
  

  

 
Abstract — Solar-powered aircraft can fly perpetually if they 

are able to fly a 24-hour mission in which they collect more 
energy than they expend.  The energy collected is determined by 
the orientation and length of time that the aircraft’s solar panels 
are exposed to the sun.  The energy spent is determined by flight 
maneuvers such as changes in airspeed, altitude and heading.  
Therefore, a perpetual energy balance can be maintained when 
the aircraft flies along a trajectory that maximizes solar 
exposure and minimizes flight maneuvers.  This paper presents 
a faster than real-time dynamic programming strategy that 
computes the optimal trajectory that contains a loitering aircraft 
inside a cylindrical volume placed about a reference waypoint. 
 

Keywords—solar powered aircraft, trajectory planning, 
perpetual endurance, geostationary station keeping, greedy path 
planning with buffering, multi-path Dijkstra. 

I. INTRODUCTION 

Starting in 1994, NASA's ERAST program “was a 
multiyear effort to develop the aeronautical and sensor 
technologies for a new family of remotely piloted unmanned 
aircraft intended for upper atmospheric science missions. 
Designed to cruise at slow speeds for long durations at 
altitudes of 60,000 to 100,000 ft, such aircraft could be used to 
collect, identify, and monitor environmental data to assess 
global climate change and assist in weather monitoring and 
forecasting. They also could serve as airborne 
telecommunications platforms, performing functions similar 
to communications satellites at a fraction of the cost.” [7] 

AeroVironment's Pathfinder was a notable solar-powered 
high-altitude long endurance (SPHALE) unmanned air vehicle 
(UAV) that predated ERAST. Pathfinder demonstrated the 
promise of this technology, but it was unable to overcome the 
propulsion system’s limitations at that time [2]. Under its 
auspices, ERAST demonstrated new SPHALE airframes. The 
lesson learned was that the combined energy storage and 
propulsion system are the Achilles heel in the SPHALE UAV 
technology.  More recently, Airbus’ Zephyr S High Altitude 
Platform Station (HAPS) solar-powered aircraft just flew for 
nearly 26 days straight.  The Zephyr T is under development 
as of this writing, [1]. 

The HAPS/SPHALE concept is namely a low weight and 
high aspect ratio airframe with solar panels on the upper 
surfaces.  The panels collect solar energy during the daytime.  
This energy is stored in batteries, which power the avionics 
and propulsion system (electric motors with propellers).  The 
lack of solar energy between sunset and sunrise means that 
daytime collection net of consumption must provide enough 
charge to make it through the night.  Aircraft that can close a 

 
 

daily energy cycle without a deficit are known as perpetual 
endurance vehicles. 

The magnitude of solar energy available varies with time 
of year, latitude, and solar elevation angle (which is a function 
of time of day).  At a latitude of 35 degrees during the winter 
solstice, there are only about 10 hours of sunlight, of which the 
periods near sunrise and sunset are too feeble to provide any 
useful irradiance. 

In practical terms, the aircraft is required to autonomously 
program a trajectory that maximizes energy storage at the end 
of the day.  This in turn means finding the orientation that 
maximizes exposure to the sun, while consuming the least 
power in doing so.  For aircraft used as a communications 
platform, this imposes the constraint of remaining within a 
geostationary containment volume, as shown in Fig. 1.  In 
summary, a practical optimal trajectory must have the 
following characteristics: 

• account for radial station keeping constraints; 
• account for vertical station keeping constraints; 
• store excess energy as gravitational energy; and, 
• be computable in-flight. 

Figure 1.  Containment area. 

II. RECENT DEVELOPMENTS 

Autonomous navigation algorithms have mostly focused 
on ground vehicles, e.g. [12].  These compute a trajectory 
between desired discrete endpoints, with the trajectory itself 
being the objective.  There is no consideration of the energetic 
cost of the displacement.  The literature lacks a dedicated set 
of solutions for flight vehicles. 

In their work on energy optimal flight path planning, Klesh 
& Kabamba formulate the problem of perpetual loitering, 
propose a solution for the case of level flight [11], and derive 
the necessary conditions for energy optimal flight [8]. 
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Martin et al. pose the trajectory optimization problem as a 
nonlinear model predictive control problem (MPC), [4].  
Solving for a 24-hour flight period takes about 10 hours, when 
using 10 second time steps.  Their solution identifies several 
repeatable maneuvers that depend on solar elevation and time 
of day.  They suggest that these maneuvers could be 
parameterized into a state machine. 

Bolandhemmat et al. compute a solution to the optimal 
trajectory problem using both interior point (gradient based) 
and nonlinear simplex optimization, [3].  These solutions 
“provide no formal guarantees on convergence to an optimal 
(or even feasible) solution.  Additionally, the computational 
burden and associated power draw makes it impractical to 
perform the trajectory optimization using an onboard 
computer.”  The authors ameliorate this shortcoming by using 
their computed optimal trajectory to train an adaptive neuro-
fuzzy inference system which can then plan the trajectory in 
real-time. 

Recent work has focused on optimal control methods to 
compute trajectories.  Though these methods produce good 
results, execution time is too slow to be useful in-flight.  A 
preferred solution method would be one that can both solve 
and plan the trajectory in real-time. 

III. ORIGINAL CONTRIBUTIONS 
This paper makes three original contributions.  First, it 

solves the optimal trajectory problem as a search problem 
using a dynamic programming (DP) approach.  Second, it 
develops a solution method that runs much faster than 
published solutions.  These developments are unique 
contributions that together can enable autonomous perpetual 
flight.  Finally, we enumerate the repeatable trajectory 
behaviors observed in our results and assemble them into a 
state machine. 

IV. TRAJECTORY OPTIMIZATION 
The trajectory optimization problem for the solar powered 

aircraft in station keeping mode is to maximize the total energy 
stored in the aircraft, subject to constraints that capture aircraft 
dynamics, station keeping, and input command limits.  
Mathematically, we can formulate this as a non-convex 
constrained optimization problem:  

 max 𝐸% + 𝜅𝐸(
s.t. �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡))

𝑔(𝑥(𝑡), 𝑢(𝑡)) ≤ 0,
 (1) 

where 𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡) are time-domain signals for the states 
of the system, the inputs to the system, and the external 
disturbances, respectively.  The total system energy is stored 
in the batteries, 𝐸%, and as potential 𝐸( energy.  Battery energy 
is typically referred to as the state-of-charge.  The parameter 𝜅 
is a weighting constant that amplifies the potential energy 
during the daytime. 

The state vector 𝑥 includes the aircraft’s position, velocity, 
attitude, and battery state-of-charge.  The input vector 𝑢 
contains the optimization variables, including the yaw rate 
command, Rcmd, the vertical velocity (altitude rate) command, 
Vv,cmd, and the airspeed command.  The disturbance vector 𝑤 
can include wind, gust, turbulence, sensor noise, and modeling 

uncertainties.  The inequality constraint 𝑔(∙) ≤ 0 is used to 
capture the input command upper and lower limits and the 
station-keeping requirement.  Section V provides details on the 
difference equations �̇�(𝑡) = 𝑓(∙) that capture the aircraft 
kinematics, dynamics, and solar/battery/propulsion energy 
dynamics.  Section VI.E presents the discretized version of (1) 
that our solution procedure uses. 

V. SYSTEM MODEL 

Aircraft are designed to display specified dynamic 
responses to a given set of control inputs.  A closed loop 
autopilot responds to these inputs, maintains the airframe 
stable, and guarantees a response akin to that of a first order 
differential equation.  It is thus possible to design a kinematic 
fixed wing aircraft simulation that captures this high-level 
behavior with a minimum number of states and without the 
requisite small step size, ΔT.  Henceforth, the use of a 
superscript i indicates the time-period during which the 
referenced variable is updated. 

A.  Input Commands 
An airframe is controlled through a combination of 

longitudinal, lateral/directional, and vertical input commands.  
Collectively, our inputs are equivalent airspeed, Ve; yaw rate, 
Rcmd; and vertical velocity, Vv,cmd, respectively.  We decided to 
consider a constant Ve.  The motivation for this decision was 
twofold: first, this airframe operates in a narrow range of 
airspeeds (i.e., +/- 1 m/s); second, there are analytical solutions 
to different speed objectives.  E.g., best climb speed, 
endurance speed, and best descent rate are all known and can 
be computed online. 

B. Autopilot 
The updated altitude, ℎ, and heading, 𝜓, are respectively  

 ℎ< = ℎ<=> + ∆ℎ<∆𝑇, and (2) 

 𝜓< = 𝜓<=> + ∆𝜓<∆𝑇. (3) 

The change in altitude per time step, Δh, and change in 
heading per time step, Δ𝜓, are given by 

 ∆ℎ< = 	𝑘D𝑉F,GHI< , and (4) 

 ∆𝜓< = 	𝑘J𝑅GHI< . (5) 

The terms 𝑘D and 𝑘J are non-dimensional factors that account 
for the dynamics of the vertical and directional response, 
respectively.  For example, in the presence of a step 
command, a stable first order dynamic system representative 
of the altitude response rises 33.6% in a 10 second time step. 

Though Ve is constant in this implementation, the true 
airspeed, Va, does vary with changing altitude.  From [13], we 
know that 

 𝑉L< = 𝑉M<N𝜌P 𝜌<⁄ . (6) 

The air density, 𝜌, varies with altitude as described in [17], but 
is constant at sea level, 𝜌P. 

C.  Kinematics 
The inertial flight path and bank angles, described in [15], 

are respectively given by 

 sin 𝛾< = ∆ℎ< 𝑉L<⁄ , and (7) 



  

 tan𝜙< = ∆𝜓<𝑉L< 𝑔⁄ . (8) 

When 𝜙 = 0, the North and East positions on the local 
horizontal plane (the computed flat Earth positions), pn and pe, 
respectively, are computed as follows 

 V𝑝M
<

𝑝X<
Y = V𝑝M

<=>

𝑝X<=>
Y + 𝑉L<Δ𝑇 V

sin𝜓<

cos𝜓<Y. (9) 

When 𝜙 ≠ 0, the trajectory is curved with radius 	
𝜌G and instantaneous center of rotation at position Pc.  North 
and East positions are computed as follows 

 𝜌G< = (𝑉L<)] tan𝜙<⁄ , (10a) 

 𝑃G< = V𝑝M
<=>

𝑝X<=>
Y + 𝜌G< V

cos𝜓<

−sin𝜓<Y, (10b) 

V𝑝M
<

𝑝X<
Y = 𝑃G< − 𝜌G< V

cos Δ𝜓< sin Δ𝜓<

−sin Δ𝜓< cos Δ𝜓<Y V
cos𝜓<

−sin𝜓<Y. (10c) 

D. Navigation 
Navigation consists of estimating geodetic latitude, φ, and 

longitude, λ, from the computed flat Earth positions on a 
World Geodetic System 1984 reference.  These are used to 
estimate the solar angles.  Navigation in this implementation 
was performed using Python’s module Pyproj [5]. 

E. Aerodynamics 
The sum of perpendicular forces [13] about the center of 

gravity for an aircraft in translational flight with center line 
thrust is given by 

 𝐿 cos𝜙⁄ −𝑊 cos 𝛾 = 𝑚𝑉L] (𝑟M + ℎ)⁄ , (11) 

where 𝑊 is the aircraft weight, 𝑚 is its mass, and 𝑟M is Earth’s 
local radius.  Lift can be solved directly from (11), and 
nondimensionalized as follows 

 𝑐e = 𝐿 (𝑞g𝑆)⁄ , 𝑐i = 𝐷 (𝑞g𝑆)⁄ , (12a,b) 

 𝑞g = 𝜌𝑉L] 2⁄ , (13) 

where 𝑞g is the dynamic pressure, and S is the reference wing 
area. 

With cL known, the angle of attack is computed in a 
reverse look-up from the 𝑐e(𝛼, ℎ) curve, Fig. 2.  With 𝛼 
known, cD is computed in a forward look-up from the 𝑐i(𝛼, ℎ) 
curve, Fig. 3, and the drag force from (12b).  Thrust can be 
computed directly from the sum of parallel forces [13] about 
the center of gravity for an aircraft in translational flight with 
center line thrust, as given by 

 𝑇 − 𝐷 −𝑊 sin 𝛾 = 𝑚 (𝑉L< − 𝑉L<=>) ∆𝑇⁄ . (14) 

Knowledge of α also allows computing the pitch angle, θ, 
as in 

 𝜃 = 𝛼 + 𝛾. (15) 

 

 

Figure 2.  Lift curve. 

 

Figure 3.  Drag curve. 

F. Solar Model 
The solar model consists of three parts: irradiance, solar 

vector, and solar collection.  The irradiance is the average 
power per unit area received from the sun on a specific day, 
altitude, and solar elevation angle.  It is described in [14] as 

 𝐼 = 	 𝐼P o1 + 0.034 cos
]sXt
uvw

x 𝑓(ℎ, 𝜀z), (16) 

where nd is the Julian day index, and I0 is the solar constant 
and 𝑓(ℎ, 𝜀z) is an atmospheric absorption factor described in 
[9].  The solar angles, 𝜀z and 𝜁z, [10], represent solar elevation 
and azimuth, respectively.  Solar position computations were 
performed using Python’s module Pysolar [6]. 

The aircraft is fitted with k solar panels, each with area 
As,k, and position [𝑥} 𝑦} 𝑧}] in the vehicle’s forward-right 
wing-down coordinate system.  The total solar panel area 
projected perpendicularly at the sun, Ap, is given by 

 𝐴( = ∑ 𝐴z,} �
− cos 𝜁z cos 𝜀z
− sin 𝜁z cos 𝜀z

sin 𝜀z
�

�

𝑅%z �
𝑥}
𝑦}
𝑧}
�} , (17a) 

 

 



  

 𝑅%z = 𝑅J𝑅�𝑅�, (17b) 

 𝑅J = �
cos𝜓 −sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

�, (17c) 

 𝑅� = �
cos 𝜃 0 sin 𝜃
0 1 0

−sin 𝜃 0 cos 𝜃
�, (17d) 

 𝑅� = �
1 0 0
0 cos𝜙 −sin𝜙
0 sin𝜙 cos𝜙

�. (17e) 

G. Power and Propulsion 
Power is the rate of energy, and solar energy is the only 

source harnessed by the aircraft.  Input power, Pin, power 
output from motors and accessories, Pout, and net power, Pnet, 
are given by 

 𝑃<X = 𝜂z𝐼𝐴(, (18a) 

 𝑃��� = 𝑃LGG +
>
]
𝑇𝑉L �o

�
��t�g

+ 1x
> ]⁄

+ 1�, (18b) 

 𝑃XM� = 𝑃<X − 𝑃���, (18c) 

where 𝜂z is the solar panel efficiency, Pacc is the accessory 
power (e.g., avionics), N is the number of rotors, and Ad is the 
propeller disk area.  The second term of the right-hand side of 
(18b) is the efficiency-adjusted propulsive power required to 
deliver the aerodynamic thrust. 

H. Energy 
Electrical energy is stored in and drawn from the 

rechargeable batteries, where charging and discharging occurs 
at different efficiencies.  The energy stored in all batteries, Eb, 
is 

 𝐸%< = 𝐸%<=> + 𝜂%𝑃XM�< Δ𝑇, (19a) 

 𝜂% = � 𝜂<X 𝑖𝑓	𝑃XM�< 	≥ 0
𝜂��� 𝑖𝑓	𝑃XM�< 	< 0

, (19b) 

where 𝜂% is either the charging, 𝜂<X, or discharging, 𝜂���, 
efficiency, depending on mode. 

The aircraft can also store gravitational potential energy in 
the form of higher altitude.  There is a tradeoff with climbing, 
in that it requires higher thrust, which means that higher 
power is drawn from the batteries.  Therefore, an increase in 
gravitational energy is only an increase in total energy if the 
aircraft can climb when 𝑃XM� > 0.  For purposes of energy 
optimization, we only account for the gravitational energy 
above the altitude floor ℎ��: 

 𝐸(< = (ℎ< − ℎ��)𝑚𝑔. (20) 

I. Winds 
As was done in [4], the effect of winds was excluded to 

reduce simulation complexity without loss of generality.  
Significant winds aloft would invalidate (7) – (10).  Winds 
could be accounted for with the following modifications: track 
course instead of heading, compute heading from wind 
triangle, use air-mass-referenced flight path angle.  A 
derivation of these changes is presented in [3].  The resulting 

equations are similar to those stated herein, with little impact 
in computation time. 

VI. GREEDY PATH PLANNING WITH BUFFERING 
This section outlines an efficient greedy algorithm for 

finding a trajectory throughout the day for the solar-powered 
aircraft to have enough exposure to the sun such that the 
stored energy is sufficient to keep the aircraft in the air.  

A. Assumptions, Initial Conditions and Restrictions 
We make some simplifying assumptions on the trajectory 

planning:  
• time is discretized into Δ𝑇 intervals; 
• equivalent airspeed is constant; 
• winds are not considered (discussed in Section V.I); 
• the controls are limited to changes in heading angle 

and altitude. 

Initial conditions that should be specified: 
• stored battery energy; 
• latitude, longitude and altitude; 
• east and north offsets; 
• date and time of the flight; 
• maximum energy that the battery can store. 

The aircraft must remain within: 
• three kilometers radius from the center, 
• a lower and upper altitude limits. 

Implementation details: 
• Where memory states are used, e.g. ℎ<=>, these are 

initialized per the initial conditions. 

• The upper limit of ∆ℎ< is the lower of 3 degrees γ and 
0.8 m/s.  The lower limit is symmetric, but further 
restricted to be higher than the value which results in 
negative thrust. 

• Δ𝜓 is limited to not exceed the bank angle limit 

• The bank angle limit is scheduled with altitude, 
ranging from 5 degrees at sea level, up to 10 degrees 
at 23 km and higher. 

• Battery charging is disabled when the battery is full; 
discharging is disabled when the battery is empty. 

B. States and Commands 
We now outline a greedy algorithm that returns a set of 

commands to take at the beginning of each 10-second period 
such that results in sufficient gravitational and battery energy 
with minimal violations of the positional restrictions. 

Recall that 𝑥(𝑡) and 𝑢(𝑡), are the continuous-time domain 
state and input vectors of the system defined in (1).  Let 𝑆< 
represent the discrete state vector of the aircraft at time 𝑖; let 
𝐶< represent the discrete input vector, also at time 𝑖. 	𝑆< 
contains all the information necessary to evaluate the change 
in total energy and the positional feasibility associated with 
each command. For purposes of trajectory planning, 𝑆< 
consists of: east and north offsets, altitude, heading angle, 
stored battery energy and true airspeed:   



  

 𝑆< = �𝑝M< , 𝑝X< , ℎ<, 𝜓<, 𝐸%< , 𝑉L<�. (21) 

 
𝐶< consists of the commands: change in heading angle and 
change in altitude:  

 𝐶< = (Δ𝜓<, Δℎ<). (22) 

Note that, given the state 𝑆< and the commands 𝐶<, we do not 
need any information on previous states to continue the 
trajectory planning.  

C.  Tree Representation and Complexity 
We model the trajectory planning problem as a tree-

structure where each node represents a state of the aircraft and 
the depth of the tree represents time. The root node 
corresponds to the initial state. There exists an edge between 
two states 𝑆< and 𝑆<�> only if there is at least one command 
vector 𝐶< that would transition 𝑆< into 𝑆<�>. Moreover, each 
edge is associated with a value that captures the change in 
total energy caused by this transition, penalized by the 
violations in state 𝑆<�>, if any. Consequently, the trajectory 
planning problem is equivalent to finding the longest path 
from the root node to all the leaf nodes. 

Even with all the simplifying assumptions outlined in the 
previous section, this is a challenging problem since the 
number of nodes increases exponentially as the depth of the 
tree increases. Let �̅�< be the set of all potential states we can 
reach and 𝐶̅< be the set of all possible commands that can be 
taken at time 𝑖. Letting 𝑐 ≔ |�̅�<|, there are roughly 𝑐<�> 
possible states 𝑠 ∈ 𝑆̅<�> to evaluate. Suppose that we are 
planning the trajectory for 𝑁 time periods, then the total 
number of nodes and edges in the tree representation would 
be in the order of 𝒪(𝑐�). 

Consequently, even solving the simplification of the 
trajectory planning problem is challenging due to the 
exponential number of nodes and edges. Note that the longest 
path problem can be solved in linear time on the number of 
nodes via topological sorting [16, 18]; however, the main 
challenge stems from the size of the tree. 

D. Greedy algorithm with buffering 

Our main challenge is the exponential number of states to 
be evaluated. To overcome this problem, we consider a 
greedy algorithm, where we only store the top 𝑘 states at each 
time-period, starting from the root node, Fig. 4. We refer to 
this storage process as buffering. Note that if 𝑘 = 1, then the 
algorithm is equivalent to a simple greedy algorithm where, 
at each node, we select the edge with the largest weight. The 
algorithm terminates when a leaf node is reached. 
Buffering significantly reduces the complexity of this 
algorithm: it stores 𝑘 nodes at each time-period 𝑖. From these 
nodes, we compute the weights of edges to 𝑘 × 𝑐 states. 
Among these states, we pick the top 𝑘 with largest total 
weight from the root node. Letting 𝑁 be the number of time 
periods, the overall complexity of this algorithm is 
𝒪(𝑁𝑘𝑐 log(𝑘𝑐)).  

 

Figure 4.  Greedy algorithm with k = 3. 

E.  Edge Weights: Adjusted change in Energy 
We compute a trajectory time history by selecting the best 

path along a succession of energy states.  Given multiple 
alternative states, or nodes, the transition between nodes is 
evaluated by measuring the change in adjusted energy, ΔE, as 
given by, 

 ∆𝐸< = 𝐸< − 𝐸<=>. (23) 

The adjusted energy, E, is a modified version of the 
objective function (1). In particular, it is defined as the sum of 
battery energy and weighted gravitational energy, penalized by 
the violation of the containment region, 𝑞: 

 𝐸< = �𝐸%< + 𝜅𝐸(< � 𝑞<⁄ . (24) 

We found that the best strategy was to set the potential 
energy weight, 𝜅, to 0 at nighttime (as indicated by 𝜀z < 0).  
In other words, the nighttime strategy is to optimize for the 
battery only. 

The infeasibility factor, 𝑞, represents a penalty for being 
outside the containment region, either vertically or 
horizontally.  It is given by 

 𝑞< = � 1 𝑞F< = 𝑞D< = 0
𝑞P + 𝑞F< + 𝑞D< 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 (25) 

where 𝑞P is a constant infeasibility factor that enables faster 
adaptation; 𝑞F is the vertical penalty, and 𝑞D is the horizontal 
penalty.  These penalties are defined as  

 𝑞F< = §
¨ℎ< − ℎ��¨ (ℎD< − ℎ��)⁄ ℎ< < ℎ��
¨ℎ< − ℎD<¨ (ℎD< − ℎ��)⁄ ℎ< > ℎD<

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (26) 

 



  

 𝑞D< = ©¨𝑑
< − 𝑟G + 𝑟%¨ 𝑟G⁄ 𝑑< > (𝑟G − 𝑟%)

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (27) 

In the above, ℎD< is the ceiling altitude; ℎ�� is the floor 
altitude; 𝑟G is the containment volume radius; 𝑟% is the 
containment radius buffer; and d is the horizontal distance 
from vehicle to center of containment area, 

 𝑑] = 𝑝M] + 𝑝X]. (28) 

 

F. Implementation 
We compute the trajectory by solving forward from the 

current state over a thirty-minute horizon in ten-second time 
steps.  At the end of each horizon, we pick the best solution 
among all candidate end-states in the buffer.  Algorithm 1 
outlines the main steps of this solution. 

Let 𝑓<(𝑆<, 𝐶<) represent the set of equations that 
transitions state 𝑆< to 𝑆<�> at time 𝑖, if the commands 𝐶< are 
selected, 𝑔∗(𝑆<) be the largest adjusted energy (24) that can 
be achieved for state 𝑆<	at time 𝑖 + 1 and 𝐶∗< be the command 
that achieves that energy. Also let 𝑔<(𝑆<, 𝐶<) be the total 
adjusted energy collected at state 𝑆< at time 𝑖 via command 
𝐶<. Then, 

𝑔∗(𝑆<�>) = max
¬∈¬


		
{𝑔∗(𝑆<) + Δ𝐸<}. (29) 

 After computing values 𝑔∗(𝑆<) for 𝑖 = 1,… ,𝑁, we find 
the final state that collected the largest adjusted energy. Using 
this information, the algorithm backtracks the set of 
commands that had to be taken to achieve this final state. 

G. Computation Time 

Table I compares this work to the gradient and MPC 
methods using ten-second time steps to solve over a thirty-
minute horizon. Our resulting execution time was ninety 
seconds on average.  Our development environment was 
entirely Python based, [5, 6]. 

Method Complexity Compute Time [min] 
30 min Horizon 

Gradient, [3] O(nTN) 37.50 

MPC, [4] O(mN) 12.03 

Greedy with Buffering, 
this paper O(Nkclog(kc)) 1.50 

TABLE I: Computational complexity and single-CPU time of solving a 30-
minute-horizon trajectory optimization. 

VII. TRAJECTORY RESULTS 
This section presents a case study in which we consider a 

24-hour flight in Dehra Dun, India on December 22, 2017 
(Winter solstice). We allow five values for the change in 
heading angle and five values for the change in altitude. This 
leads to twenty-five possible command pairs (𝑐 = 25). Time 
is discretized into ten-second intervals (Δ𝑇 = 10 seconds). In 
the following results, the buffer size is chosen as ten (𝑘 = 10). 

Note that all the values presented in this section are for a 
fictitious aircraft.  

 
Initialization 
t # First time period 
k # Buffer size 
state_0 # Initial state 
N # Number of iterations 
state_dictionary = [] 
 
Algorithm 
for i in 1 to N: 
 temp = [] 
 # Explore all states 
 for 𝑆<=>  in state_dictionary[i - 1]: 
  for 𝐶<=> in allowed_commands: 
   𝑆< = 𝑓<=>�𝑆<=>, 𝐶<=>� 
   𝛥𝐸< = 𝑔�𝑆<, 𝐶<� − 𝑔∗�𝑆<=>� 
   Record 𝑆<, 	𝑆<=>, 	𝐶<=> and 𝛥𝐸< at temp 
 
 top_k_states = 

state_with_largest_energy(temp, k) 
 state_dictionary[i] = temp 
 
# Extract the sequence of states and commands  
# at time N. 
best_final_state =  
   state_with_largest_energy_at_N 
best_policy = [best_final_state] 
next_state = best_final_state 
for i in N-1 to 1: 
 current_state = get_previous_state( 
   state_dictionary[i + 1][next_state])  
 add current_state to best_policy 
 next_state = current_state 

 
Algorithm 1. Greedy algorithm with buffering. 

A. State Machine 
 An analysis of the resulting trajectories in this and other test 
cases reveals that the charging process can be represented as 
a state machine, Fig. 5, as had been observed in [4].  States 
are labeled in the ovals.  The bracketed terms indicate the 
events that trigger transitions between states.  The following 
sections provide additional details on the states of the 
machine.  

B. Dwell 
 Starting before sunrise and with the battery nearly depleted 
at 5 kW-hr, the aircraft will dwell in circles at the low limit of 
its containment altitude, Fig. 6.  The aircraft would be 
expected to settle at the lowest allowable altitude since lower 
altitude requires lower power at level flight. 

C. Charge 
 Sun rise is declared when 𝜀z > 0 and the aircraft transitions 
into charging.  The vehicle flies a D-ring pattern, with the 
straight segment aligned along the solar azimuth, Fig. 7.  
There is a small change in flight path angle along each 
direction: a slight climb when flying away from and a slight 
descent when flying to the sun.  This change in altitude 
corresponds to the aircraft trying to achieve a more 
perpendicular orientation, which maximizes exposed area and 



  

increases the charge.  The aircraft will have a net climb during 
this stage when there is enough excess energy. 

D. Climb 
 The aircraft will either slowly climb during the charging 
stage, or explicitly climb at high power once the battery is full, 
Fig. 8.  The climb will generally be at a steep bank angle and 
continue so long as the irradiance provides for excess energy. 

E. Sunset 
 The sunset state does not encode an explicit type of 
maneuver, but rather a premature loss in energy, Fig. 9.  As 
shown by the pattern, the battery starts draining at t = 9 hr, 
which is 1.3 hr prior to nighttime.  This loss is due to the low 
intensity of the irradiance, where the power absorbed is 
insufficient to maintain both altitude and a full charge. 

F. Glide 
 The aircraft descends at nearly idle power starting at 
nighttime, and until reaching the low limit containment 
altitude, Fig. 10.  This descent is at the smallest possible bank 
angle.  Upon reaching the floor altitude, the aircraft proceeds 
to dwell until the next sunrise.  
 
 

Figure 5.  Trajectory state machine. 

 

Figure 6.  Dwell pattern. 

 
 

Figure 7.  Charge pattern. 

 

Figure 8.  Climb pattern. 

 

Figure 9.  Sunset pattern. 
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Figure 10.  Glide pattern. 

 

Figure 11.  Energy Balance 

 
G. Energy Balance 
 Our purpose is to design an optimal trajectory for perpetual 
flight, which is demonstrated by an energy balance greater 
than or equal to zero.  Fig. 11 shows that this is the case over 
a 24-hour period at this latitude and time of year. 

VIII. CONCLUSION 
We have introduced a greedy method with buffering to 

compute optimal flight trajectories that achieve perpetual 
flight in a solar powered aircraft. This heuristic solution is a 
multi-path variation of Dijkstra’s shortest path algorithm.  
Our method offers much faster running times than known 
alternatives.  

Our results have also found agreement with flight 
maneuvers observed in related work, [3, 4].  These have been 
formalized into a state machine.  This behavior suggests that 
the optimal trajectory is not a geometric solution but rather a 
policy. 

The field of Reinforcement Learning offers algorithms that 

learn policies that maximize a return.  In this case, the policy 
is the set of guidance actions and the return is the state-of-
charge.  We believe that the fast computation time of this 
method is ideally suited to train a reinforcement learner over 
a wide range of conditions.  This is a potential avenue for 
further research. 

A final note on the effect of winds is that winds aloft are 
typically constant, which would not affect the solution time.  
Though [3] considers constant winds, variable winds were not 
considered by any of the surveyed methods.  A solution with 
variable winds would require solving over shorter horizons. 
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