-valued
matrix where each row index represent a pitch value and each column index rep-
resent a time frame. Dong et al. have later on used a convolutional GAN to
generate polyphonic music [5]. Binary neurons are used to generate the binary
piano-roll representation, which was found to be more successful than using regu-
lar Hard Threshold (HT) or Bernoulli Sampling (BS) as was done in their earlier
work.

Boulanger-Lewandowski et al. [1] also used the piano-roll representation but
employed the Restricted Boltzmann Machine (RBM) on top of the RNN model
in order to generate high-dimensional sequence. The dual-track generator of
Lyu et al. [11] generates piano classical music. Similar to our method, it first
generates the right-hand part and then the left-hand. In their model, the right-
hand is generated by an LSTM, and the left-hand is subsequently generated
using a Multi Layer Perceptron. Our left-hand generator is considerably more
evolved as it’s an LSTM that considers the chord embedding of the right-hand.
In addition, while Lyu et al. represent the data as Piano-Rolls, we employ the
normalized Midi representation, similar to BachProp [3].
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Fig. 1. Midi representation of prefug3 left-hand track, taken from Complete Bach Midi
Index Dataset and opened with Logic Pro software

DeepJ [13] generates specific music styles: Baroque, Classical and Romantic.
Similar to MuseGAN, a piano roll is employed as the underlying Midi represen-
tation. They employ a biaxial LSTM model [10], similar to the approach of [12].
Two LSTM models are used, one for the notes pitches and one for the duration
of each such note. In order to pass the music genre information an embedding
layer is used.

Music Transformer [9] is a transformer model with relative attention
that generates symbolic music based on multi-track piano-roll representation
of Bach’s Chorales dataset. For the Piano-e-Competition dataset they have used
the Midi events as their domain. BachProp is another LSTM model which
is trained on given Midi files and composes new compositions. The normal-
ized Midi representation it employs transforms the Midi into a sequence of
notes, each with an associated length. The representation is defined as follows
note[n] = (T [n], P [n], dT [n]), where T [n] is the duration of the note, P [n] is the
pitch and dT [n] is the time interval between the current note and the previous
one. Their implementation employs three LSTM models, one per each input.
DeepBach [8] is a deep learning model that uses the Bach’s Chorales dataset,
and generates new Chorales like Midi files. They are using only the Chorales,
separating these to four different voices, where each voice has a single note at a
time. Wu et al. [19] employed a Hierarchical-RNN (HRNN) to generate symbolic
music. This was done using a slightly different Midi representation, in which the
input domain is the Midi events note-on and note-off, and the time interval since
the last event, like [9]. Their HRNN is built from three conditioned RNN models
based on the bars, beat and notes.

Our representation is slightly different and employs notes and duration only.
Furthermore, we employ a scale-invariant representation, see Sec. 3. In addition,
we employ one LSTM for each hand, which are trained subsequently, and do not
split the LSTM networks by the type of information of the note tuple.

3 Method

We describe the way the midi file is represented, the model we propose, and its
training.
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Fig. 2. All allowed notes lengths, First line from left to right: 1/32, 1/16, 1/8, 3/16
and 1/4. Second line from left to right: 3/8, 1/2, 3/4 and 1. The note images were
obtained from https://www.freepik.com/.

3.1 Midi representation

Given a Midi file, we apply a parser that outputs the note’s pitch and length
values for each note in the Midi file for each track. The obtained representation
follows closely the music notes representation. The output is a string, in which
the alphabet is a sequence of tokens. A sample token is ‘5-X-1/8’, which means
note ‘X’ at the fifth octave and length 1/8.

Each token is converted to an integer in the following way. First, we quantize
the note’s length into one of the following common values: 1/32, 1/16, 1/8, 3/16,
1/4, 3/8, 1/2, 3/4 and 1, as illustrated in Fig. 2. If, for example, the note’s length
is 11/16 which is rare, then we assign it to be 3/4.

The note integer representation which the networks employ is the product
space of the nine length values and the 128 possible values of a note’s midi-num1.

The notes themselves are not taken as absolute notes, such as C (do), D
(re), etc. Instead, we represent the Midi data in a way that is invariant to the
musical scale used. A Midi file contains the scale information, and we compute
each note’s interval in the scale from the first note of the scale.

Two separate sequences are then generated. Specifically, for piano music one
sequence is generated for the right-hand and one for the left. In some of the Midi
files of the dataset, the separation is not provided. To overcome this, the average
pitch for each track is calculated, and the track which has the lowest average
pitch is chosen to be the left-hand track, and the maximal average pitch track is
chosen to be the right-hand track. This stems from the position of the left hand
on the keyboard relatively to the right hand, on the side of the lower notes.

Our representation assumes that there is no more than one note played simul-
taneously for each track. In case that the input contains multiple simultaneous
notes, the right-hand selects the note with the highest pitch, and the left-hand
the one with the lowest. Thus, heuristic relies on the observation that in the

1 The Midi-num table assigns for each piano keyboard note a number, see https:

//computermusicresource.com/midikeys.html

https://www.freepik.com/
https://computermusicresource.com/midikeys.html
https://computermusicresource.com/midikeys.html
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melody (right-hand) the highest note is more descriptive than the other ones,
and vice versa for the harmony (left-hand).

3.2 Models

Our method relies on the common practice to compose the melody first and the
harmony afterwards2. Therefore, the Right Hand LSTM Model is applied
first. Subsequently, the Left Hand LSTM Model is applied conditioned on
the output of the Right Hand LSTM Model.

The architecture of the Right Hand LSTM Model is depicted in Fig. 3.
The embedding layer converts each of the possible 1161 integer values of the
music representation into an embedding vector in R128. This is followed by two
LSTM layers with a hidden size of the same dimensionality (128) and there are
two layers. This is followed by a dropout layer with a factor of 0.5. Finally, a
linear layer projects the LSTM output to a vector of length 1161 that produces
the pseudo-probabilities (using softmax) of the next element in the sequence.

Fig. 3. Right Hand LSTM Model Architecture

In our method, the harmony generator network is conditioned on a new type
of signal we propose, which is the chord analysis of the melody.

The architecture of the Left Hand LSTM Model is depicted at Fig. 4.
It is similar to the Right Hand LSTM Model. The main difference is that
a second embedding layer is used. This added embedding, termed the Chord
Embedding Layer captures the chord that is being played by the right-hand
on the current bar. The number of items this embedding encodes is 253 and
the embedding dimension is 128. Each of the 253 options encoded a specific
combination of notes in the current bar played by the Right Hand Side. Formally,
the input of the LSTM after the embedding is:

xemb = Enotes(x) + Echords(f(R)) (1)

2 See, for example, https://www.artofcomposing.com/

how-to-compose-music-part-3-melody-or-harmony-first

https://www.artofcomposing.com/how-to-compose-music-part-3-melody-or-harmony-first
https://www.artofcomposing.com/how-to-compose-music-part-3-melody-or-harmony-first
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where xemb is the LSTM input, x is the current left-hand note, Enotes is the
Notes Embedding Layer, Echords is the Chords Embedding Layer, R is
the current right-hand bar’s notes and f is a function that maps a list of notes
to their correspondent chord.

For this purpose, we employ a chords hash table that maps the chord’s name
to its right form, for example the chord C is mapped to notes ”C”,”E”,”G”.
Also we gather groups of 7-chords, 6-chords, 13-chords, 9-chords, diminished
chords and augmented chords, by adding/changing the original chord values.
For example the chord Cmaj7 is constructed by ”C”, ”E”, ”G”, ”B”, and
Ddim is constructed by ”D”, ”F”, ”G#”. We apply this method to all possible
chords and finally obtain the 253 chords mentioned above.

For recovering the chord associated with a specific bar, we gather all of the
notes in that bar, and each chord is scored based on how many notes from a
given bar belong to this chord. For example, if the notes are ”C”, ”E” and
”G” then chord Cmaj7 will get a score of 3 and chord Am will get a score of 2,
However chord C will get a score of 13 as these notes are the exact notes within
the C chord, and it would be picked up. In case of a tie the more common chord
would be chosen, i.e., D would be picked up rather than D7.

Fig. 4. Left Hand LSTM Model Architecture

3.3 A-Muze-Net Model Training

The model training process is depicted in Fig. 5. The given dataset is constructed
from multiple Midi files, and we feed one Midi file at a time to the A-Muze-Net
Model. The Midi file goes through the parsing methods, and is then divided into
batches (the batches do not mix between multiple files).

Prediction - The prediction method inputs are:

1. A list of initial Melody notes (right-hand)
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Fig. 5. A-Muze-Net Model Architecture

2. A list of initial Harmony notes (left-hand)
3. The number of notes to generate

At start the hidden layers of the two LSTM models are initialized and are not
being reset throughout the generation part, in order to keep the composition
context. The initial melody sequence is fed to the already trained melody LSTM
model while using teacher forcing to preserve the specified initial melody. This
will set the hidden layer to preserve the initial melody context. Then, the last
output from the initial feeding is essentially the first note prediction by the
LSTM model. As the output is a probability for each note, only the top-k values
are considered and a random value is chosen amongst them, after filtering the
”break” notes. Then the chosen note is the next input of the melody LSTM
model and again chooses the next predicted note from the next top-k ones. This
process is finished when the given number of notes to generate is reached.

After this process is finished the chords for each melody bar are calculated
and preserved as a sequence for chord per bar.

Then, the Harmony LSTM (Left-hand) is trained the same way as the other
one, but the current right-hand bar’s chord is passed through to the Chord Em-
bedding Layer while the notes are passed through to the Note Embedding
Layer. The initial sequence is also done in this method with teacher forcing,
while the rest of the sequence up until the number of notes to generate is
done without any teacher forcing.

After both the right-hand track and the left-hand track are generated, we
apply a heuristic to add simultaneous notes. For each note in the harmony which
is inside the current composition’s scale, there is a 50% chance that it’ll be
accompanied with its perfect-fifth interval note and another 50% chance that
it’ll be also accompanied by its third interval note which is in the scale.

For example if the current scale is C and the current harmony note is E then
in 50% chance the note B (fifth) would be added simultaneously, and another
50% that G (third - to form Em essentially) would be added.
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For out of scale notes the method is different. Instead of adding their fifth or
third interval, we add this note again but from a different octave.

For example, if in a composition of scale C the current note is 4 − Bb, for
which Bb is at the fourth octave, then there is a 50% chance that 5 −Bb would
be added as well.

For harmony, we apply a similar heuristic. However, instead of a 50% chance
of generating simultaneous notes, there is a 10% to generate them since the
harmony often generates simultaneous notes to form chords.

4 Experiments

For our experiments, we employ the Complete Bach Midi Index dataset3.
It contains approximately 243 Midi files which are divided into several different
genre topics, such as chorales, cantatas, fugues and more. The Midi files have
different scales and different time-signatures. Most of these Midi files contain two
tracks, one for the right-hand (melody) and one for the left-hand (harmony).

As baselines we employ two methods: MuseGan [6] and to Lyu et al. re-
search [11]. Since our model is piano-based, we compare our results with the
MuseGan piano track.

In addition to comparing with the baselines, we also compare with two ab-
lation variants of our model.

Ablation 1 - no conditioning of the harmony on the melody - In this experi-
ment we trained the right-hand (melody) LSTM model and left-hand (harmony)
LSTM model separately, meaning that we canceled the Chords Embedding
Layer from the left-hand LSTM model. This way, both models are independent
on one another. After the training was done we generated the Midi files.

Ablation 2 - note embedding instead of chord embedding - In this ablation, we
maintain the conditioning of the harmony on the melody, but instead of the
Chords Embedding Layer we simply take the summation of all of the notes’
embeddings of the right-hand bar and add them to the current left-hand note’s
embedding. In other words, we employ the following embedding

xemb = Enotes(x) +
∑
n∈R

Enotes(n) (2)

Where x is the current left-track note, xemb is the embedding output and the
input to the LSTM layer, Enotes is the Notes Embedding Layer, R is the list
of the corespondent right-hand bar notes.

Ablation 3 - without the notes addition method - In this ablation, we remove
the part that adds random harmonic notes. In other words, the results are the
output of the LSTM models without any further post-processing steps

3 http://www.bachcentral.com/midiindexcomplete.html

http://www.bachcentral.com/midiindexcomplete.html
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(a) (b)

Fig. 6. (a) Train Perplexity For the Right-Hand LSTM Model and for the Left-Hand
LSTM Model. (b) Train Perplexity with Ablation Studies.

The training perplexity of the full method is shown in Fig. 6(a). As can be
seen, while the harmony and melody seemingly converged kind of the same way,
still the melody converged faster than the harmony.

The training perplexity of the full method compared to the ablation studies
training perplexity is shown in Fig. 6(b). One can observe that ABL1-LH, which
is the Left-Hand LSTM model of ablation study 1 is slightly above our Right-
Hand LSTM model and below our Left-Hand LSTM model. This is expected
since the ABL1-LH is not dependant on the Right-Hand LSTM model, and
so its perplexity should be the same as the Right-Hand LSTM model. As for
ABL2-LH, the obtained loss is considerably above our Left-Hand LSTM model
and it takes it longer to converge. This emphasizes the importance of the Chords
Embedding Layer.

4.1 Results

Following previous work, we consider the following quantitative metrics:

1. QN (Qualified Note) - The percentage of notes that were generated with
a valid length. For example a note with length lower than 1/32 is considered
faulty.

2. UPC (Unique Pitch Class) - The average amount of different pitches per
bar.

3. TD (Tonal Distance) - A number that specifies how much the two tracks
are aligned chromatically, lower numbers are better.

4. OOS (Out Of Scale) - The percentage of generated notes that were out
of scale.

Tab. 1 presents the results for our algorithm in comparison to the baselines.
As can be seen, our model’s QN achieves 100%, which means that all notes have
a valid length size. This is because we maintain an allowed lengths list that each
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generated note has one of these lengths. This way, all of the generated notes
are of qualified note lengths, and our method does not get fragments of notes,
e.g. notes with length less than 1/32. Also we can see that our model achieves
the closest UPC value to the True Music UPC value. For the TD, where lower
values are better, we achieved a lower TD value than MuseGan, which means
that our tracks are more coherent to each other.

Tab. 1 also depicts the results of the ablation study. Evidently, the UPC
values for the ablation methods are lower, which indicates that the tracks are
not aligned and do not complete one another. The second ablation study achieved
the lowest score which might indicate that the addition of many right-hand notes
together with the current left-hand one maybe interfere with the learning method
of the model, causing it to generate much fewer notes. We can also observe that
the TD values are much higher, and as expected the TD value of the first ablation
study is higher than the TD value of the second one, which means that the model
with no conditioning at all achieved a worse coherence score.

Our model has a higher OOS percentage in comparison to our ablation stud-
ies, which is consistent with the model’s higher UPC value. In a music scale there
are only seven notes which are inside the scale, and the five others are considered
as out of scale. Since we have UPC value which is higher than seven, we have a
high percentage of out of scale notes. Almost all music compositions uses notes
from out of scale to generate unique sounds, as is evidenced from the high UPC
value of True Music baseline. For example if a composition at scale C uses the
D chord, it necessarily uses the F# note which is out of scale. Interestingly,
the second ablation study achieved 20% OOS although it uses less than seven
notes, which reveals a mismatch with the notes being used at the harmony side,
pointing to the significance of using the Chord Embedding Layer.

Experiment QN UPC TD OOS

True Music 98.70% 9.83 - -
Lyu et al. Pianoroll CNN [11] 91.20% 2.35 - -
Lyu et al. Embedding Atten-LSTM [11] 90% 7.79 - -
MuseGan 64% 4.57 0.94 -

A-muse-Net - Ablation1 100% 7.30 0.95 18%
A-muse-Net - Ablation2 100% 6.80 0.90 20%
A-muse-Net - Ablation3 100% 7.70 0.90 18%
A-muse-Net 100% 9.54 0.86 29%

Table 1. Quantitative Comparison to outher methods.
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4.2 User Study

We asked 17 people to rate the A-Muze-Net generated songs with scores from
1-5 and to state their musical background level, as in MuseGan [6] and in Lyu
et al. [11]. Each individual listened to ten different clips, which are of length
of four-bars, as also was done in the MuseGan research. Tab. 2 presents their
average satisfaction out of our generated songs on a scale from one to five.

As can be seen, our method outperforms the baseline methods. Interestingly,
while MuseGAN is second by the user rating, it is far lower on the quantitative
results.

Experiment US

True Music 3.80
Lyu et al. Pianoroll CNN [11] 2.40
Lyu et al. Embedding Atten-LSTM [11] 2.70
MuseGan 3.16
A-muse-Net 3.28

Table 2. User study results.

5 Conclusions

While high-capacity models have now been shown to be able to model music
based on very large corpora [4], such models remain computationally inaccessible
to most research labs and amassing such data if a copy free way is next to
impossible. Furthermore, while such models teach us about AI and large-scale
pattern extraction, there is little advancement with regard to the foundations of
music making.

In this work, we employ a well established machine learning architecture and
try to answer fundamental questions about music representation: (1) How to link
the melody and the harmony effectively? (2) How to represent symbolic music
in an accessible way? (3) How to capture the transient essence of the melody?
(4) How to enrich the generated music?

Our answers to each of these questions have led to an improvement over the
options that have been used in the previous work. Collectively, our method pro-
vides a sizable improvement in all metrics in comparison to the existing methods.
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