

Abstract — Solar-powered aircraft can fly perpetually if they

are able to fly a 24-hour mission in which they collect more
energy than they expend. The energy collected is determined by
the orientation and length of time that the aircraft’s solar panels
are exposed to the sun. The energy spent is determined by flight
maneuvers such as changes in airspeed, altitude and heading.
Therefore, a perpetual energy balance can be maintained when
the aircraft flies along a trajectory that maximizes solar
exposure and minimizes flight maneuvers. This paper presents
a faster than real-time dynamic programming strategy that
computes the optimal trajectory that contains a loitering aircraft
inside a cylindrical volume placed about a reference waypoint.

Keywords—solar powered aircraft, trajectory planning,
perpetual endurance, geostationary station keeping, greedy path
planning with buffering, multi-path Dijkstra.

I. INTRODUCTION

Starting in 1994, NASA's ERAST program “was a
multiyear effort to develop the aeronautical and sensor
technologies for a new family of remotely piloted unmanned
aircraft intended for upper atmospheric science missions.
Designed to cruise at slow speeds for long durations at
altitudes of 60,000 to 100,000 ft, such aircraft could be used to
collect, identify, and monitor environmental data to assess
global climate change and assist in weather monitoring and
forecasting. They also could serve as airborne
telecommunications platforms, performing functions similar
to communications satellites at a fraction of the cost.” [7]

AeroVironment's Pathfinder was a notable solar-powered
high-altitude long endurance (SPHALE) unmanned air vehicle
(UAV) that predated ERAST. Pathfinder demonstrated the
promise of this technology, but it was unable to overcome the
propulsion system’s limitations at that time [2]. Under its
auspices, ERAST demonstrated new SPHALE airframes. The
lesson learned was that the combined energy storage and
propulsion system are the Achilles heel in the SPHALE UAV
technology. More recently, Airbus’ Zephyr S High Altitude
Platform Station (HAPS) solar-powered aircraft just flew for
nearly 26 days straight. The Zephyr T is under development
as of this writing, [1].

The HAPS/SPHALE concept is namely a low weight and
high aspect ratio airframe with solar panels on the upper
surfaces. The panels collect solar energy during the daytime.
This energy is stored in batteries, which power the avionics
and propulsion system (electric motors with propellers). The
lack of solar energy between sunset and sunrise means that
daytime collection net of consumption must provide enough
charge to make it through the night. Aircraft that can close a

daily energy cycle without a deficit are known as perpetual
endurance vehicles.

The magnitude of solar energy available varies with time
of year, latitude, and solar elevation angle (which is a function
of time of day). At a latitude of 35 degrees during the winter
solstice, there are only about 10 hours of sunlight, of which the
periods near sunrise and sunset are too feeble to provide any
useful irradiance.

In practical terms, the aircraft is required to autonomously
program a trajectory that maximizes energy storage at the end
of the day. This in turn means finding the orientation that
maximizes exposure to the sun, while consuming the least
power in doing so. For aircraft used as a communications
platform, this imposes the constraint of remaining within a
geostationary containment volume, as shown in Fig. 1. In
summary, a practical optimal trajectory must have the
following characteristics:

• account for radial station keeping constraints;
• account for vertical station keeping constraints;
• store excess energy as gravitational energy; and,
• be computable in-flight.

Figure 1. Containment area.

II. RECENT DEVELOPMENTS

Autonomous navigation algorithms have mostly focused
on ground vehicles, e.g. [12]. These compute a trajectory
between desired discrete endpoints, with the trajectory itself
being the objective. There is no consideration of the energetic
cost of the displacement. The literature lacks a dedicated set
of solutions for flight vehicles.

In their work on energy optimal flight path planning, Klesh
& Kabamba formulate the problem of perpetual loitering,
propose a solution for the case of level flight [11], and derive
the necessary conditions for energy optimal flight [8].

Trajectory Optimization of Solar-Powered
High-Altitude Long Endurance Aircraft
Jack Marriott, Birce Tezel, Zhang Liu and Nicolas E. Stier-Moses

Facebook Connectivity
Facebook, Inc.

Los Angeles, CA, USA
marriott@fb.com

Martin et al. pose the trajectory optimization problem as a
nonlinear model predictive control problem (MPC), [4].
Solving for a 24-hour flight period takes about 10 hours, when
using 10 second time steps. Their solution identifies several
repeatable maneuvers that depend on solar elevation and time
of day. They suggest that these maneuvers could be
parameterized into a state machine.

Bolandhemmat et al. compute a solution to the optimal
trajectory problem using both interior point (gradient based)
and nonlinear simplex optimization, [3]. These solutions
“provide no formal guarantees on convergence to an optimal
(or even feasible) solution. Additionally, the computational
burden and associated power draw makes it impractical to
perform the trajectory optimization using an onboard
computer.” The authors ameliorate this shortcoming by using
their computed optimal trajectory to train an adaptive neuro-
fuzzy inference system which can then plan the trajectory in
real-time.

Recent work has focused on optimal control methods to
compute trajectories. Though these methods produce good
results, execution time is too slow to be useful in-flight. A
preferred solution method would be one that can both solve
and plan the trajectory in real-time.

III. ORIGINAL CONTRIBUTIONS
This paper makes three original contributions. First, it

solves the optimal trajectory problem as a search problem
using a dynamic programming (DP) approach. Second, it
develops a solution method that runs much faster than
published solutions. These developments are unique
contributions that together can enable autonomous perpetual
flight. Finally, we enumerate the repeatable trajectory
behaviors observed in our results and assemble them into a
state machine.

IV. TRAJECTORY OPTIMIZATION
The trajectory optimization problem for the solar powered

aircraft in station keeping mode is to maximize the total energy
stored in the aircraft, subject to constraints that capture aircraft
dynamics, station keeping, and input command limits.
Mathematically, we can formulate this as a non-convex
constrained optimization problem:

 max 𝐸% + 𝜅𝐸(
s.t. �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))

𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0,
 (1)

where 𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡) are time-domain signals for the states
of the system, the inputs to the system, and the external
disturbances, respectively. The total system energy is stored
in the batteries, 𝐸%, and as potential 𝐸(energy. Battery energy
is typically referred to as the state-of-charge. The parameter 𝜅
is a weighting constant that amplifies the potential energy
during the daytime.

The state vector 𝑥 includes the aircraft’s position, velocity,
attitude, and battery state-of-charge. The input vector 𝑢
contains the optimization variables, including the yaw rate
command, Rcmd, the vertical velocity (altitude rate) command,
Vv,cmd, and the airspeed command. The disturbance vector 𝑤
can include wind, gust, turbulence, sensor noise, and modeling

uncertainties. The inequality constraint 𝑔(∙) ≤ 0 is used to
capture the input command upper and lower limits and the
station-keeping requirement. Section V provides details on the
difference equations �̇�(𝑡) = 𝑓(∙) that capture the aircraft
kinematics, dynamics, and solar/battery/propulsion energy
dynamics. Section VI.E presents the discretized version of (1)
that our solution procedure uses.

V. SYSTEM MODEL

Aircraft are designed to display specified dynamic
responses to a given set of control inputs. A closed loop
autopilot responds to these inputs, maintains the airframe
stable, and guarantees a response akin to that of a first order
differential equation. It is thus possible to design a kinematic
fixed wing aircraft simulation that captures this high-level
behavior with a minimum number of states and without the
requisite small step size, ΔT. Henceforth, the use of a
superscript i indicates the time-period during which the
referenced variable is updated.

A. Input Commands
An airframe is controlled through a combination of

longitudinal, lateral/directional, and vertical input commands.
Collectively, our inputs are equivalent airspeed, Ve; yaw rate,
Rcmd; and vertical velocity, Vv,cmd, respectively. We decided to
consider a constant Ve. The motivation for this decision was
twofold: first, this airframe operates in a narrow range of
airspeeds (i.e., +/- 1 m/s); second, there are analytical solutions
to different speed objectives. E.g., best climb speed,
endurance speed, and best descent rate are all known and can
be computed online.

B. Autopilot
The updated altitude, ℎ, and heading, 𝜓, are respectively

 ℎ< = ℎ<=> + ∆ℎ<∆𝑇, and (2)

 𝜓< = 𝜓<=> + ∆𝜓<∆𝑇. (3)

The change in altitude per time step, Δh, and change in
heading per time step, Δ𝜓, are given by

 ∆ℎ< = 	𝑘D𝑉F,GHI< , and (4)

 ∆𝜓< = 	𝑘J𝑅GHI< . (5)

The terms 𝑘D and 𝑘J are non-dimensional factors that account
for the dynamics of the vertical and directional response,
respectively. For example, in the presence of a step
command, a stable first order dynamic system representative
of the altitude response rises 33.6% in a 10 second time step.

Though Ve is constant in this implementation, the true
airspeed, Va, does vary with changing altitude. From [13], we
know that

 𝑉L< = 𝑉M<N𝜌P 𝜌<⁄ . (6)

The air density, 𝜌, varies with altitude as described in [17], but
is constant at sea level, 𝜌P.

C. Kinematics
The inertial flight path and bank angles, described in [15],

are respectively given by

 sin 𝛾< = ∆ℎ< 𝑉L<⁄ , and (7)

 tan𝜙< = ∆𝜓<𝑉L< 𝑔⁄ . (8)

When 𝜙 = 0, the North and East positions on the local
horizontal plane (the computed flat Earth positions), pn and pe,
respectively, are computed as follows

 V𝑝M
<

𝑝X<
Y = V𝑝M

<=>

𝑝X<=>
Y + 𝑉L<Δ𝑇 V

sin𝜓<

cos𝜓<Y. (9)

When 𝜙 ≠ 0, the trajectory is curved with radius 	
𝜌G and instantaneous center of rotation at position Pc. North
and East positions are computed as follows

 𝜌G< = (𝑉L<)] tan𝜙<⁄ , (10a)

 𝑃G< = V𝑝M
<=>

𝑝X<=>
Y + 𝜌G< V

cos𝜓<

−sin𝜓<Y, (10b)

V𝑝M
<

𝑝X<
Y = 𝑃G< − 𝜌G< V

cos Δ𝜓< sin Δ𝜓<

−sin Δ𝜓< cos Δ𝜓<Y V
cos𝜓<

−sin𝜓<Y. (10c)

D. Navigation
Navigation consists of estimating geodetic latitude, φ, and

longitude, λ, from the computed flat Earth positions on a
World Geodetic System 1984 reference. These are used to
estimate the solar angles. Navigation in this implementation
was performed using Python’s module Pyproj [5].

E. Aerodynamics
The sum of perpendicular forces [13] about the center of

gravity for an aircraft in translational flight with center line
thrust is given by

 𝐿 cos𝜙⁄ −𝑊 cos 𝛾 = 𝑚𝑉L] (𝑟M + ℎ)⁄ , (11)

where 𝑊 is the aircraft weight, 𝑚 is its mass, and 𝑟M is Earth’s
local radius. Lift can be solved directly from (11), and
nondimensionalized as follows

 𝑐e = 𝐿 (𝑞g𝑆)⁄ , 𝑐i = 𝐷 (𝑞g𝑆)⁄ , (12a,b)

 𝑞g = 𝜌𝑉L] 2⁄ , (13)

where 𝑞g is the dynamic pressure, and S is the reference wing
area.

With cL known, the angle of attack is computed in a
reverse look-up from the 𝑐e(𝛼, ℎ) curve, Fig. 2. With 𝛼
known, cD is computed in a forward look-up from the 𝑐i(𝛼, ℎ)
curve, Fig. 3, and the drag force from (12b). Thrust can be
computed directly from the sum of parallel forces [13] about
the center of gravity for an aircraft in translational flight with
center line thrust, as given by

 𝑇 − 𝐷 −𝑊 sin 𝛾 = 𝑚 (𝑉L< − 𝑉L<=>) ∆𝑇⁄ . (14)

Knowledge of α also allows computing the pitch angle, θ,
as in

 𝜃 = 𝛼 + 𝛾. (15)

Figure 2. Lift curve.

Figure 3. Drag curve.

F. Solar Model
The solar model consists of three parts: irradiance, solar

vector, and solar collection. The irradiance is the average
power per unit area received from the sun on a specific day,
altitude, and solar elevation angle. It is described in [14] as

 𝐼 = 	 𝐼P o1 + 0.034 cos
]sXt
uvw

x 𝑓(ℎ, 𝜀z), (16)

where nd is the Julian day index, and I0 is the solar constant
and 𝑓(ℎ, 𝜀z) is an atmospheric absorption factor described in
[9]. The solar angles, 𝜀z and 𝜁z, [10], represent solar elevation
and azimuth, respectively. Solar position computations were
performed using Python’s module Pysolar [6].

The aircraft is fitted with k solar panels, each with area
As,k, and position [𝑥} 𝑦} 𝑧}] in the vehicle’s forward-right
wing-down coordinate system. The total solar panel area
projected perpendicularly at the sun, Ap, is given by

 𝐴(= ∑ 𝐴z,} �
− cos 𝜁z cos 𝜀z
− sin 𝜁z cos 𝜀z

sin 𝜀z
�

�

𝑅%z �
𝑥}
𝑦}
𝑧}
�} , (17a)

 𝑅%z = 𝑅J𝑅�𝑅�, (17b)

 𝑅J = �
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

�, (17c)

 𝑅� = �
cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
�, (17d)

 𝑅� = �
1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

�. (17e)

G. Power and Propulsion
Power is the rate of energy, and solar energy is the only

source harnessed by the aircraft. Input power, Pin, power
output from motors and accessories, Pout, and net power, Pnet,
are given by

 𝑃<X = 𝜂z𝐼𝐴(, (18a)

 𝑃��� = 𝑃LGG +
>
]
𝑇𝑉L �o

�
��t�g

+ 1x
>]⁄

+ 1�, (18b)

 𝑃XM� = 𝑃<X − 𝑃���, (18c)

where 𝜂z is the solar panel efficiency, Pacc is the accessory
power (e.g., avionics), N is the number of rotors, and Ad is the
propeller disk area. The second term of the right-hand side of
(18b) is the efficiency-adjusted propulsive power required to
deliver the aerodynamic thrust.

H. Energy
Electrical energy is stored in and drawn from the

rechargeable batteries, where charging and discharging occurs
at different efficiencies. The energy stored in all batteries, Eb,
is

 𝐸%< = 𝐸%<=> + 𝜂%𝑃XM�< Δ𝑇, (19a)

 𝜂% = � 𝜂<X 𝑖𝑓	𝑃XM�< 	≥ 0
𝜂��� 𝑖𝑓	𝑃XM�< 	< 0

, (19b)

where 𝜂% is either the charging, 𝜂<X, or discharging, 𝜂���,
efficiency, depending on mode.

The aircraft can also store gravitational potential energy in
the form of higher altitude. There is a tradeoff with climbing,
in that it requires higher thrust, which means that higher
power is drawn from the batteries. Therefore, an increase in
gravitational energy is only an increase in total energy if the
aircraft can climb when 𝑃XM� > 0. For purposes of energy
optimization, we only account for the gravitational energy
above the altitude floor ℎ��:

 𝐸(< = (ℎ< − ℎ��)𝑚𝑔. (20)

I. Winds
As was done in [4], the effect of winds was excluded to

reduce simulation complexity without loss of generality.
Significant winds aloft would invalidate (7) – (10). Winds
could be accounted for with the following modifications: track
course instead of heading, compute heading from wind
triangle, use air-mass-referenced flight path angle. A
derivation of these changes is presented in [3]. The resulting

equations are similar to those stated herein, with little impact
in computation time.

VI. GREEDY PATH PLANNING WITH BUFFERING
This section outlines an efficient greedy algorithm for

finding a trajectory throughout the day for the solar-powered
aircraft to have enough exposure to the sun such that the
stored energy is sufficient to keep the aircraft in the air.

A. Assumptions, Initial Conditions and Restrictions
We make some simplifying assumptions on the trajectory

planning:
• time is discretized into Δ𝑇 intervals;
• equivalent airspeed is constant;
• winds are not considered (discussed in Section V.I);
• the controls are limited to changes in heading angle

and altitude.

Initial conditions that should be specified:
• stored battery energy;
• latitude, longitude and altitude;
• east and north offsets;
• date and time of the flight;
• maximum energy that the battery can store.

The aircraft must remain within:
• three kilometers radius from the center,
• a lower and upper altitude limits.

Implementation details:
• Where memory states are used, e.g. ℎ<=>, these are

initialized per the initial conditions.

• The upper limit of ∆ℎ< is the lower of 3 degrees γ and
0.8 m/s. The lower limit is symmetric, but further
restricted to be higher than the value which results in
negative thrust.

• Δ𝜓 is limited to not exceed the bank angle limit

• The bank angle limit is scheduled with altitude,
ranging from 5 degrees at sea level, up to 10 degrees
at 23 km and higher.

• Battery charging is disabled when the battery is full;
discharging is disabled when the battery is empty.

B. States and Commands
We now outline a greedy algorithm that returns a set of

commands to take at the beginning of each 10-second period
such that results in sufficient gravitational and battery energy
with minimal violations of the positional restrictions.

Recall that 𝑥(𝑡) and 𝑢(𝑡), are the continuous-time domain
state and input vectors of the system defined in (1). Let 𝑆<
represent the discrete state vector of the aircraft at time 𝑖; let
𝐶< represent the discrete input vector, also at time 𝑖. 	𝑆<
contains all the information necessary to evaluate the change
in total energy and the positional feasibility associated with
each command. For purposes of trajectory planning, 𝑆<
consists of: east and north offsets, altitude, heading angle,
stored battery energy and true airspeed:

 𝑆< = �𝑝M< , 𝑝X< , ℎ<, 𝜓<, 𝐸%< , 𝑉L<�. (21)

𝐶< consists of the commands: change in heading angle and
change in altitude:

 𝐶< = (Δ𝜓<, Δℎ<). (22)

Note that, given the state 𝑆< and the commands 𝐶<, we do not
need any information on previous states to continue the
trajectory planning.

C. Tree Representation and Complexity
We model the trajectory planning problem as a tree-

structure where each node represents a state of the aircraft and
the depth of the tree represents time. The root node
corresponds to the initial state. There exists an edge between
two states 𝑆< and 𝑆<�> only if there is at least one command
vector 𝐶< that would transition 𝑆< into 𝑆<�>. Moreover, each
edge is associated with a value that captures the change in
total energy caused by this transition, penalized by the
violations in state 𝑆<�>, if any. Consequently, the trajectory
planning problem is equivalent to finding the longest path
from the root node to all the leaf nodes.

Even with all the simplifying assumptions outlined in the
previous section, this is a challenging problem since the
number of nodes increases exponentially as the depth of the
tree increases. Let �̅�< be the set of all potential states we can
reach and 𝐶̅< be the set of all possible commands that can be
taken at time 𝑖. Letting 𝑐 ≔ |�̅�<|, there are roughly 𝑐<�>
possible states 𝑠 ∈ 𝑆̅<�> to evaluate. Suppose that we are
planning the trajectory for 𝑁 time periods, then the total
number of nodes and edges in the tree representation would
be in the order of 𝒪(𝑐�).

Consequently, even solving the simplification of the
trajectory planning problem is challenging due to the
exponential number of nodes and edges. Note that the longest
path problem can be solved in linear time on the number of
nodes via topological sorting [16, 18]; however, the main
challenge stems from the size of the tree.

D. Greedy algorithm with buffering

Our main challenge is the exponential number of states to
be evaluated. To overcome this problem, we consider a
greedy algorithm, where we only store the top 𝑘 states at each
time-period, starting from the root node, Fig. 4. We refer to
this storage process as buffering. Note that if 𝑘 = 1, then the
algorithm is equivalent to a simple greedy algorithm where,
at each node, we select the edge with the largest weight. The
algorithm terminates when a leaf node is reached.
Buffering significantly reduces the complexity of this
algorithm: it stores 𝑘 nodes at each time-period 𝑖. From these
nodes, we compute the weights of edges to 𝑘 × 𝑐 states.
Among these states, we pick the top 𝑘 with largest total
weight from the root node. Letting 𝑁 be the number of time
periods, the overall complexity of this algorithm is
𝒪(𝑁𝑘𝑐 log(𝑘𝑐)).

Figure 4. Greedy algorithm with k = 3.

E. Edge Weights: Adjusted change in Energy
We compute a trajectory time history by selecting the best

path along a succession of energy states. Given multiple
alternative states, or nodes, the transition between nodes is
evaluated by measuring the change in adjusted energy, ΔE, as
given by,

 ∆𝐸< = 𝐸< − 𝐸<=>. (23)

The adjusted energy, E, is a modified version of the
objective function (1). In particular, it is defined as the sum of
battery energy and weighted gravitational energy, penalized by
the violation of the containment region, 𝑞:

 𝐸< = �𝐸%< + 𝜅𝐸(< � 𝑞<⁄ . (24)

We found that the best strategy was to set the potential
energy weight, 𝜅, to 0 at nighttime (as indicated by 𝜀z < 0).
In other words, the nighttime strategy is to optimize for the
battery only.

The infeasibility factor, 𝑞, represents a penalty for being
outside the containment region, either vertically or
horizontally. It is given by

 𝑞< = � 1 𝑞F< = 𝑞D< = 0
𝑞P + 𝑞F< + 𝑞D< 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (25)

where 𝑞P is a constant infeasibility factor that enables faster
adaptation; 𝑞F is the vertical penalty, and 𝑞D is the horizontal
penalty. These penalties are defined as

 𝑞F< = §
¨ℎ< − ℎ��¨ (ℎD< − ℎ��)⁄ ℎ< < ℎ��
¨ℎ< − ℎD<¨ (ℎD< − ℎ��)⁄ ℎ< > ℎD<

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (26)

 𝑞D< = ©¨𝑑
< − 𝑟G + 𝑟%¨ 𝑟G⁄ 𝑑< > (𝑟G − 𝑟%)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (27)

In the above, ℎD< is the ceiling altitude; ℎ�� is the floor
altitude; 𝑟G is the containment volume radius; 𝑟% is the
containment radius buffer; and d is the horizontal distance
from vehicle to center of containment area,

 𝑑] = 𝑝M] + 𝑝X]. (28)

F. Implementation
We compute the trajectory by solving forward from the

current state over a thirty-minute horizon in ten-second time
steps. At the end of each horizon, we pick the best solution
among all candidate end-states in the buffer. Algorithm 1
outlines the main steps of this solution.

Let 𝑓<(𝑆<, 𝐶<) represent the set of equations that
transitions state 𝑆< to 𝑆<�> at time 𝑖, if the commands 𝐶< are
selected, 𝑔∗(𝑆<) be the largest adjusted energy (24) that can
be achieved for state 𝑆<	at time 𝑖 + 1 and 𝐶∗< be the command
that achieves that energy. Also let 𝑔<(𝑆<, 𝐶<) be the total
adjusted energy collected at state 𝑆< at time 𝑖 via command
𝐶<. Then,

𝑔∗(𝑆<�>) = max
¬∈¬

		
{𝑔∗(𝑆<) + Δ𝐸<}. (29)

 After computing values 𝑔∗(𝑆<) for 𝑖 = 1,… ,𝑁, we find
the final state that collected the largest adjusted energy. Using
this information, the algorithm backtracks the set of
commands that had to be taken to achieve this final state.

G. Computation Time

Table I compares this work to the gradient and MPC
methods using ten-second time steps to solve over a thirty-
minute horizon. Our resulting execution time was ninety
seconds on average. Our development environment was
entirely Python based, [5, 6].

Method Complexity Compute Time [min]
30 min Horizon

Gradient, [3] O(nTN) 37.50

MPC, [4] O(mN) 12.03

Greedy with Buffering,
this paper O(Nkclog(kc)) 1.50

TABLE I: Computational complexity and single-CPU time of solving a 30-
minute-horizon trajectory optimization.

VII. TRAJECTORY RESULTS
This section presents a case study in which we consider a

24-hour flight in Dehra Dun, India on December 22, 2017
(Winter solstice). We allow five values for the change in
heading angle and five values for the change in altitude. This
leads to twenty-five possible command pairs (𝑐 = 25). Time
is discretized into ten-second intervals (Δ𝑇 = 10 seconds). In
the following results, the buffer size is chosen as ten (𝑘 = 10).

Note that all the values presented in this section are for a
fictitious aircraft.

Initialization
t # First time period
k # Buffer size
state_0 # Initial state
N # Number of iterations
state_dictionary = []

Algorithm
for i in 1 to N:
 temp = []
 # Explore all states
 for 𝑆<=> in state_dictionary[i - 1]:
 for 𝐶<=> in allowed_commands:
 𝑆< = 𝑓<=>�𝑆<=>, 𝐶<=>�
 𝛥𝐸< = 𝑔�𝑆<, 𝐶<� − 𝑔∗�𝑆<=>�
 Record 𝑆<, 	𝑆<=>, 	𝐶<=> and 𝛥𝐸< at temp

 top_k_states =

state_with_largest_energy(temp, k)
 state_dictionary[i] = temp

Extract the sequence of states and commands
at time N.
best_final_state =
 state_with_largest_energy_at_N
best_policy = [best_final_state]
next_state = best_final_state
for i in N-1 to 1:
 current_state = get_previous_state(
 state_dictionary[i + 1][next_state])
 add current_state to best_policy
 next_state = current_state

Algorithm 1. Greedy algorithm with buffering.

A. State Machine
 An analysis of the resulting trajectories in this and other test
cases reveals that the charging process can be represented as
a state machine, Fig. 5, as had been observed in [4]. States
are labeled in the ovals. The bracketed terms indicate the
events that trigger transitions between states. The following
sections provide additional details on the states of the
machine.

B. Dwell
 Starting before sunrise and with the battery nearly depleted
at 5 kW-hr, the aircraft will dwell in circles at the low limit of
its containment altitude, Fig. 6. The aircraft would be
expected to settle at the lowest allowable altitude since lower
altitude requires lower power at level flight.

C. Charge
 Sun rise is declared when 𝜀z > 0 and the aircraft transitions
into charging. The vehicle flies a D-ring pattern, with the
straight segment aligned along the solar azimuth, Fig. 7.
There is a small change in flight path angle along each
direction: a slight climb when flying away from and a slight
descent when flying to the sun. This change in altitude
corresponds to the aircraft trying to achieve a more
perpendicular orientation, which maximizes exposed area and

increases the charge. The aircraft will have a net climb during
this stage when there is enough excess energy.

D. Climb
 The aircraft will either slowly climb during the charging
stage, or explicitly climb at high power once the battery is full,
Fig. 8. The climb will generally be at a steep bank angle and
continue so long as the irradiance provides for excess energy.

E. Sunset
 The sunset state does not encode an explicit type of
maneuver, but rather a premature loss in energy, Fig. 9. As
shown by the pattern, the battery starts draining at t = 9 hr,
which is 1.3 hr prior to nighttime. This loss is due to the low
intensity of the irradiance, where the power absorbed is
insufficient to maintain both altitude and a full charge.

F. Glide
 The aircraft descends at nearly idle power starting at
nighttime, and until reaching the low limit containment
altitude, Fig. 10. This descent is at the smallest possible bank
angle. Upon reaching the floor altitude, the aircraft proceeds
to dwell until the next sunrise.

Figure 5. Trajectory state machine.

Figure 6. Dwell pattern.

Figure 7. Charge pattern.

Figure 8. Climb pattern.

Figure 9. Sunset pattern.

Dwell

Charge

Climb Sunset

Glide

[Sunrise]

[Battery Full]

[Shallow Sun]

[Nighttime]

[Low Altitude]

Figure 10. Glide pattern.

Figure 11. Energy Balance

G. Energy Balance
 Our purpose is to design an optimal trajectory for perpetual
flight, which is demonstrated by an energy balance greater
than or equal to zero. Fig. 11 shows that this is the case over
a 24-hour period at this latitude and time of year.

VIII. CONCLUSION
We have introduced a greedy method with buffering to

compute optimal flight trajectories that achieve perpetual
flight in a solar powered aircraft. This heuristic solution is a
multi-path variation of Dijkstra’s shortest path algorithm.
Our method offers much faster running times than known
alternatives.

Our results have also found agreement with flight
maneuvers observed in related work, [3, 4]. These have been
formalized into a state machine. This behavior suggests that
the optimal trajectory is not a geometric solution but rather a
policy.

The field of Reinforcement Learning offers algorithms that

learn policies that maximize a return. In this case, the policy
is the set of guidance actions and the return is the state-of-
charge. We believe that the fast computation time of this
method is ideally suited to train a reinforcement learner over
a wide range of conditions. This is a potential avenue for
further research.

A final note on the effect of winds is that winds aloft are
typically constant, which would not affect the solution time.
Though [3] considers constant winds, variable winds were not
considered by any of the surveyed methods. A solution with
variable winds would require solving over shorter horizons.

ACKNOWLEDGMENT
The authors wish to thank Julian Mestre of the University

of Sydney. His participation was instrumental in getting the
project started and providing the oversight to ensure its
success.

REFERENCES
[1] Airbus, viewed Dec. 2019

<www.airbus.com/defence/uav/zephyr.html>
[2] Aerovironment, viewed Oct. 2019 <www.avinc.com/innovative-

solutions/hale-uas.html>
[3] H. Bolandhemmat, B. Thomsen and J. Marriott, "Energy-Optimized

Trajectory Planning for High Altitude Long Endurance (HALE)
Aircraft," 2019 18th European Control Conference (ECC), Naples,
Italy, Jun. 2019, pp. 1486-1493.

[4] R.A. Martin, N.S. Gates, A. Ning, and J.D. Hedengren, "Dynamic
Optimization of High-Altitude Solar Aircraft Trajectories Under
Station-Keeping Constraints," Journal of Guidance, Control, and
Dynamics, Vol. 42, No. 3, pp. 538-552, Mar. 2019.

[5] Pyproj 1.9.5.1, released Jan. 2016 <pypi.org/project/pyproj/>
[6] Pysolar 0.7, released Apr. 2015 <pysolar.readthedocs.io/>
[7] Y. Gibbs, NASA Dryden Fact Sheet: ALTUS II, viewed Mar. 2015,

<www.nasa.gov/centers/armstrong/news/FactSheets/FS-058-
DFRC.html >

[8] A.T. Klesh and P.T. Kabamba, “Solar-Powered Aircraft: Energy-
Optimal Path Planning and Perpetual Endurance,” Journal of Guidance,
Control, and Dynamics, Vol. 32, No. 4, Jul. – Aug. 2009.

[9] G.S. Aglietti, S. Redi, A.R. Tatnall, and T. Markvart, “Harnessing
High-Altitude Solar Power,” IEEE Transactions on Energy Conversion,
Vol. 24, No. 2, Jun. 2009.

[10] I. Reda and A. Andreas, “Solar Position Algorithm for Solar Radiation
Applications”, NREL/TP-560-34302, 2008.

[11] A.T. Klesh and P.T. Kabamba, "Energy-Optimal Path Planning for
Solar-Powered Aircraft in Level Flight," AIAA Guidance, Navigation
and Control Conference and Exhibit, AIAA 2007-6655.

[12] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics, The MIT
Press, 2005.

[13] J.D. Anderson Jr., Introduction to Flight. 5th ed., McGraw Hill, New
York, 2005, ch. 4, 6.

[14] T. Markvart, Solar Electricity. 2nd ed., New York: John Wiley & Sons,
2000, ch. 2.

[15] B. Etkin, and L.D. Reid, Dynamics of Flight: Stability and Control. 3rd
ed., New York: John Wiley & Sons, 1996, ch. 7, App. A.

[16] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Prentice
Hall, 1993.

[17] NASA, “U.S. Standard Atmosphere, 1976” NASA TM-X-74335, 1976.
[18] E.W. Dijkstra, “A note on two problems in connexion with

graphs”, Numerische Mathematik, Vol. 1, No. 1, pg. 269–271, 1959.

