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Fig. 1. Given a novel sequence of skeletal poses and facial keypoints as input, our proposed two-layer codec avatars produce photorealistic animation output,
where the clothing texture can be consistently edited. From left to right, we show driving signals, animation output and editing results for two subjects.

We have recently seen great progress in building photorealistic animatable
full-body codec avatars, but generating high-fidelity animation of clothing
is still difficult. To address these difficulties, we propose a method to build
an animatable clothed body avatar with an explicit representation of the
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clothing on the upper body from multi-view captured videos. We use a two-
layer mesh representation to register each 3D scan separately with the body
and clothing templates. In order to improve the photometric correspondence
across different frames, texture alignment is then performed through inverse
rendering of the clothing geometry and texture predicted by a variational
autoencoder. We then train a new two-layer codec avatar with separate
modeling of the upper clothing and the inner body layer. To learn the inter-
action between the body dynamics and clothing states, we use a temporal
convolution network to predict the clothing latent code based on a sequence
of input skeletal poses. We show photorealistic animation output for three
different actors, and demonstrate the advantage of our clothed-body avatars
over the single-layer avatars used in previous work. We also show the benefit
of an explicit clothing model that allows the clothing texture to be edited in
the animation output.
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Animation.
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1 INTRODUCTION
Animatable photorealistic digital humans are a key capability for
enabling social telepresence, and have the potential to open up a
new way for people to remain connected without geographic con-
straints. Early work on human bodymodeling built low-dimensional
geometric representations of the body surface with minimal cloth-
ing [Loper et al. 2015; Osman et al. 2020; Romero et al. 2017]. As a
separate field of work, cloth simulation has been studied and used
to create clothing deformation that does not conform tightly to
the human body [Baraff and Witkin 1998; Buffet et al. 2019; Kavan
et al. 2011; Narain et al. 2012]. However, both these lines of work
focus on modeling only the geometry, and cannot directly produce
photorealistic rendering output. Even with the recent data-driven
methods using neural networks (for example [Lahner et al. 2018]),
animating a photorealistic clothed human is still far from a solved
problem.
In this work, we seek to build photorealistic full-body clothed

avatars that can be animated with driving signals that can be easily
accessed, for example, 3D body pose and facial keypoints. Simulta-
neously modeling both geometry and texture with a deep generative
model, like Variational Autoencoders (VAE), has been demonstrated
to be an effective way to create photorealistic face avatars [Lombardi
et al. 2018]. Recently, Bagautdinov and colleagues [Bagautdinov et al.
2021] extend this approach to model full-body avatars with VAE,
conditioned on body pose and facial keypoints. Because these con-
ditional signals cannot uniquely describe the states for the clothing,
hair and gaze, the VAE latent code is used to distinguish between
these different states. In addition, it is essential to disentangle the
effects of driving signals and the latent code, in order to reduce the
spurious correlations between them.

Despite the progress in previous work [Bagautdinov et al. 2021],
challenges still remain in building high-fidelity animatable full-body
avatars, and we identify the modeling of clothing as one major diffi-
culty. Artifacts include the imperfect correlation between body pose
and clothing state, ghosting effects along the boundary between
clothing and skin, as well as loss of wrinkle details and dynamics in
the clothing. These artifacts become more noticeable when the cap-
tured clothing is loose and the performer moves more dynamically.
On the one hand, due to registration error, the network may underfit
the data, making it unable to reproduce high-frequency clothing de-
tail; on the other hand, in spite of the disentanglement, the network
may still overfit, capturing unwanted chance correlation between
the driving signal and the clothing state.
In this work, we explicitly represent the body and clothing as

separate layers of meshes in a codec avatar. The separation leads
to several benefits. First, it allows us to accurately register both
body and clothing, especially with our newly developed photomet-
ric tracking approach that uses inverse rendering to align clothing
texture to a reference. Second, modeling the body and clothing in
separate layers alleviates the aforementioned problem of chance
correlation for a single-layer avatar, as the separate layers are nat-
urally disentangled from each other. With our two-layer VAE, a
single frame of joint angles can well describe the body state, while

the clothing dynamics can be inferred from the sequences of poses
with a Temporal Convolutional Network (TCN), which evolves the
clothing state in a way that is consistent with the body motion.
Third, thanks to the explicit modeling of clothing, the animation
output can be further edited by changing the clothing texture.

To summarize, our contributions are as follows:

• We present an animatable two-layer codec avatar model for
photorealistic full-body telepresence; our proposed avatar can
produce more temporally coherent animation with sharper
boundaries and fewer ghosting artifacts compared to a single-
layer avatar;

• Inverse rendering with our proposed two-layer codec avatar
allows a photometric tracking algorithm that aligns the salient
clothing texture, significantly improving correspondence in
the registered clothing meshes;

• We demonstrate an application of our two-layer codec avatar
for editing of the clothing texture that is hard to achieve with
the single-layer model used in previous work.

We evaluate the proposed pipeline on the captured sequences
of three different actors. We demonstrate the effectiveness of our
proposed method against alternative approaches. We show that our
model, with only a sequence of poses and facial keypoints as input,
achieves high-quality body animation and rendering with photore-
alistic clothing that can be viewed from arbitrary viewpoints.

2 RELATED WORK
Our goal in this paper is to build a realistic virtual avatar of a
human that can be animated by driving signals of skeletal poses and
facial keypoints to create a telepresence experience. The classical
pipeline for modeling such an animatable avatar typically relies
on building a textured template mesh from a 3D scan and rigging
the template mesh to a parameterized skeleton model such that the
deformation of the template mesh is associated with the skeletal
pose according to the skinning weights. The most commonly used
skinning method is the Linear Blend Skinning (LBS), which we also
use to model the skeletal motion. In the literature, many methods
have been developed in order to reduce the unnatural skinning
artifacts that occur with LBS, e.g., [Kavan et al. 2008; Kavan and Zara
2005]. However, a fundamental disadvantage of these approaches
is that high-frequency deformations of skin and clothing, such as
muscle bulging, folds, and wrinkles, cannot be precisely modeled. In
order to solve this problem, pose dependent blend shapes [Lewis et al.
2000] have been proposed to reduce skinning artifacts. These blend
shapes are corrective shapes that can be interpolated with respect
to the pose and added to the skinned mesh. Although blend shapes
work well for skin and tight clothing, the non-rigid deformation of
soft tissue and loose clothing is not modeled well by this approach.

Physical simulation provides an automatic way to create sec-
ondary motion of virtual characters, such as muscle bulging and
cloth deformation. Cloth simulation is typically not real-time due
to the computational complexity and therefore many of the ear-
lier methods focus on efficiency [Gillette et al. 2015; Goldenthal
et al. 2007; Kavan et al. 2011; Kim et al. 2013; Wang et al. 2010].
More recent research tackles efficiency by learning the mapping
from body pose and shape to the clothing deformation produced by
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physical simulations [Bertiche et al. 2020a,b; Chentanez et al. 2020;
Gundogdu et al. 2019; Jin et al. 2020; Patel et al. 2020; Santesteban
et al. 2019; Vidaurre et al. 2020; Wang et al. 2019; Zhang et al. 2021].
Among those methods, one notable concurrent work [Santesteban
et al. 2021] adopts a similar strategy to model clothing with a VAE
and animates clothing with a temporal model. Compared with our
work, this approach focuses on avoiding collision in the clothing
output, but does not model clothing from real-world captured data,
or produce a photo-realistic rendering of the clothing. Cloth simula-
tion has been leveraged in human performance capture to produce
more realistic dynamic deformation of the clothing. Stoll and col-
leagues reconstruct a time-varying surface geometry of the clothing
from multiview video recordings and then estimate the parameters
of a physical simulation model of the clothing [Stoll et al. 2010].
SimulCap contributes a monocular human performance capture sys-
tem that not only captures the skeleton motion but also simulates
cloth dynamics and cloth-body interactions [Yu et al. 2019].
Data-driven human modeling has been leveraged very effec-

tively in recent years. The seminal work, SCAPE [Anguelov et al.
2005], learns a parametrized human body shape model from a large-
scale dataset of 3D scans. A variation of SCAPE that integrates the
learned pose dependent blend shapes, SMPL [Loper et al. 2015],
has been widely used for human modeling and pose estimation.
However, these models can only model a human body dressed in
skin tight clothing. In order to synthesize the deformation of cloth-
ing, apart from the aforementioned simulation-based learning ap-
proaches, many methods resort to learning the deformation from
real 4D capture data. DeepWrinkle [Lahner et al. 2018] consists
of two modules that learn the global cloth deformation in a PCA
subspace as well as high frequency details, such as finer wrinkles,
on a normal texture. Similarly, Ma and colleagues learn a pose-
dependent clothing shape from 4D scans with different geometric
representation, including mesh-based graph convolution [Ma et al.
2020], surface elements [Ma et al. 2021] and implicit functions [Saito
et al. 2021]. Compared with our work, these methods mostly focus
on modeling the clothing geometry, with less effort on creating
photo-realistic rendering of clothing appearance.

Another family of generative human modeling methods does not
focus on the 3D geometry, but aims to synthesize photo-realistic hu-
man images. These neural rendering approaches typically formulate
the task as an image translation problem, and learn the mapping
from joint heatmaps [Aberman et al. 2019], rendered skeleton [Chan
et al. 2019; Esser et al. 2018; Pumarola et al. 2018; Si et al. 2018], or
rendered meshes [Liu et al. 2019c,b; Prokudin et al. 2021; Raj et al.
2021; Sarkar et al. 2020; Wang et al. 2018], to real images. In con-
trast to these approaches, Deep Appearance Models [Lombardi et al.
2018] explicitly handle both facial geometry and appearance in the
form of view-dependent texture, and is capable of producing view-
dependent effects and correcting geometric artifacts. In recent work,
Bagautdinov and colleagues extend deep appearance models to full
bodies [Bagautdinov et al. 2021]. However, as this method does not
explicitly model clothing, it may struggle in settings where clothing
is loose or exhibits significant dynamics. Most related to our paper
is the concurrent work of Habermann and colleagues [Habermann
et al. 2021]. This work addresses a similar problem of creating a dy-
namic free-view point rendering of a specific subject given skeleton
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Fig. 2. An overview of our proposed method in procedural order.

motion as input. It uses a neural network to regress the clothed body
shape represented by an embedded graph plus additional deforma-
tion and a dynamic texture. Compared with this work, our method
uses a two-layer formulation for both registration and modeling
that enables high-quality animation output.

Dynamic scene capture is an alternative yet less practical ap-
proach for telepresence, because it does not compress the dynamic
information of the scene as a latent code like our approach, and
therefore requires a much higher communication bandwidth. That
said, our method is still highly related to these methods, as we rely
on dynamic scene capture to obtain training data. Most of the exist-
ing approaches rely on multi-camera systems to recover detailed
geometry using silhouettes or photometric stereo. They reconstruct
either the shapes of each individual time step [Matusik et al. 2000;
Starck and Hilton 2007; Waschbüsch et al. 2005], or a temporally
coherent shape by deforming a template to match the multi-view
constraints [Carranza et al. 2003; de Aguiar et al. 2008]. While some
of the methods work for general scenes, many of them are dedi-
cated to human bodies [Bray et al. 2006; Brox et al. 2010; Gall et al.
2009; Liu et al. 2011; Mustafa et al. 2015; Vlasic et al. 2008; Wu et al.
2013, 2012]. In recent years, many attempts have been made to al-
leviate the requirement of multi-camera systems by using depth
sensors [Bogo et al. 2015; Guo et al. 2015; Helten et al. 2013; Li et al.
2009; Zhang et al. 2014] or even a monocular RGB camera [Haber-
mann et al. 2019, 2020; Huang et al. 2017; Xu et al. 2018]. Although
compelling results have been demonstrated, these approaches are
fundamentally ill-posed and suffer from occlusion and depth ambi-
guities. Furthermore, in contrast to our method, they typically treat
the character as a topologically connected template, and therefore
are not able to handle movement of the clothing, such as sliding of
the sleeves on the arms. Another line of work specifically focuses
on capturing clothing deformations [Bradley et al. 2008; Chen et al.
2015; Pons-Moll et al. 2017; Xiang et al. 2020; Zhou et al. 2013]. For
instance, ClothCap [Pons-Moll et al. 2017] automatically segments
the different pieces of clothing and tracks the deformation of the
clothing over time from 4D scans. Zhang and colleagues recover
the detailed body shape under the clothing [Zhang et al. 2017]. Our
approach relies on these two methods for the generation of training
data. More recently, multiple approaches have been proposed to
capture human appearance by modeling the radiance field with a
deep neural network [Park et al. 2020; Peng et al. 2021; Pumarola
et al. 2021; Wang et al. 2021]. These methods can synthesize photo-
realistic novel views of the captured scene or human subject, but
unlike our work, cannot be used as animatable virtual avatars.

3 METHOD OVERVIEW
Our goal in this paper is to build full-body clothed digital avatars
that enable photorealistic rendering from any viewpoint. To make
the avatars useful, they should be animatable given some driving
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Fig. 3. The clothed body registration pipeline that we use to generate training data for our two-layer codec avatars.

signals that can be obtained at modest cost. We choose 3D skeletal
joint angles and facial keypoints as the input conditioning, similar to
previous work [Bagautdinov et al. 2021]. For example, these driving
signals can be obtained by multi-view triangulation and inverse
kinematics from a sparse set of cameras.
The central idea of our method is to explicitly represent body

and clothing as two separate layers. We take this approach for
three reasons. First, we notice that the deformation of the body and
the clothing follow different movement patterns because of their
different dynamics. A single frame of joint angles in the driving
signal can largely determine the body state through Linear Blending
Skinning (LBS) and pose-dependent deformation. In contrast, the
dynamics of clothing can vary too much to be described only by
current body pose without considering temporal information. Thus
the body and clothing layers need to be controlled by different input
conditioning. Second, in the single-layer registration of the body
with the clothing, a specific vertex along the clothing boundary can
belong to either the body region or the clothing region in different
frames due to the sliding motion of the clothing relative to the body,
which violates the single layer assumption. A codec avatar trained
with such data often has a color between the clothing and skin colors
in such a region, leading to ghosting effects around the sleeves and
neck of the garment. Although disentanglement could alleviate this
kind of artifact, it cannot eliminate it due to limited training data
capturing the complex interaction between clothing and the body.
In our work, with the registration of body and clothing in separate
layers, such artifacts can be avoided because each vertex is either
part of body or the clothing across all frames. Third, separate layers
for body and clothing open up opportunities for further changing
the appearance of the avatar, such as temporally consistent editing
of the clothing texture without interfering with the body appearance.
This capability might also make it possible to alter the clothing style
through physical simulation, which we leave for future work.

In this work, we assume that the subject to be modeled wears a
T-shirt and pants. We only model the T-shirt in the second, outer
layer because it exhibits most of the dynamics and variations in
geometry and texture. In the inner layer, we model the body region
covered by the outer layer (torso and upper arms) and the rest of
human surface, including the head, arms, pants1 and shoes.
In Section 4, we briefly describe our two-layer geometry-based

surface registration method to generate the necessary training data
for the codec avatars. In Section 5, we present our two-layer codec
avatars. We describe the architecture of the body branch in Sec-
tion 5.1 and clothing branch in Section 5.2, as well as the joint
training of both branches through inverse rendering in Section 5.3.
In Section 5.4, we propose a method for texture alignment to im-
prove the photometric correspondences between registered clothing
meshes across different frames. In Section 6, we present the tempo-
ral model used to animate our clothed avatars using a sequence of
joint angles as the driving signal. A visualization of the method is
shown in Fig. 2.

4 CLOTHED BODY REGISTRATION
The pipeline to generate the data for training our two-layer codec
avatars is illustrated in Fig. 3. Our goal is to register the body and
clothing geometry in two separate layers. A more detailed descrip-
tion of this pipeline can be found in the supplementary document.

Data preprocessing. The input to our pipeline is a sequence of RGB
images of the subject captured by a synchronized multi-camera
system. The raw RGB images are used to create a dense 3D re-
construction of the human surface with a multi-view Patchmatch
reconstruction algorithm [Galliani et al. 2015]. An example of the
reconstructed mesh can be seen in Fig. 3. In addition, we obtain a

1The pants of the captured subjects in this work are tight and thus not worth the effort
of modeling as a separate layer. We demonstrate in the results that the advantage of
clothing modeling as a separate layer is obvious when the garment is loose.
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Fig. 4. Network architecture of our two-layer full-body codec avatar. We show the body network on the left and the clothing network on the right, including
the input and output of each network.

part segmentation of different body and clothing regions for each
captured image. We also run 2D keypoint detection for the body,
face and hands, which are triangulated to obtain 3D keypoints.

Single-Layer Surface Tracking.We non-rigidly register the recon-
structed meshes with a kinematic body model, similar to [Zhang
et al. 2017] and [Walsman et al. 2017]. We estimate a personalized
rest-state shape and a set of of joint angles for each frame by mini-
mizing the difference between the LBS output and the reconstructed
surface, as well as the 3D keypoints in the previous step. We further
perform free-form Iterative Closest Points (ICP) registration using
the skinned kinematic model as initialization.
Mesh Segmentation. In this step, we segment the single-layer

tracked meshes into separate body and clothing parts. We unproject
the image segmentation labels onto the mesh and for each vertex
take the majority of votes across different views. Similar to [Pons-
Moll et al. 2017], we also run the Markov Random Field (MRF) to
remove noisy segmentation labels.

Clothing Registration. Our clothing registration step is similar to
[Pons-Moll et al. 2017]. We manually create a template clothing
mesh and use it to register the clothing region of the single-layer
tracked mesh for each frame. Essentially we run a non-rigid ICP
algorithm that aligns the template and target clothing region. To
provide good initialization for the optimization, we find it useful to
apply Biharmonic Feformation Fields [Jacobson et al. 2010] which
generate a deformed template mesh whose boundary is directly
aligned with the target clothing boundary with the lowest possible
interior distortion.

Inner-Layer Shape Estimation. The inner-layer geometry consists
of two parts: the invisible body region covered by the clothing in
the upper body, which we estimate using the method in [Zhang et al.
2017], and the visible region of the human surface, which can be
directly obtained by matching with the single-layer tracking results.
Unlike [Zhang et al. 2017], we only need to estimate the underlying
body shape of the upper body, because the pants are treated as part
of the inner layer in this work.

5 CLOTHED BODY MODELING
We now present our two-layer codec avatars with explicit clothing
modeling. Similar to [Lombardi et al. 2018] and [Bagautdinov et al.

2021], we employ a Variational Autoencoder (VAE) as our generative
model. In our two-layer formation, we train a separate network to
learn the deformation space for body and clothing, while the corre-
lation between body and clothing can be learned afterwards with a
temporal model for animation. To this end, we train a body decoder
which takes the skeletal pose as input, and predicts geometry and
view-conditioned texture for the inner body layer, as shown on the
left of Fig. 4. Similarly, we train a clothing decoder with a VAE,
as shown on the right of Fig. 4. Similar to existing approaches to
body modeling [Loper et al. 2015; Osman et al. 2020], we only learn
the geometry in the canonical pose space for both the body layer
and the clothing layer by applying an inverse LBS transform. This
technique reduces the deformation space that needs to be learned.
In the following sections, we introduce the detailed structure for the
body and clothing networks, and explain how we train them. Imple-
mentation details including loss weights and network architecture
can be found in the supplementary document.

5.1 Body Decoder
As shown on the left of Fig. 4, our body network is similar to the
decoder structure in [Bagautdinov et al. 2021], without the encoder.
Once the clothing is decoupled from the body, the skeletal pose
and facial keypoints contain sufficient information to describe the
body state (including pants that are relatively tight). We do not
use a latent code as conditioning for the body network to avoid
the difficult problem of disentanglement between the latent space
and the driving signal, as described in [Bagautdinov et al. 2021].
Our body decoder takes in the skeletal pose, facial keypoints and
view-conditioning as input, produces unposed geometry in a UV
positional map and view-dependent texture for the body as output.
A LBS transformation is then applied to the unposed mesh restored
from the UV map to produce the final output mesh.

The loss function to train the body network is defined as:

𝐸𝐵train = 𝜆𝑔 ∥Vp
𝐵
− Vr

𝐵 ∥
2 + 𝜆𝑙𝑎𝑝 ∥L(V

p
𝐵
) − L(Vr

𝐵)∥
2

+ 𝜆𝑡 ∥(Tp𝐵 − Tt
𝐵
) ⊙ 𝑀V

𝐵
∥2,

(1)

where Vp
𝐵
is the vertex position interpolated from the predicted

position map in UV, and Vr
𝐵
is the vertex from inner layer registra-

tion from Sec. 4, 𝐿(·) is the Laplacian operator, Tp
𝐵
is the predicted

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:6 • Xiang, D. et al

texture, Tt
𝐵
is the reconstructed texture per-view, and 𝑀V

𝐵
is the

mask indicating the valid UV region.

5.2 Clothing Network
As shown on the right of Fig. 4, we model the clothing appearance
with a Conditional Variational Autoencoder (cVAE). The encoder
takes as input the unposed clothing geometry and mean-view tex-
ture, and produces parameters of a Gaussian distribution, from
which a latent code z is sampled. Besides the latent code, the de-
coder also takes spatial-varying view conditioning as input, and
predicts geometry and texture for the clothing. Then, the training
loss is described as:

𝐸𝐶train = 𝜆𝑔 ∥Vp
𝐶
− Vr

𝐶 ∥
2 + 𝜆𝑙𝑎𝑝 ∥L(V

p
𝐶
) − L(Vr

𝐶 )∥
2

+ 𝜆𝑡 ∥(Tp𝐶 − Tt𝐶 ) ⊙ 𝑀V
𝐶 ∥2 + 𝜆kl𝐸kl,

(2)

where Vp
𝐶
, Vt

𝐶
, Tp

𝐵
, Tt

𝐵
, and 𝑀V

𝐶
are all defined similarly to the pa-

rameters in the body decoder but with respect to clothing, 𝐸kl is a
conventional KL divergence loss.

5.3 Inverse Rendering with Two-layer Representation
The ICP-based clothing registration algorithm in Section 4 and pre-
vious work [Pons-Moll et al. 2017] aims to align the boundary of
the clothing template with the target area, while there is no explicit
constraint for the interior correspondences except for the mesh reg-
ularization. Therefore, the registered meshes from Sec. 4 may suffer
from correspondence errors in the interior (see the first column of
Fig. 8), which significantly influences the decoder quality, especially
for dynamic clothing. In order to correct the correspondences in the
training stage, we need to link the predicted geometry and texture
to the input multi-view images in a differentiable way. To this end,
after the body and clothing networks are separately trained as de-
scribed in Sec. 5.1 and 5.2, we jointly train the body and clothing
networks by rendering the output with a differentiable renderer. We
use the following loss functions:

𝐸invtrain = 𝜆𝑖 ∥IR − IC∥ + 𝜆𝑚 ∥MR −MC∥
+ 𝜆𝑣𝐸softvisi + 𝜆𝑙𝑎𝑝𝐸lap,

(3)

where IR and IC are the rendered image and the captured image,
MR and MC are the rendered foreground mask and the captured
foreground mask, and 𝐸lap is the Laplacian geometry loss similar to
that defined in Eqn. 1 and 2. 𝐸softvisi is a soft visibility loss, similar
to [Liu et al. 2019a], that is specifically designed to handle the depth
reasoning between the body and clothing so that the gradient can
be back-propagated through if the depth order is wrong. In detail,
we define the soft visibility for a specific pixel as

𝑆 = 𝜎

(
𝐷C − 𝐷B

𝑐

)
, (4)

where 𝜎 (·) is the sigmoid function, 𝐷C and 𝐷B are the depth ren-
dered from the current viewpoint for the clothing and body layer,
and 𝑐 is a scaling constant. Then the soft visibility loss is defined as:

𝐸softvisi = 𝑆2, (5)

when 𝑆 > 0.5 and the current pixel is assigned to be clothing ac-
cording to the 2D cloth segmentation. Otherwise, 𝐸softvisi is set to
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Fig. 5. Our inverse-rendering-based photometric texture alignment method
(Sec. 5.4). First, the anchor frames are used to train the anchor VAE with
photometric loss applied to the differentiable rendering output. Then, a
separate VAE for each chunk of frames is initialized independently from the
anchor VAE and trained using the same loss function. Here we only show
the texture and omit the geometry in the VAE input and output for clarity.

0. If the pixel is labeled as clothing but the body layer is on top of
the clothing layer from this viewpoint, the soft visibility loss will
back-propagate the information to update the surfaces until the
correct depth order is achieved.
Following [Bagautdinov et al. 2021] in this inverse rendering

stage, we also use a shadow network that computes quasi-shadow
maps for body and clothing given the ambient occlusion maps. In
contrast to the approach of [Bagautdinov et al. 2021] where the
ambient occlusion is approximated with the body template after
the LBS transformation, we compute the exact ambient occlusion
using the output geometry from the body and clothing decoders
because we aim to model a more detailed clothing deformation than
can be produced by the LBS transformation. The quasi-shadow map
is then multiplied with the view-dependent texture before applying
the differentiable renderer.

5.4 Texture Alignment with Inverse Rendering
The inverse rendering method mentioned in Sec. 5.3 already has the
capability to improve photometric correspondences to some extent,
because the network tends to predict texture with less variance
across frames, along with deformed geometry to align the rendering
output with the ground truth images. Ideally we only need to train
the two decoders simultaneously with the inverse rendering loss to
correct the correspondences while creating the generative model
for driving the animation. However, we find that this alone would
not correct all the correspondence errors. The model might not find
a good minimum for two reasons. First, the variation in photometric
correspondences in our initial registration may be too large for the
network to fix. Secondly, our VAE model with view conditioning
may allow the decoder to cheat with the view-dependent texture
rather than moving the geometry.
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Fig. 6. The clothed body animation pipeline.

These problems motivate us to propose a new way to use inverse
rendering for correspondence improvement. First, we separate the
registered meshes into chunks of 50 neighboring frames. Then, we
select the first chunk as the anchor frames, and train an anchor
network for this chunk using the inverse rendering model described
in Sec. 5.3. After convergence, we use the trained network param-
eters to initialize the training of other chunks. To make sure that
the alignment of the other chunks does not drift from the anchor
frames, we set a small learning rate (1e-4 for the AdamW optimizer),
and mix the anchor frames with each other chunk during training.
We remove the view conditioning from the texture branch of our
decoder in Sec. 5.3, and use a single texture prediction for inverse
rendering in all the camera views. The output geometry predicted
by the network of each chunk after training has more consistent
correspondences across frames compared with the input, which is
manifested by the consistent projected texture pattern in the UV
space shown in Fig. 8. A visual illustration of this process is provided
in Fig. 5. This method has a similar spirit to previous UV-template-
based texture alignment approaches [Bogo et al. 2017; Garrido et al.
2013], but naturally extends the idea to a neural-network formula-
tion under the framework of codec avatars.
The method described here is applied after the two-layer regis-

tration is obtained in Section 4, as shown in Fig. 2. For each frame,
we use the output geometry predicted by the network as a new
registered mesh with the improved correspondences. We use these
data to train the body and the clothing networks, as described in
Section 5.1-5.3.

6 TEMPORAL MODELING FOR POSE-DRIVEN
CLOTHING ANIMATION

In our two-layer codec avatars, the body output is conditioned
on a single frame of skeletal pose and facial keypoints, while the
clothing state is determined by the latent code. In order to animate
the clothing from the driving signal, we use a Temporal Convolution
Network (TCN) to learn the correlation between body dynamics and
clothing deformation. Our TCN takes in the sequence of previous
and current skeletal pose and infers the latent clothing state.

An illustration of our animation pipeline is shown in Fig. 6. The
temporal convolution network takes as input the joint angles in
a window of 𝐿 frames up to the target frame, and passes through

Fig. 7. An example of resolving intersection. The intersecting area is high-
lighted by the zoomed boxes.

several 1D temporal convolution layers to predict the clothing latent
code for the current frame z. To train the TCN, we minimize the
following loss function:

𝐸𝑇𝐶𝑁train = ∥z − zc∥2, (6)

where zc is the ground truth latent code obtained from the trained
clothing VAE.

An alternative formulation would be to condition the prediction
on not just previous body states, but also previous clothing states.
This formulation is inspired by cloth simulation, where the clothing
vertex position and velocity in the previous frame are needed to
compute the current clothing state. However, in our data-driven
setting, we find that such an auto-regressive model that takes in
previous clothing states is hard to train and does not outperform the
non-autoregressive model given the limited amount of data (25 min).
Therefore, the input to our TCN is a temporal window of skeletal
poses, not including the previous clothing states.

Resolving Intersection. One solution is to add a training loss for
TCN to make sure that the predicted clothing does not intersect with
the body. However, even without a loss to penalize intersection, the
clothing states predicted by our TCN model already match the body
shape well, resulting in only minimal intersection. Thus we only
need to resolve intersection as a post processing step. We project the
intersecting clothing back onto the body surface with an additional
margin in the body normal direction. This operation will solve most
intersections and make sure that the clothing and body are in the
right depth order for rendering. An example of these results can be
seen in Fig. 7.

7 RESULTS
In this section, we first introduce our capture system and captured
data. Then we show the results of our photometric texture align-
ment method to demonstrate its effectiveness in achieving better
photometric correspondence in the UV space. After that, we show
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Before texture alignment After texture alignmentError before texture alignment Error after texture alignment

Fig. 8. Inverse-rendering-based texture alignment results. From left to right, we show (1) projected texture on the clothing mesh before texture alignment,
(2) error map between the first column and the mean texture of anchor frames, (3) projected clothing texture after texture alignment, and (4) the difference
between the third column and the mean texture of anchor frames. The error maps are visualized with the Jet colormap; lighter color represents larger error. We
also show a zoomed-in version of the text region to highlight the difference.

the animation output of our two-layer codec avatars with explicit
clothing modeling. In particular, we demonstrate the advantage of
our two-layer formulation against the single-layer model in previ-
ous work. We close by demonstrating clothing texture editing for
animation.

7.1 Data Capture
The training data for our codec avatars are captured by a multi-view
capture system consisting of around 140 cameras that are distributed
uniformly on a half dome above the ground. All the cameras runwith
hardware synchronization, capturing at the resolution of 4096×2668
and 30 fps. Three identities, one female (Subject 1) and two males
(Subject 2 and Subject 3), are capturedwith a pre-defined acting script.
The script is designed to capture peak poses with the activation

going through all body joints, followed by a 10-minute conversation
to capture social behavior. For each subject, we collect sequences of
40k-50k frames in total and intentionally leave out approximately
4-5k contiguous frames for testing.

7.2 Texture Alignment with Inverse Rendering
In this section, we show the results of texture alignment based on
inverse rendering (Section 5.4) on the sequence of Subject 2. Tex-
tures are projected from the raw captured images to the registered
meshes before and after the texture alignment procedure, and then
unwrapped into the UV space for comparison. Example results for
several frames are shown in the first and third column of Fig. 8. To
assess the quality of alignment, we compare the mean UV texture
of the anchor frames with the unwrapped texture of each individual
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Fig. 9. Mean (top row) and standard deviation (bottom row, converted to
jet colormap) of unwrapped texture before (left column) and after (right
column) texture alignment on the sequence of Subject 2.

frame. The error map is then visualized by the Jet colormap, shown
in the second and fourth column of Fig. 8 respectively.

The visible pattern in the heatmap before texture alignment (the
second column) verifies the lack of accurate interior correspon-
dences in the registered clothing meshes from the ICP algorithm
(Section 4). After the texture alignment (the fourth column), the
error between the UV texture of those frames and the mean of an-
chor frames is significantly reduced. This result suggests that the
correspondences in the mesh interior are improved in the inverse
rendering process, and demonstrates the effectiveness of our texture
alignment method.
To statistically evaluate the quality of photometric correspon-

dence in the UV space, we compute the mean and standard deviation
of the unwrapped texture across different frames, as visualized in
Fig. 9. Comparing the mean texture images, we observe a much
sharper text pattern after texture alignment than before. Similarly,
the standard deviation after texture alignment becomes smaller and
more concentrated in the spatial domain. This result also verifies the
improvement of photometric correspondence thanks to our texture
alignment approach.

7.3 Pose-Driven Animation
In this section, we present animation results produced by our two-
layer codec avatars driven by the 3D skeletal pose and facial key-
points. In our animation pipeline, the body decoder is directly driven
by skeletal pose and facial keypoints of the current frame; on the
other hand, the clothing decoder is driven by latent clothing code
generated by the temporal clothingmodel in Section 6, which takes a

Ours Bagautdinov et al. Captured image

Fig. 10. Comparison of animation output between our proposed method
and baseline [Bagautdinov et al. 2021] on the Subject 1 sequence.

temporal window of history and current poses as input. We compare
the quality of our animation with previous work [Bagautdinov et al.
2021] that uses a single-layer codec avatar. We follow the method
described in [Bagautdinov et al. 2021] to animate the single-layer
codec avatar: we randomly sample the unit Gaussian distribution,
and use the resulting noise values for imputation of the latent code.
The sampled latent code, the skeletal pose and facial keypoints are
fed together into decoder network.We present qualitative animation
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Ours Bagautdinov et al. Captured image

Fig. 11. Comparison of animation output between our proposed method
and baseline [Bagautdinov et al. 2021] on the Subject 2 sequence.

results on all three testing sequences, shown in Fig. 10, 11, and 12.
Our animation results are better seen in the supplementary video.
Our two-layer formulation helps remove the severe artifacts in

the clothing regions in the animation output of [Bagautdinov et al.
2021], especially around the clothing boundary of Fig. 10, and 12.
Indeed, as the body and clothing are modeled together, the single-
layer avatars rely on the latent code to describe the many possible

Ours Bagautdinov et al. Captured image

Fig. 12. Comparison of animation output between our proposed method
and baseline [Bagautdinov et al. 2021] on the Subject 3 sequence.

clothing states corresponding to the same body pose. During ani-
mation, however, the absence of a ground truth latent code leads
to degradation of the output, despite the efforts in [Bagautdinov
et al. 2021] to disentangle the latent space from the driving signal.
In contrast, our animation model achieves better animation quality
by separating body and clothing into different modules: the body de-
coder can determine the body states given the driving signal of the
current frame; the temporal model learns to infer the most plausible
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w/o latent space ours ground truth
w/o texture 
alignment ours ground truth

w/o view-
conditioning ours ground truth

(A) (B) (C)

Fig. 13. Ablation analysis of system components. In (A) we compare our results with a model without clothing VAE latent space for clothing, instead directly
regressing clothing geometry and texture from a sequence of skeleton poses as input. In (B) our output is compared with the model trained using data without
the texture alignment step. In both (A) and (B) our method shows sharper logo pattern. In (C), we show results with (ours) and without view-conditioning
effects. Notice the strong reflectance of lighting near the silhouette of subject captured by our view-conditioning modeling.

Sequence [Bagautdinov et al. 2021] Ours
MSE↓ SSIM↑ MSE↓ SSIM↑

Subject 1 100.57 0.8720 74.73 0.8816
Subject 2 81.95 0.8804 58.14 0.8917
Subject 3 456.20 0.8159 356.52 0.8230

Table 1. Quantitative comparison between our proposed method and the
previous work. We report Mean Square Error (lower better) and the Struc-
tural Similarity Index Measure (higher better) on all three testing sequences.

clothing states from body dynamics for a longer period; the clothing
VAE ensures a reasonable clothing output given its learned smooth
latent manifold. In addition, our two-layer avatars show results with
a sharper clothing boundary and clearer wrinkle patterns in these
images.

We also quantitatively compare the animation output of our two-
layer codec avatars with the baseline method [Bagautdinov et al.
2021] by evaluating the output images against the captured ground
truth images. We report the evaluation metrics of Mean Square
Error (MSE) and Structural Similarity Index Measure (SSIM) over
the foreground pixels. The results are shown in Tab. 1. Our method
consistently outperforms [Bagautdinov et al. 2021] on all three
sequences and both evaluation metrics. In particular, it is worth
noting that our advantage on MSE is most obvious on the sequence

of Subject 3, who is wearing a loose T-shirt that is hard to model
with the single-layer avatar. This result agrees with our qualitative
observation of the images as well.

7.4 Ablation Analysis
In this section, we present an ablation analysis on several different
components in the design choice of our system. The results are
shown in Fig. 13.

First, we analyze our design of VAE (Sec. 5.2) + temporal model-
ing (Sec. 6) for clothing animation. One alternative for this design
is to combine the functionality of these two networks into one: to
train a decoder that takes a sequence of skeleton poses as input
and predicts clothing geometry and texture as output. The result of
this comparison is shown on the left of Fig. 13. Here, the baseline
model produces blurry output around the logo on the T-shirt. Even a
sequence of skeleton poses does not contain enough information to
fully determine the clothing state. Therefore, similar to the analysis
in [Bagautdinov et al. 2021], directly training a regressor from the
information-deficient input to final clothing output leads to under-
fitting to the data by the model. In contrast, in our proposed system,
the VAE network can model different clothing states in detail with
a generative latent space, while the temporal modeling network
infers the most probable clothing state. In this way, our method can
produce high-quality animation output with sharp detail.

ACM Trans. Graph., Vol. 40, No. 6, Article 1. Publication date: December 2021.



1:12 • Xiang, D. et al

Fig. 14. Texture editing results of our two-layer codec avatars. From left to right, we show application of color transformation, checkerboard pattern, random
artist-created pattern, and an ACM SIGGRAPH logo, respectively, for three different frames.

Next, we demonstrate the influence of photometric texture align-
ment (Sec. 5.4) on the final animation output.We compare the results
generated by our full model, which is trained on registered body
and clothing data with texture alignment, against a baseline model
trained on data without texture alignment (output of Sec. 4). The
result is shown in the middle of Fig. 13. We see that photometric

texture alignment also helps to produce sharper detail in the anima-
tion output, as the better texture alignment makes the data easier
for the network to model.

In addition, we also validate the ability of our network to generate
view-dependent effects. We compare our full model with a baseline
model where the body and clothing networks do not take view
conditioning as input. The results are shown on the right of Fig. 13.
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Fig. 15. Comparison between the single-layer model (bottom row) and the
two-layer model (top row) on texture editing in three different frames. The
first column shows the frame where we manually segment out the upper
clothing region in the UV space for the single-layer model.

Our output with view-dependent effects is visually more similar to
the ground truth than the baseline model without view conditioning.
The most obvious difference is observed near the silhouette of the
subject, where the view-dependent output is brighter due to Fresnel
reflectance when the incidence angle gets close to 90◦ [Lafortune
et al. 1997], an important factor that makes the view-dependent
output more photo-realistic.
In the supplementary material, we also include a video compar-

ison of animation results with different lengths 𝐿 of the temporal
window as input to our TCN (Sec. 6). With a small temporal window
(for example 𝐿 = 1, 3, 8), the temporal model tends to produce output
with jittering. We find 𝐿 = 15 or 30 achieves a good tradeoff be-
tween visual temporal consistency and model efficiency. For a more
detailed analysis of this issue, please refer to the supplementary
document.

7.5 Application: Clothing Texture Editing
In this section, we demonstrate editing for the clothing texture.
On top of our photorealistic animation output, we further edit the
clothing pattern in four different styles. First, we multiply the RGB
channels of the clothing UV texture with different scaling factors to
modify the color of the clothing. Second, we apply a checkerboard
pattern on our clothing layer. Third, we ask an artist to create a
stylistic pattern and then apply it to our clothing animation output.
Fourth, we add the ACM SIGGRAPH Logo and text to the front side
of the clothing. The results are shown in Fig. 14. Once the desired
pattern is determined, our model can produce animation with the
edited texture for any motion sequence similar to those shown in
Sec. 7.3.

Compared with the single-layer model, our two-layer structure
naturally allows us to easily manipulate the clothing texture in the
UV space without interfering with the inner layer in a temporally
coherent manner. For comparison, we apply the same blue color
transformation to the single-layer output. For this purpose, we
manually segment out the clothing region for the first frame in the
sequence in the UV space, and apply the color transformation in
the segmented region to all the following frames. This approach
produces reasonable results for the first frame (shown on the first
column of Fig. 15); for the following frames, however, applying
the color transformation in the same UV region will suffer from
misalignment of the edited area and actual clothing region, as shown
in the right two columns of Fig. 15. The visual artifact caused by this
misalignment is highlighted in the zoomed-in boxes in the figure.

8 DISCUSSION
We have proposed a two-layer mesh representation for building
an animatable avatar for clothed body. Results have demonstrated
that the explicit clothing modeling not only improves the rendered
clothing quality in animation, but also enables the editability of the
clothing texture, opening up new possibilities for codec avatars. The
two-layer avatar models cannot be obtained without the success of
two-layer registration of the clothed body. We thus have presented
a new clothed body registration method along with a texture align-
ment method to improve the photometric correspondences using
inverse rendering.
Our clothed body model is trained for each individual subject

and also can only be animated for that individual. All the driving
signals have been captured from the same subject performing social
interactions. The animatable model may not be able to generalize
to poses deviating significantly from the training pose distribution.
Artifacts may appear if our model is used for arbitrary motion
retargeting.
In this work, we are only focusing on T-shirts. To extend the

work to lower body clothing, like short pants with the boundary
shifting on the legs, we need to extend the current two-layer work
to handle multiple layers, potentially with occlusion between layers,
which poses additional challenges to both registration and modeling.
Another common piece of clothing is a skirt, which could be even
more difficult due to its large motion and deformation. We cannot
handle topology-changing clothing, like opening a zipped jacket.
Even with the current two-layer framework, our clothing reg-

istration method would fail if the hands and clothing interact sig-
nificantly, for example, hands dragging the clothing or hands put
under the clothing. The current non-physical interaction modeling
between clothing and body may not easily extend to handle these
challenges. One possibility is to integrate more physical constraints
into registration and learning for animation.
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