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ABSTRACT

We study a crowdsourcing setting where we need to infer the latent
truth about a task given observed labels together with context in the
form of a classifier score. We present Theodon, a hierarchical non-
parametric Bayesian model, developed and deployed at Meta, that
captures both the prevalence of label categories and the accuracy of
labelers as functions of the classifier score. Theodon uses Gaussian
processes to model the non-uniformity of mistakes over the range
of classifier scores. For our experiments, we used data generated
from integrity applications at Meta as well as public datasets. We
showed that Theodon (1) obtains 1–4% improvement in AUC-
PR predictions on items’ true labels compared to state-of-the-art
baselines for public datasets, (2) is effective as a calibration method,
and (3) provides detailed insights on labelers’ performances.
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1 INTRODUCTION

Crowdsourcing is a well studied domain in which tasks are assigned
to humans for a variety of applications, including training machine
learning models, removing abusive content from social platforms,
and measuring the prevalence of labels in a population. A key
challenge is that humans are noisy decision makers [15], thus the
obtained labels may be incorrect. A common mitigation strategy
is to collect labels from several labelers, and aggregate them while
taking into account the accuracy of the individual labelers.
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Early work characterized labeler accuracy using a confusion
matrix for each labeler [7], with numerous extensions, e.g. [13, 14,
35]. An intuitive extension is to model labeler accuracy within some
context. This context improves the ability to aggregate labels and
provide a higher resolution into how each labeler performs. Prior
work by Yan et al. [48, 49] captures this dependency between labeler
accuracy and tasks’ features using logistic regression. However,
Wenger et al. [44] later showed that Gaussian processes (GPs) are
more effective than logistic regression, as GPs allows non-linear
relationship that cannot be modeled by logistic regression.

Our work is focused on crowdsourcing for prevalence estima-
tion, specifically of content that violates community standard of
online platforms, such as Meta1 [29] and Google2 [21]. We propose
Theodon, a Bayesian non-parametric model that learns the preva-
lence of label categories and the accuracy of labelers as functions of a
given context. Our model leverages GPs as flexible priors to model
the prevalence, sensitivity, and specificity functions.

Figure 1 illustrates this setup. We start with the entire population
(content, accounts or other entities on the platform) over which
we want to measure the prevalence of violations. Due to the large
volume, it is impossible to label the entire population; and due to the
low prevalence of violations (often below 0.1%), sampling uniformly
from the population would result in few labeled violations. Thus, we
upsample likely violations, which are sent to one or more labelers.
This upsampling process is done using a classifier that predicts
the likelihood of a violation for each entity in the population. We
note that this is different from enforcement classifiers that remove
violating content with high certainty.

The upsampling classifier, which is trained using content fea-
tures, provides a very natural context for learning both prevalence
and labelers’ performance. The labels together with the classifier
score is passed to Theodon, which infers labelers’ performance,
and aggregated labels. These, in turn, enable downstream applica-
tions, specifically prevalence measurement, classifier calibration,
and labelers’ accuracy measurement.

Our focus in this work is on binary labels (i.e., violating or not
violating), and a single feature for context – the output of a classi-
fier capturing the (potentially uncalibrated) likelihood of having
the “positive” label. However, GPs enable easy extensions to set-
tings with multiple classes and a feature vector. In addition, the
prevalence function estimates, which maps the raw classifier scores
to the calibrated probabilities, allows Theodon to be an effective
calibration method under the presence of labeling error.

1https://transparency.fb.com/policies/community-standards/
2https://www.youtube.com/howyoutubeworks/policies/community-guidelines/

 

3645

https://doi.org/10.1145/3534678.3539184
https://doi.org/10.1145/3534678.3539184
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539184


KDD ’22, August 14–18, 2022, Washington, DC, USA Viet-An Nguyen et al.

Population Samples

Sample 
non-uniformly

Sampling weights 
(based on classifier scores)

Send for 
human review

Labeling Platform

Labeler 
Performance 

Measurement

Prevalence
Measurement

Classifier 
Calibration

THEODON

Applications

Figure 1: Overview of Theodon’s crowdsourcing setup

Key Contributions

• We present Theodon, a novel Bayesian non-parametric model
that is deployed in production at Meta to aggregate crowd-
sourced labels using Gaussian processes that capture the de-
pendencies of the label’s prevalence and the labelers’ accuracy
on the task’s context, represented by a classifier score.

• UsingMeta’s crowdsourcing data and publicly available datasets,
we study the effectiveness of Theodon compared with state-of-
the-art baselines on a range of applications.

• We show that compared to state-of-the-art baselines, Theodon
(1) obtains 1–4% improvement in AUC-PR predictions on items’
true labels, (2) is effective as a calibration method, and (3) learns
detailed accuracy properties of the labelers, enabling better au-
diting and training of their labeling performances.

Related Work

One of the earliest works aggregating multiple labels was by Dawid
and Skene (D&S) [7], which in its binary form, estimates the preva-
lence of labels, and the sensitivity and specificity of labelers. Specifi-
cally, prevalence is the rate at which items with true positive labels
occur, and sensitivity and specificity capture the true positive and
true negative rates of each labeler, respectively. This D&S model
has inspired many modeling extensions [4, 30, 31, 51].

The most related works here are extensions to advance the way
prevalence and/or sensitivity/specificity can be captured in vari-
ous settings. Raykar et al. [36, 37] proposed a method to model the
prevalence using a logistic regression where each item’s feature vec-
tor is available. Rodrigues et al. [40] proposed a GP-based classifier
to capture the prevalence function, with sensitivity and specificity
as fixed parameters; while Ruiz et al. [41] extended the work by
modeling both sensitivity and specificity as stochastic latent vari-
ables. Other work also focused on supervised learning, but did so
for continuous labels using GP-based regression model [9]. The
closest work to ours is the model introduced by Yan et al. [48, 49]
which captures feature-dependent sensitivity/specificity using lo-
gistic regression.

Other works focus on using the classifier as an additional noisy la-
bel that can be leveraged to improve label aggregation. Snorkel [35]
is a weak-supervised framework that enables users to provide “la-
beling functions”, and a binarized classifier score here can also be
used as a labeling function. Another work, CLARA [29], extends
the D&S model to use the continuous score as another labeler. In
addition, by capturing the likelihood of having a “positive” label,

Notation Description

𝑁 Number of items
𝐿𝑖 Number of labels that item 𝑖 receives
𝐴 Number of unique reviewers/labelers
𝑎𝑖, 𝑗 𝑗 th reviewer of item 𝑖

𝑟𝑖, 𝑗 𝑗 th label of item 𝑖 (by reviewer 𝑎𝑖, 𝑗 )
𝑠𝑖 classifier score associated with item 𝑖

𝑦𝑖 True label category of item 𝑖

\ (𝑠) Prevalence function
𝜓𝑎 (𝑠) Sensitivity function of labeler 𝑎
𝜙𝑎 (𝑠) Specificity function of labeler 𝑎
𝛼 and 𝜌 Hyperparameters defining the kernel of GP

Table 1: Main notations used in this paper

the score also represents the item difficulty, for which previous
works [4, 43, 45] jointly inferred from the labels. In this work, we
focus on settings where the number of labels per item is typically
small and explicitly do not infer the item difficulty.

Learning the accuracy of labelers is an important component
of crowdsourcing models [13, 14]. In addition to using confusion
matrices to characterize labeling errors, other approaches have
been proposed including using item response theory [45], signal
detection theory [43] or minimax entropy principle [52]. Another
line of work tries to learn the structure of labelers’ errors by using
a hierarchical prior to improve the estimate for individuals with
few labels [4], using clustering approaches to group similar label-
ers [26, 42], modeling common confusions [6], and capturing the
correlations among labelers [3, 19, 28]. Recent work use deep neural
networks to capture annotators’ labeling behaviors [10, 38].

2 BACKGROUND

2.1 Data Properties

Our crowdsourced data contains a set of items, each is associated
with a continuous score and one or more labels provided by human
labelers. For simplicity, we assume that the task requires a binary
outcome, thus human labels are binary and there is a single score.

More formally, the input dataset consists of 𝑁 items, each re-
ceives 𝐿𝑖 binary labels denoted by {𝑟𝑖, 𝑗 }. There are𝐴 unique labelers
(annotators) who assign labels to a subset of the items. The 𝑗 th label
𝑟𝑖, 𝑗 of item 𝑖 is provided by labeler 𝑎𝑖, 𝑗 ∈ [1, 𝐴]. In addition, each
item 𝑖 also has a continuous score 𝑠𝑖 ∈ [0, 1], which captures the
likelihood of 𝑖 being in the positive class. We assume that we do
not have access to other features of each item, and if they do exist,
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they are fed to the classifier that outputs the scores 𝑠𝑖 . In addition,
in practice labeling capacity is very limited, therefore each item is
typically labeled by only a small number of reviewers, e.g., 𝐿𝑖 ≤ 3.

2.2 Gaussian Processes

A Gaussian process (GP) [34] is a stochastic process which defines a
probability distribution over the function 𝑝 (𝑓 | 𝑥) = GP (𝑚(𝑥), 𝐾 (𝑥, 𝑥 ′))
where𝑚(𝑥) and 𝐾 (𝑥, 𝑥 ′) denote the mean and covariance function
respectively. One commonly used kernel is the exponentiated qua-
dratic kernel which is defined as

𝐾𝛼,𝜌 (𝑥, 𝑥 ′) = 𝛼2 exp
(
−(𝑥 − 𝑥 ′)2/2𝜌2

)
+ 𝜎2𝐼𝑁 (1)

where 𝛼2 is the variance determining the distance of the function
away from the mean, 𝜌 is the length scale controlling the smooth-
ness of the function, 𝜎2 is the variance modeling the observation
noise, and 𝐼𝑁 is the identity matrix. As a default, we set 𝜎 = 𝑒−9

to represent very little observation noise and exclude it from the
notation of 𝐾𝛼,𝜌 for brevity.

Leveraging GPs to improve crowdsourcing models has been an
active area of research. One key direction is to treat the problem
of learning from multiple annotators a special case of supervised
learning and use GPs to build either a regressor [9] or a classi-
fier [22, 40, 41] to map item features to a latent ground truth label.
These works use either a Gaussian distribution or a confusion ma-
trix to characterize labeling errors, which is independent of the
input item features. Another line of research focuses on developing
scalable and efficient learning methods [24], while others apply
GP-based approaches to different domains including classifying
remote sensing images [25] and detecting signal glitches [23].

2.3 Classifier Calibration

A classifier is considered perfectly calibrated if the confidence in
its class prediction matches the probability of its prediction being
correct. More formally, this means E[1�̂�=𝑦 | 𝑧] = 𝑧 where 𝑦 is the
true class, 𝑦 is the predicted class, and 𝑧 is the confidence associ-
ated with the prediction. The goal of calibrating a classifier is to
transform its raw scores to the true correctness probabilities.

Developing methods for classifier calibration is an active re-
search area, especially that many modern deep neural networks
are shown to be overconfident and miscalibrated [11, 12, 18]. Some
popular calibration methods include Platt scaling [20, 32], isotonic
regression [50], Beta calibration [17], and BBQ [27]. Recent work
introduces GPcalib [44], a non-parametric calibration method using
GP which is shown to be effective for various base classifiers. In
this paper, we extend the idea to consider and incorporate labeling
error using crowdsourced data for classifier calibration.

3 MODELING CROWDSOURCED DATAWITH

GAUSSIAN PROCESSES

3.1 Generative Model

Following a rich body of research on crowdsourcing models [31],
we take a Bayesian probabilistic approach to define different latent
variables and the generative process of the observed data (Figure 2).
Specifically, the observed data include 𝑁 items, each has 𝐿𝑖 binary
labels {𝑟𝑖, 𝑗 } given by labelers {𝑎𝑖, 𝑗 } and a continuous score 𝑠𝑖 .

𝑟𝑖, 𝑗 𝑎𝑖, 𝑗

𝑦𝑖

\

𝑠𝑖

𝛼\ 𝜌\

𝜙𝑎

𝜓𝑎𝛼𝜓

𝜌𝜓

𝛼𝜙

𝜌𝜙
𝑗 = 1 . . . 𝐿𝑖

𝑖 = 1 . . . 𝑁

𝑎 = 1 . . . 𝐴

Figure 2: Graphical representation of Theodon. Nodes are

randomvariables (shaded ones are observed), edges are prob-

abilistic dependencies, and plates represent repetition.

Similar to the D&S model and many of its extensions, we de-
fine three main latent variables: prevalence, sensitivity, and speci-
ficity. The key modeling novelty here is that our proposed model
Theodon assumes all three quantities are dependent on the score
𝑠 , and are captured by the prevalence function \ (𝑠), the sensitivity
function𝜓 (𝑠), and the specificity function 𝜙 (𝑠), respectively. We also
assume that each item 𝑖 has a true, but latent label, denoted by 𝑦𝑖 .

In this work, we do not assume anything about the selection of
the scores and the labelers. Hence, we are interested in the joint
probability conditional on a and s which is given by

𝑝 (r, y, \,𝜓, 𝜙 | a, s) =
𝑝 (r | y,𝜓, 𝜙, a, s) · 𝑝 (y | \, s) · 𝑝 (\ | s) · 𝑝 (𝜓 | s) · 𝑝 (𝜙 | s)

where 𝑝 (𝜓 | s) =
𝐴∏
𝑎=1

𝑝 (𝜓𝑎 | s); 𝑝 (𝜙 | s) =
𝐴∏
𝑎=1

𝑝 (𝜙𝑎 | s);

𝑝 (y | \, s) =
𝑁∏
𝑖=1

𝑝 (𝑦𝑖 | \ (𝑠𝑖 ));

𝑝 (r | y,𝜓, 𝜙, a, s) =
𝑁∏
𝑖=1

𝐿𝑖∏
𝑗=1

𝑝 (𝑟𝑖, 𝑗 |𝑦𝑖 ,𝜓𝑎𝑖,𝑗 (𝑠𝑖 ), 𝜙𝑎𝑖,𝑗 (𝑠𝑖 )).

3.1.1 Prevalence. We assume the prevalence of the positive label
depends on the input score 𝑠 . This dependency is captured by the
prevalence function \ (𝑠), which is modeled by first drawing a func-
tion 𝑓\ from a GP prior and then transforming it into a probability
distribution using a link function

𝑓\ ∼ GP
(
𝑚\ , 𝐾𝛼\ ,𝜌\

)
; \ (𝑠) = Ω(𝑓\ (𝑠))

where Ω(𝑥) denotes a link function (typically logit or probit) which
transforms 𝑥 ∈ R into the [0, 1]-range. This \ (𝑠) function essen-
tially maps the input scores to the true probabilities, which enables
Theodon to calibrate the base classifier.

3.1.2 Sensitivity and specificity. We assume that the labeling
mistakes each labeler makes depend on both the true label of each
item and its associated input score. More specifically, each labeler
𝑎 is characterized by a sensitivity function𝜓𝑎 (𝑠) and a specificity
function 𝜙𝑎 (𝑠), which respectively define the true positive rate and
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true negative rate of labeler 𝑎 at each score 𝑠 .

𝑓𝜓𝑎
∼ GP

(
𝑚𝜓 , 𝐾𝛼𝜓 ,𝜌𝜓

)
;

𝑓𝜙𝑎
∼ GP

(
𝑚𝜙 , 𝐾𝛼𝜙 ,𝜌𝜙

)
;

𝜓𝑎 (𝑠) = Ω(𝑓𝜓 (𝑠))
𝜙𝑎 (𝑠) = Ω(𝑓𝜙 (𝑠))

3.1.3 Labels. Given \ ,𝜓 , and 𝜙 , the generative processes for the
true labels y and the observed labels r are similar to the those in
the D&S model. For an item 𝑖 , 𝑦𝑖 ∼ Bern(\ (𝑠𝑖 )) and

𝑟𝑖, 𝑗 ∼
{
Bern(𝜓𝑎𝑖,𝑗 (𝑠𝑖 )) if 𝑦𝑖 = 1,
Bern(1 − 𝜙𝑎𝑖,𝑗 (𝑠𝑖 )) if 𝑦𝑖 = 0.

For simplicity, we are focusing on binary labels with a single
classifier score associated with each item. In principle, it is straight-
forward to extend Theodon for multi-class labels by using a soft-
max link function instead. It is also straightforward to extend to
settings where there are more than one related classifier scores, or
in general, there exists a feature vector for each item by using GPs
with multi-dimensional kernel

𝐾𝛼,𝑃 (x, x′) = 𝛼2 exp
(
−1
2
(x − x′)𝑇 𝑃−1 (x − x′)

)
where 𝑃 = diag(𝜌21, 𝜌

2
2, · · · , 𝜌

2
𝑑
) comprises the length scales along

𝑑 dimensions.

3.2 GP Hyperparameters

One approach for setting the hyperparameters of the GPs could
be to maximize the marginal likelihood of the data. However, as
pointed out in [1] such a maximization approach can lead to very
unsmooth GP functions. An alternate approach presented in that
article is to put priors on the hyperparameters, and either perform
regularized maximization or simply include these as latent variables
in the model. We take the latter approach in our work. The settings
for these priors can be highly subjective and often rely on domain
expertise. We use the following prior distributions, where the priors
for 𝛼∗ and 𝜎∗ are fairly generic while the prior for 𝜌∗ is chosen to
put most of the mass around a value of 0.1 which results in smooth
GP functions. More specifically,

𝛼∗ ∼ Normal(0, 2) 𝛼∗ > 0
𝜎∗ ∼ Normal(0, 1) 𝜎∗ > 0
𝜌∗ ∼ Inverse-Gamma(3, 0.3)

For the mean values, we assume a constant mean function. Since
we subjectively expect that most labelers tend to be fairly accurate,
the prior mean of sensitivity and specificity is set to 0.8, while for
prevalence we use a uninformative prior.3 Therefore we have

𝑚\ = Ω−1 (0.5); 𝑚𝜓 = Ω−1 (0.8); 𝑚𝜙 = Ω−1 (0.8)
where Ω(𝑥) is the link function.

3.3 Posterior Inference

We perform posterior inference using Hamiltonian Monte Carlo
(HMC) by implementing Theodon (and all other model-based base-
lines) in Stan [5]. However, for Gaussian processes, a direct imple-
mentation in Stan would lead to a runtime complexity of𝑂 (𝑁 3) and
3The same prior mean of 0.8 for sensitivity and specificity is also used for other
baseline models in our experiments.

storage cost of𝑂 (𝑁 2), which can be intractable for most datasets. In
the interest of scalability, we propose to use an inducing point sparse
approximation (see for example, [33]) with𝑀 inducing points lo-
cated uniformly on the grid, which is [0, 1] in our setting. This
approximation reduces the runtime complexity to 𝑂 (𝑀2𝑁 +𝑀3)
with 𝑂 (𝑀𝑁 +𝑀2) storage. In fact, this runtime complexity is still
too high in many applications. We further use the Structured Kernel
Interpolation (SKI) method as presented in [46] with linear inter-
polation between 𝑐 = 2 nearest inducing points. The SKI method
reduces the runtime cost to𝑂 (𝑁 +𝑀2) with𝑂 (𝑀2) storage, which
is quite reasonable. In higher dimensions, the SKI paper describes a
method to exploit the Kronecker structure of the kernel, 𝐾 , to keep
the complexity w.r.t.𝑀 to 𝑂 (𝑑𝑀1+ 1

𝑑 ).

4 EVALUATION

We begin our evaluation using data from real crowdsourcing appli-
cations at Meta. Among the numerous applications of crowdsourc-
ing at Meta, in this section, we focus on the problem of prevalence
measurement, which has a setup similar to the one depicted in
Figure 1. Since we want to study the performance of Theodon un-
der a range of different scenarios, we derive distributions from the
logged data, and use them to explore a range of operating parame-
ters, which enables us to have complete control over the different
parameters, while using realistic crowdsourcing scenarios.

4.1 Deployment

Figure 3 illustrates an overview of how Theodon was deployed
at scale in production at Meta. The content is sampled in a non-
uniformly way from the population and sent to a centralized label-
ing platform for human review. The human labels and the sampling
weights are stored in the distributed file system (based on Hadoop),
which are then used to fit Theodon models. The posterior infer-
ence is done using Stan [5] on the FBLearner platform [8]. The
output estimates from Theodon are stored back to the distributed
file system and then used for monitoring and analytical purposes,
including: (1) measuring and monitoring the labeler performances
using the sensitivity and specificity functions, (2) measuring and
monitoring the prevalence of the positive class by aggregating the
prevalence function, and (3) calibrating the input classifier using
the prevalence function.

Distributed 
File System

Labeling 
Platform

FBLearner
Collect labels

Store estimates

Fit models

Dashboard

Figure 3: Overview of how Theodon was deployed at Meta

We use this deployment and logged data to generate the distri-
butions, on which we perform the analysis detailed in this section.
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Figure 4: Score distributions and prevalence functions ob-

tained from two crowdsourcing applications at Meta

4.2 Data Generation Process

Given known (obtained from the logged data) score distribution 𝑆∗,
prevalence function \∗, global sensitivity function𝜓∗, and global
specificity function 𝜙∗, Algorithm 1 describes the data generation
process in details. First, we generate a score for each item from 𝑆∗.
We then compute the mean function Ω−1 (𝜓∗) (and Ω−1 (𝜙∗)) and
covariance matrix 𝐾𝛼,𝜌 for the multivariate Gaussian distributions,
and use them to sample the sensitivity (and specificity) function
of each labeler. Finally, for each item, we simulate a true binary
label, sample its labelers uniformly at random, and generate the
crowdsourced labels based on its score, true label, and the labelers’
sensitivity and specificity functions.
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Figure 5: Sensitivity (𝜓∗
) and specificity (𝜙∗) functions

To generate data that closely reflects reality, we obtain the score
distribution 𝑆∗ and true prevalence function \∗ by collecting data
from two crowdsourcing applications at Meta. For each application,
there exists a classifier which provides a continuous score. We
extract the empirical distribution of the classifier scores and fit a
Beta distribution to generate 𝑆∗ for each application (Figure 4a).
Similarly, we obtain the true prevalence function \∗ by fitting a third
degree polynomial function on the empirical prevalence function
(Figure 4b).

To simulate different types of labeling errors, we generate three
global sensitivity and specificity functions (see Figure 5): a lin-
ear function representing a simple correlation between scores and
accuracy, and two non-linear functions, one concave, indicating
high levels of accuracy and one convex, indicating lower levels
of accuracy. We use 𝐾0.5,0.5 as the covariance matrix to generate
the per-labeler sensitivity and specificity functions, which are rel-
atively smooth and not too far away from the respective global
functions. The resulting per-labeler functions are detailed in the
supplementary material.

Algorithm 1: Data generation procedure
Input: score distribution 𝑆∗, prevalence function \∗, global

sensitivity function𝜓∗, global specificity function
𝜙∗, 𝑁 , 𝐴, 𝐿𝑖 , 𝛼 , 𝜌

foreach item 𝑖 in [1, 𝑁 ] do
Draw a score 𝑠𝑖 from 𝑆∗;

foreach labeler 𝑎 in [1, 𝐴] do
Draw 𝑓𝜓𝑎

∼ N
(
Ω−1 (𝜓∗), 𝐾𝛼,𝜌

)
;

Draw 𝑓𝜙𝑎
∼ N

(
Ω−1 (𝜙∗), 𝐾𝛼,𝜌

)
;

Define𝜓𝑎 = Ω(𝑓𝜓𝑎
) and 𝜙𝑎 = Ω(𝑓𝜙𝑎

) where
Ω(𝑥) = 1/(1 + exp(−𝑥));

foreach item 𝑖 in [1, 𝑁 ] do
Draw a true label 𝑦𝑖 ∼ Bern(\∗ (𝑠𝑖 ));
foreach observed label 𝑗 in [1, 𝐿𝑖 ] do

Choose a labeler 𝑎𝑖, 𝑗 uniformly at random;

Draw 𝑟𝑖, 𝑗 ∼
{
Bern(𝜓𝑎𝑖,𝑗 (𝑠𝑖 )) if 𝑦𝑖 = 1,
Bern(1 − 𝜙𝑎𝑖,𝑗 (𝑠𝑖 )) if 𝑦𝑖 = 0.

For each combination of 𝑆∗, \∗, 𝜓∗, and 𝜙∗, we generate 50
datasets. Each dataset contains 𝑁 = 5000 items, 𝐴 = 10 unique
labelers, and each item 𝑖 has 𝐿𝑖 = 3 observed labels.

4.3 Evaluation Metrics

We evaluate the ability of Theodon and the baselines (Table 2) to
recover the true prevalence, sensitivity, and specificity functions
from observed data. In particular, for prevalence estimate, ourmodel
produces (1) a mean function \̂ and (2) the lower bound function
\̂𝐿 and upper bound function \̂𝑈 to capture the 95% confidence
intervals. To measure the performance of the estimate with respect
to the true function \∗, we compute the absolute error and the
coverage at different scores in a pre-defined set and take the average.
More specifically, let S = {0, 0.01, 0.02, · · · , 1.0} denote the set of
scores to be evaluated at, we compute the follow two metrics:
• Mean absolute error (MAE) of the mean \̂ :

1
|S|

∑
𝑠∈S

���\̂ (𝑠) − \∗ (𝑠)���
• Coverage rate of the confidence interval (CI):

1
|S|

∑
𝑠∈S

1

{
\∗ (𝑠) ∈ [\̂𝐿 (𝑠), \̂𝑈 (𝑠)]

}
For sensitivity and specificity, we compute the same metrics for
each labeler and report the mean values averaged over all labelers.

4.4 Results

For each configuration of our simulations, we average the evalua-
tion metrics over 50 datasets and report the results in Figure 6. We
compare our model against several baselines detailed in Table 2.
Additional details about the generative process of each baseline can
be found in the supplementary material.

Overall, Theodon and Lr-Lr, with the ability to capture the
dependency between sensitivity and specificity on the scores, out-
perform the other methods for both datasets across all metrics.
Both Theodon and Lr-Lr’s performances are relatively consistent
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Baseline Prev. Sens. & Spec. Description

Fl-Fl [7] Flat Flat Models prevalence, sensitivity, and specificity using scalar probabilities, independent of
the input score, similar to the Bayesian version of D&S model and its extensions [7, 16, 30]

Lr-Fl [36, 37] Lr Flat Models prevalence using a logistic regression, sensitivity and specificity using scalar proba-
bilities, similar to Raykar et al.’s [36, 37], with the score as the only feature

Gp-Fl [40, 41] Gp Flat Models prevalence using GP, sensitivity and specificity using scalar probabilities. Similar
to Rodrigues et al. [40] that modeled sensitivity and specificity as point parameters, and
Ruiz et al. [41] that used stochastic variables

Lr-Lr [48, 49] Lr Lr Models prevalence, sensitivity and specificity using logistic regression. This is based on
Yan et al.’s [48, 49] and is closest to our work

Table 2: Baselinemethodsweuse in the paper, each is namedX-Y, X is themodel for prevalence andY is themodel for specificity

and sensitivity. Theodon can be described Gp-Gp, as it uses GP to model the prevalence, sensitivity and specificity.

(a) Application 1 (b) Application 2

Figure 6: Simulation results of Theodon and the baselines on two datasets generated using real distributions

across the three different types of labeling errors, showing their
robustness in capturing sensitivity and specificity functions with
different shapes. For the mean function estimates, the MAEs of the
two methods are similar, except for Application 1’s prevalence func-
tion which changes much more rapidly w.r.t. the score compared to
that of Application 2. For the coverage rate, however, Theodon out-
performs Lr-Lr significantly, which shows the effectiveness of our
method in capturing the uncertainty in its estimates for prevalence,
sensitivity, and specificity functions.

5 EVALUATION USING PUBLIC DATA

In this section, we compare our approach to baselines on publicly
available data. We study the performance of approaches when
varying the performance of classifiers, representing context quality.

5.1 Evaluation Setup

Datasets. We use two public datasets (collected and released by
Rodrigues et al. [39]). The first dataset, Sentiment, contains 4,999
sentences from movie reviews, each of which has a ground truth
positive or negative label. Each sentence is sent to Amazon Mechani-
cal Turk (AMT) to collect crowdsourced binary labels from multiple

annotators. The second dataset, Music, contains 30s length samples
from 700 songs, each of which is categorized into one of 10 different
genres: classical, country, disco, hiphop, jazz, rock, blues, reggae,
pop, and metal. Each song is also sent to AMT to collect crowd-
sourced labels and has a 124-dim feature vector. We transform this
dataset into 10 separate binary datasets, one for each music genre.
More details on the datasets are in the supplementary materials.

Generating classifier scores. We generate the scores by training
different classifiers using scikit-learn [2]. For the Sentiment dataset,
we extract TF-IDF features for each sentence; while for the Music
dataset, we use the 124-dim feature vector provided. Since theMusic
dataset contains 10-class labels, convert it into 10 binary datasets
and train a classifier for each binary label.

Number of labels per item. To study the performance of differ-
ent approaches using different number of labels per item, for each
item 𝑖 , we sample min(𝑙, 𝐿𝑖 ) labels without replacement from the
original 𝐿𝑖 labels, with 𝑙 ∈ {3, 5, 7, 9}.

Evaluation metrics. For each configuration, we randomly split
the data into training and test sets with an 80/20 ratio and repeat the
process 5 times. For each split, we fit each model using the training
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Metric 𝑙 Base MV FV Snorkel Fl-Fl Lr-Fl Gp-Fl Lr-Lr Theodon

Se
nt
im

en
t

ECE 3 0.2304 0.1360 0.0754 0.0989 0.0952 0.0855 0.0814 0.0729 0.0661

9 0.2394 0.1116 0.0887 0.0765 0.0842 0.0725 0.0726 0.0704* 0.0656

AUC-PR 3 0.9210 0.8931 0.9169 0.9440 0.9283 0.9578 0.9604* 0.9641* 0.9649

9 0.9345 0.9151 0.9498 0.9694 0.9536 0.9701 0.9716 0.9718 0.9771

M
us
ic ECE 3 0.1816 0.0580 0.0514 0.0649 0.0487 0.0424* 0.0403 0.0470 0.0413*

7 0.1835 0.0570 0.0635 0.0582 0.0448 0.0420* 0.0413 0.0443 0.0423*

AUC-PR 3 0.7245 0.7139 0.7094 0.7808 0.7719 0.8276 0.8513* 0.8276 0.8619

7 0.7660 0.7261 0.7399 0.8132 0.7906 0.8378* 0.8474* 0.8329* 0.8515

Table 3: Results averaged over 5 training/test splits on the Sentiment and Music datasets when varying the number of labels

per item 𝑙 . Bold denotes the best results and * denotes the results within one standard deviation of the best value per row.

data (using only the score and crowdsourced labels), and apply
them on the test set. We compute the AUCs of the P/R (AUC-PR)
curves by comparing predictions against the ground truth labels.

In addition, to evaluate the effectiveness of Theodon as a cal-
ibration method, we compute the expected calibration error

(ECE) [11, 27, 44]. More specifically, with 𝐵 fixed uniform bins
between 0 and 1, the ECE is defined as

∑𝐵
𝑏=1 (𝑁𝑏 · |𝑜𝑏 − 𝑒𝑏 |)/𝑁

where 𝑜𝑏 is the true fraction of positive items in bin 𝑏, 𝑒𝑏 is the
mean of the calibrated probabilities for the items in bin 𝑏, and 𝑁𝑏
is the number of items that fall into bin 𝑏. Following Wenger et
al. [44], we use 100 equally spaced bins.

For the Sentiment dataset, we report the averaged values for
all metrics over the 5 splits of training and test sets. For the Music
dataset, we first average over the 10 binary datasets before reporting
the averaged values over the 5 data splits.

Baselines. We consider the same set of baselines described in Ta-
ble 2, with the addition of the following:

• Majority Vote (MV): uses the majority voted label as the aggre-
gated label. This is often used in practice as it is a simple and
intuitive baseline, and requires no “training” phase.

• Fraction Vote (FV): uses the fraction of positive labels as the
score for each item. Similar to MV, no training is needed.

• Snorkel [35]: uses matrix-completion to estimate the condi-
tional probabilities, which are then used to re-weight and ag-
gregate the labels. We assign Snorkel’s “labeling functions” to
each labeler, and an additional labeling function that represents
the binarized classifier score.

5.2 Varying Number of Labels per Item

First, we study the performance of Theodon compared with dif-
ferent baselines when the number of labels per item varies. Here,
we use logistic regression to generate the classifier scores. Table 3
shows the AUC-PR and ECE, averaged over 5 splits of training and
test sets for both the Sentiment and Music datasets.

Overall, the results clearly highlight the need to model labeling
errors (and is consistent with prior work [31]) – the methods that
incorporate labeling errors and classifier scores consistently out-
perform MV, FV and Snorkel. We also see that for all approaches,
increasing the number of labels per item generally improves the
performance for the Sentiment dataset. This trend is, however, less

clear for the Music dataset, which is partly due to its small size and
class imbalance.

As expected, MV is generally the worst performing method, and
FV is significantly better but still underperforms the more complex
approaches. Consistently, Snorkel outperforms bothMV and FV
in predicting the items labels, but performs comparably or worst
as a calibration method.

Considering the top performing models, the results shows that
modeling the dependency between the input score and either (a)
only the prevalence (Lr-Fl, Gp-Fl) or (b) both the prevalence and
sensitivity/specificity (Lr-Lr, Theodon), clearly outperforms the
Fl-Fl model (that assumes no score dependency).

Gp-Fl outperforms Lr-Fl in all metrics on both datasets. The
main difference between the two methods is that, as their names
suggested,Gp-Fl uses a GP to capture the prevalence function while
Lr-Fl uses a logistic regression. It is worth noting that, as calibration
methods, Lr-Fl and Gp-Fl are equivalent to Platt scaling [32] and
GPcalib [44] respectively, but with labeling error being incorporated
and captured by a flat function. The results here are consistent
with prior work [44] which shows the effectiveness of using GP in
calibrating classifier scores compared with logistic regression.

Our proposed method Theodon consistently provides the best
results in all metrics for the Sentiment dataset. For theMusic dataset,
Theodon outperforms other baselines in AUC-PR, but does not
perform better than Gp-Fl in ECE. The results confirm that improv-
ing both accuracy and calibration can be conflicting objectives [44]
and suggest that for small datasets like Music, it might be more
beneficial to use a simple scalar to capture the sensitivity/specificity
of labelers when the method is used for calibration.

5.3 Varying the Base Classifier

We now study how varying the base classifier affects the perfor-
mance of Theodon and other baselines. We consider five types of
base classifiers: 1-layer neural network (NN), logistic regression
(LR), naive Bayes (NB), random forest (RF), and AdaBoost (AB)
provided by scikit-learn [2]. In this experiment, we use all labels
available for each item. Table 4 shows the results on ECE and AUC-
PR, again averaged over 5 data splits for the two Sentiment and
Music datasets. Details on the base classifiers’ implementations and
additional results can be found in the supplementary material.
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All the base classifiers perform reasonably well in predicting the
items’ ground truth labels. However, their performances as cali-
bration methods vary significantly. For the Sentiment dataset, NN
provides the best ECE (which is consistent with prior work [44]), fol-
lowed by RF and AB; while LR and NB perform the worst. However,
for the Music dataset, AB is significantly worse in ECE.

Consistent with the results in Section 5.2, Snorkel improves
upon the base classifier,MV, and FV in AUC scores but generally
performs worse as a calibration method. We also see similar im-
provements in all metrics for both datasets when capturing the
dependencies of prevalence/sensitivity/specificity w.r.t. to the clas-
sifier compared with Fl-Fl.

For all metrics across the two datasets, Theodon’s results are
consistently the best or within one standard deviation of the best,
which shows the effectiveness of Theodon in both predicting per-
item labels and calibrating the base classifiers.

5.4 Sensitivity and Specificity Estimates

One main advantage of Theodon is to provide additional insights
into how the accuracy of each individual labeler changes when
labeling items with different scores. Since the sensitivity and speci-
ficity functions are unknown in the real-world datasets, we focus
this section on a qualitative analysis.

An intuitive method to compute the sensitivity and specificity
of labelers when the score and ground truth labels are available
is to bucketize the scores and compute the per-bucket sensitivity
and specificity. Figure 7a shows the counts for a selected labeler A
(WorkerId=A207OR9LV0PAPY). The top and bottom plot shows the
labels provides byA when the ground truth is 1 and 0, respectively.
We selected this specific labeler since they have the most labels
in the Sentiment dataset, which should enable us to obtain a good
estimate of their performance.

The figure depicts a clear challenge in this process – even for
the labeler with the most labels in the dataset, there are score buck-
ets that have almost no labels, which makes computing accuracy
scores in these regions impossible, or highly inaccurate. To illus-
trate, we used the true and observed labels to compute, for each
score bucket, the sensitivity and specificity and their Wilson score
95% CIs [47]. The resulting sensitivity and specificity are labeled by
GT in Figures 7b and 7c, respectively. As shown, due to the lack of
labels, it is impossible to compute the sensitivity ofA in the lowest
score bucket, while the specificity’s CI in the highest score bucket
is so wide making it practically unusable. Much narrower CIs are
obtained by the estimates from Gp-Fl, which are independent of
the score. As the figures show, these estimates capture mostly the
true sensitivity and specificity for the buckets with the most labels.
While these methods make it possible to draw broad conclusions
about the accuracy of the labeler, they fail to leverage the contextual
information about each task.

Theodon on the other hand provides a continuous function,
while being able to capture the trends of GT’s estimates well, with
the sensitivity increasing while specificity decreasing as the score
increases. In addition, lack or low number of labels is captured well
using Theodon’s CIs. We note that similar results are observed
(not shown due to space constraint) when using Lr-Lr as it also
models the specificity and sensitivity as functions of the scores.

6 CONCLUSION

In this paper, we introduce Theodon, a Bayesian non-parametric
model to aggregate labels in crowdsourced data by capturing the
dependencies of label’s prevalence and labelers’ sensitivity and
specificity on the input classifier score using Gaussian processes.We
conduct extensive empirical studies on simulated generated based
on real applications at Meta as well as real-world crowdsourced
data to show the effectiveness of Theodon compared with various
baselines on a range of tasks. In addition to obtaining good per-
item aggregated labels, Theodon is effective in calibrating the base
classifier under the presence of labeling error and provides useful
insights into how the prevalence of labels and the mistakes that
labelers might change with respect to the input classifier score.
Understanding and leveraging these insights for labeling quality
management is a fruitful direction for future work.
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Table 4: Results averaged over 5 training/test splits on the Sentiment andMusic datasets when varying the base classifier. Bold

denotes the best results and * denotes the results within one standard deviation of the best value per row.
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Figure 7: Sensitivity and specificity functions for the selected labeler in the Sentiment dataset

[22] C. Long, G. Hua, and A. Kapoor. 2013. Active Visual Recognition with Expertise
Estimation in Crowdsourcing. In ICCV. 3000–3007.

[23] P. Morales-Alvarez, P. Ruiz, S. Coughlin, R. Molina Soriano, and A. Katsagge-
los. 2020. Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
Detection in LIGO. TPAMI (2020).

[24] Pablo Morales-Álvarez, Pablo Ruiz, Raúl Santos-Rodríguez, Rafael Molina, and
Aggelos K Katsaggelos. 2019. Scalable and efficient learning from crowds with
Gaussian processes. Information Fusion 52 (2019), 110–127.

[25] P. Morales-Álvarez, A. Pérez-Suay, R. Molina, and G. Camps-Valls. 2018. Re-
mote Sensing Image Classification With Large-Scale Gaussian Processes. IEEE
Transactions on Geoscience and Remote Sensing 56, 2 (2018), 1103–1114.

[26] Pablo G. Moreno, Antonio Artés-Rodríguez, Yee Whye Teh, and Fernando Perez-
Cruz. 2015. Bayesian Nonparametric Crowdsourcing. JMLR (2015), 1607–1627.

[27] Mahdi Pakdaman Naeini, Gregory F. Cooper, and Milos Hauskrecht. 2015. Obtain-
ing Well Calibrated Probabilities Using Bayesian Binning. In AAAI. 2901–2907.

[28] An T. Nguyen, Byron C. Wallace, and Matthew Lease. 2016. A Correlated Worker
Model for Grouped, Imbalanced and Multitask Data. In UAI. 537–546.

[29] Viet-An Nguyen, Peibei Shi, Jagdish Ramakrishnan, Udi Weinsberg, Henry C
Lin, Steve Metz, Neil Chandra, Jane Jing, and Dimitris Kalimeris. 2020. CLARA:
Confidence of Labels and Raters. In SIGKDD. 2542–2552.

[30] Rebecca J Passonneau and Bob Carpenter. 2014. The benefits of a model of
annotation. TACL 2 (2014), 311–326.

[31] Silviu Paun, Bob Carpenter, Jon Chamberlain, Dirk Hovy, Udo Kruschwitz, and
Massimo Poesio. 2018. Comparing Bayesian Models of Annotation. TACL (2018).

[32] John C. Platt. 1999. Probabilistic Outputs for Support Vector Machines and
Comparisons to Regularized Likelihood Methods. In Advances in Large Margin
Classifiers. 61–74.

[33] Joaquin Quiñonero-Candela and Carl Edward Rasmussen. 2005. A unifying view
of sparse approximate Gaussian process regression. JMLR (2005), 1939–1959.

[34] Carl Edward Rasmussen. 2004. Gaussian Processes in Machine Learning. Springer
Berlin Heidelberg, Berlin, Heidelberg, 63–71.

[35] Alexander J. Ratner, Stephen H. Bach, Henry E. Ehrenberg, and Christopher Ré.
2017. Snorkel: Rapid Training Data Creation with Weak Supervision. Proceedings
of the VLDB Endowment 11, 3 (2017), 269–282.

[36] Vikas C Raykar, Shipeng Yu, Linda H Zhao, Anna Jerebko, Charles Florin, Ger-
ardo Hermosillo Valadez, Luca Bogoni, and Linda Moy. 2009. Supervised learning
from multiple experts: whom to trust when everyone lies a bit. In ICML. 889–896.

[37] Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Gerardo Hermosillo Valadez, Charles
Florin, Luca Bogoni, and Linda Moy. 2010. Learning From Crowds. JMLR 11

(Aug. 2010), 1297–1322.
[38] Filipe Rodrigues and Francisco Pereira. 2018. Deep learning from crowds. In

AAAI, Vol. 32.
[39] Filipe Rodrigues, Francisco Pereira, and Bernardete Ribeiro. 2013. Learning

from multiple annotators: distinguishing good from random labelers. Pattern
Recognition Letters 34, 12 (2013), 1428–1436.

[40] Filipe Rodrigues, Francisco C. Pereira, and Bernardete Ribeiro. 2014. Gaussian
Process Classification and Active Learning with Multiple Annotators. In ICML.

[41] Pablo Ruiz, Pablo Morales-Álvarez, Rafael Molina, and Aggelos K Katsaggelos.
2019. Learning from crowds with variational Gaussian processes. Pattern Recog-
nition 88 (2019), 298–311.

[42] Matteo Venanzi, John Guiver, Gabriella Kazai, Pushmeet Kohli, and Milad Shok-
ouhi. 2014. Community-based Bayesian Aggregation Models for Crowdsourcing.
In WWW. 155–164.

[43] Peter Welinder, Steve Branson, Pietro Perona, and Serge J Belongie. 2010. The
multidimensional wisdom of crowds. In NeurIPS. 2424–2432.

[44] JonathanWenger, Hedvig Kjellström, and Rudolph Triebel. 2020. Non-parametric
calibration for classification. In AISTATS. PMLR, 178–190.

[45] Jacob Whitehill, Ting fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul L.
Ruvolo. 2009. Whose Vote Should Count More: Optimal Integration of Labels
from Labelers of Unknown Expertise. In NIPS. 2035–2043.

[46] Andrew Wilson and Hannes Nickisch. 2015. Kernel interpolation for scalable
structured Gaussian processes (KISS-GP). In ICML. 1775–1784.

[47] Edwin B Wilson. 1927. Probable inference, the law of succession, and statistical
inference. JASA 22, 158 (1927), 209–212.

[48] Yan Yan, Rómer Rosales, Glenn Fung, Mark Schmidt, Gerardo Hermosillo, Luca
Bogoni, Linda Moy, and Jennifer Dy. 2010. Modeling annotator expertise: Learn-
ing when everybody knows a bit of something. In AISTATS. 932–939.

[49] Yan Yan, Rómer Rosales, Glenn Fung, Ramanathan Subramanian, and Jennifer
Dy. 2014. Learning from Multiple Annotators with Varying Expertise. Mach.
Learn. 95, 3 (June 2014), 291–327.

[50] Bianca Zadrozny and Charles Elkan. 2001. Obtaining Calibrated Probability
Estimates from Decision Trees and Naive Bayesian Classifiers. In ICML. 609–616.

[51] Yudian Zheng, Guoliang Li, Yuanbing Li, Caihua Shan, and Reynold Cheng. 2017.
Truth Inference in Crowdsourcing: Is the Problem Solved? VLDB (2017), 541–552.

[52] Dengyong Zhou, Sumit Basu, Yi Mao, and John C. Platt. 2012. Learning from the
Wisdom of Crowds by Minimax Entropy. In NeurIPS. 2195–2203.

 

3653



KDD ’22, August 14–18, 2022, Washington, DC, USA Viet-An Nguyen et al.

7 SUPPLEMENTARY INFORMATION

7.1 Simulated Sensitivity/Specificity Functions

We include here the simulated per-labeler sensitivity and speci-
ficity functions for the three types of functions (convex, linear, and
concave) for Application I (Figure 8) and Application II (Figure 9).

7.2 Additional Results on Public Data

Table 5 summarizes that statistics of the public Sentiment andMusic
datasets. Tables 6 and 7 provides additional results on the two public
datasets, complementing Tables 3 and 4, respectively.

Dataset 𝑁 𝐴
∑
𝑖 𝐿𝑖

𝐿𝑖
min avg max

Sentiment 4999 203 27746 4 5.6 10
Music 700 44 2945 1 4.2 7

Table 5: Statistics of the two datasets: 𝑁 items, 𝐴 reviewers,∑
𝑖 𝐿𝑖 total labels, and theminimum, average, andmaximum

number of labels per item 𝐿𝑖 .

7.3 Details on Base Classifiers

Here are details on the base classifiers that were trained using
scikit-learn.
• 1-layer Neural Network: MLPClassifier with the following
parameters hidden_layer_sizes = (100,), activation = relu,
and solver = adam.

• Logistic Regression: LogisticRegression with default param-
eters.

• Naive Bayes: MultinomialNB with default parameters.
• Random Forest: RandomForestClassifier with max_depth=2.
• AdaBoost: AdaBoostClassifier with n_estimators = 100.

7.4 Details on Baseline Models

In this section, we provide additional details about the various
baseline models used in our experiments.

7.4.1 Fl-Fl. uses scalar probabilities to capture the prevalence,
sensitivity, and specificity. In our experiment, we use the Bayesian
version of the Fl-Flmodel [7] with the following generative process:
• Draw prevalence \ ∼ Beta(𝛼)
• For each labeler 𝑎 ∈ [1, 𝐴], draw sensitivity𝜓𝑎 ∼ Beta(𝛽𝜓 ) and
specificity 𝜙𝑎 ∼ Beta(𝛽𝜙 )

• For each item 𝑖 ∈ [1, 𝑁 ]
– Draw a latent true binary label 𝑦𝑖 ∼ Bern(\ )
– For each observed binary label 𝑟𝑖, 𝑗 by labeler 𝑎𝑖, 𝑗

∗ If 𝑦𝑖 = 1, draw 𝑟𝑖, 𝑗 ∼ Bern(𝜓𝑎𝑖,𝑗 )
∗ Otherwise, draw 𝑟𝑖, 𝑗 ∼ Bern(1 − 𝜙𝑎𝑖,𝑗 )

We use the same weak priors 𝛽𝜓 = 𝛽𝜙 = [0.8, 0.2] for both sensitiv-
ity and specificity, and a uniform prior 𝛼 = [1, 1] for prevalence.

7.4.2 Lr-Fl. uses a logistic regression to capture the prevalence
function and models sensitivity and specificity using scalar proba-
bilities. This baseline is equivalent to Raykar et al.’s model [36, 37]
in which the input score is the only feature used in the logistic
regression. Here is the detailed generative process:

• Draw logistic regression weights𝑤1 ∼ Normal(0, 1) and𝑤0 ∼
Normal(0, 1)

• For each labeler 𝑎 ∈ [1, 𝐴], draw sensitivity𝜓𝑎 ∼ Beta(𝛽𝜓 ) and
specificity 𝜙𝑎 ∼ Beta(𝛽𝜙 )

• For each item 𝑖 ∈ [1, 𝑁 ] with score 𝑠𝑖
– Draw a latent true binary label 𝑦𝑖 ∼ Bern(Ω(𝑤1𝑠𝑖 + 𝑤0))
where Ω(𝑥) = 1/(1 + exp(−𝑥))

– For each observed binary label 𝑟𝑖, 𝑗 by labeler 𝑎𝑖, 𝑗
∗ If 𝑦𝑖 = 1, draw 𝑟𝑖, 𝑗 ∼ Bern(𝜓𝑎𝑖,𝑗 )
∗ Otherwise, draw 𝑟𝑖, 𝑗 ∼ Bern(1 − 𝜙𝑎𝑖,𝑗 )

Similarly, we use the same weak priors 𝛽𝜓 = 𝛽𝜙 = [0.8, 0.2] for
both sensitivity and specificity, and a prior of Normal(0, 1) on the
weights of the logistic regression.

7.4.3 Gp-Fl. uses a GP classifier to capture the prevalence function
and scalar probabilities to capture the sensitivity and specificity.
A similar model was proposed by Rodrigues et al. [40] with the
sensitivity and specificity as point parameters, which was later
extended by Ruiz et al. [41] to use stochastic variables. Here is the
detailed generative process used:

• Draw 𝑓 ∼ GP
(
𝑚𝑓 , 𝐾 (𝛼, 𝜌)

)
and define prevalence function

\ (𝑠) = Ω(𝑓 (𝑠)) where Ω(𝑥) = 1/(1 + exp(−𝑥))
• For each labeler 𝑎 ∈ [1, 𝐴], draw sensitivity𝜓𝑎 ∼ Beta(𝛽𝜓 ) and
specificity 𝜙𝑎 ∼ Beta(𝛽𝜙 )

• For each item 𝑖 ∈ [1, 𝑁 ] with score 𝑠𝑖
– Draw a latent true binary label 𝑦𝑖 ∼ Bern(\ (𝑠𝑖 ))
– For each observed binary label 𝑟𝑖, 𝑗 by labeler 𝑎𝑖, 𝑗

∗ If 𝑦𝑖 = 1, draw 𝑟𝑖, 𝑗 ∼ Bern(𝜓𝑎𝑖,𝑗 )
∗ Otherwise, draw 𝑟𝑖, 𝑗 ∼ Bern(1 − 𝜙𝑎𝑖,𝑗 )

Similarly, we use the same weak priors 𝛽𝜓 = 𝛽𝜙 = [0.8, 0.2] for both
sensitivity and specificity. For prevalence, we set𝑚𝑓 = Ω−1 (0.5),
and use 𝛼 = 1.0 and 𝜌 = 0.1 to define the kernel.

7.4.4 Lr-Lr. uses logistic regression classifiers to capture both
prevalence and sensitivity/specificity. This is equivalent to Yan et
al.’s model [48, 49] and is closest to our work in capturing varying
performance of reviewers depending on the input items. Here is
the detailed generative process:
• Draw logistic regression weights𝑤1 ∼ Normal(0, 1) and𝑤0 ∼
Normal(0, 1). Define prevalence function \ (𝑠) = Ω(𝑤1𝑠 +𝑤0).

• For each labeler 𝑎 ∈ [1, 𝐴]
– Draw𝑤

𝜓

𝑎,1 ∼ Normal(0, 1) and𝑤𝜓

𝑎,0 ∼ Normal(0, 1).
– Define sensitivity function𝜓𝑎 (𝑠) = Ω(𝑤𝜓

𝑎,1𝑠 +𝑤
𝜓

𝑎,0).
– Draw𝑤

𝜙

𝑎,1 ∼ Normal(0, 1) and𝑤𝜙

𝑎,0 ∼ Normal(0, 1).
– Define specificity function 𝜙𝑎 (𝑠) = Ω(𝑤𝜙

𝑎,1𝑠 +𝑤
𝜙

𝑎,0).
• For each item 𝑖 ∈ [1, 𝑁 ] with score 𝑠𝑖
– Draw a latent true binary label 𝑦𝑖 ∼ Bern(\ (𝑠))
– For each observed binary label 𝑟𝑖, 𝑗 by labeler 𝑎𝑖, 𝑗

∗ If 𝑦𝑖 = 1, draw 𝑟𝑖, 𝑗 ∼ Bern(𝜓𝑎𝑖,𝑗 (𝑠𝑖 ))
∗ Otherwise, draw 𝑟𝑖, 𝑗 ∼ Bern(1 − 𝜙𝑎𝑖,𝑗 (𝑠𝑖 ))

7.4.5 Snorkel. We used the snorkel [35] python package for our
implementation4.We used the following parameters for LabelModel,
as they provided the best results for our datasets: lr_scheduler =
exponential, lr = 0.01, optimizer = adam, and n_epochs = 1000
4https://snorkel.readthedocs.io/en/v0.9.6/
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(a) convex (b) linear (c) concave (d) convex (e) linear (f) concave

Figure 8: Generated per-labeler sensitivity and specificity functions for Application I

(a) convex (b) linear (c) concave (d) convex (e) linear (f) concave

Figure 9: Generated per-labeler sensitivity and specificity functions for Application II

Metric 𝑙 Base MV FV Snorkel Fl-Fl Lr-Fl Gp-Fl Lr-Lr Theodon

Se
nt
im

en
t

ECE 5 0.2431 0.1164 0.0764 0.0899 0.0830 0.0704 0.0681* 0.0644 0.0651*
7 0.2417 0.1092 0.0854 0.0881 0.0789 0.0705 0.0672* 0.0666* 0.0651

AUC-PR 5 0.9403 0.9091 0.9487 0.9633 0.9567 0.9727 0.9743 0.9746 0.9769

7 0.9358 0.9157 0.9498 0.9637 0.9584 0.9733 0.9759* 0.9746* 0.9776

M
us
ic ECE 5 0.1875 0.0526 0.0594 0.0577 0.0402 0.0370* 0.0351 0.0406 0.0362*

AUC-PR 5 0.7068 0.7338 0.7508 0.7955 0.8146 0.8583* 0.8715* 0.8492* 0.8730

Table 6: Results averaged over 5 training/test splits on the Sentiment and Music datasets when varying the number of labels

per item 𝑙 . Bold denotes the best results and * denotes the results within one standard deviation of the best value per row.

Metric Classifier Type Base MV FV Snorkel Fl-Fl Lr-Fl Gp-Fl Lr-Lr Theodon

Se
nt
im

en
t ECE

Naive Bayes 0.2245 0.1104 0.0813 0.0806 0.0847 0.0738 0.0733 0.0695 0.0651

Random Forest 0.1750 0.1070 0.0873 0.1551 0.0804* 0.0804* 0.0794* 0.0766 0.0770*
AdaBoost 0.1765 0.1142 0.0843* 0.0974 0.0857* 0.0858* 0.0851* 0.0814 0.0825*

AUC-PR
Naive Bayes 0.9475 0.9169 0.9490 0.9663 0.9574 0.9728 0.9741* 0.9749* 0.9783

Random Forest 0.7380 0.9155 0.9555* 0.9491 0.9615* 0.9613* 0.9627* 0.9627 0.9623*
AdaBoost 0.7714 0.9105 0.9467 0.9458 0.9513 0.9514 0.9539 0.9537 0.9559

M
us
ic

ECE
Naive Bayes 0.2583 0.0586 0.0661 0.0688 0.0450* 0.0431* 0.0419 0.0492 0.0465
Random Forest 0.1533 0.0549 0.0626 0.0590 0.0427 0.0394* 0.0386 0.0427 0.0400*
AdaBoost 0.6381 0.0571 0.0626 0.0604 0.0436* 0.0433* 0.0394 0.0510 0.0406*

AUC-PR
Naive Bayes 0.4100 0.7270 0.7358 0.7592 0.7983 0.8232* 0.8296 0.8043 0.8218*
Random Forest 0.7207 0.7318 0.7524 0.7928 0.8070 0.8536* 0.8616 0.8454* 0.8569*
AdaBoost 0.7483 0.7243 0.7625 0.8007 0.8030 0.8131 0.8608* 0.8040 0.8663

Table 7: Results averaged over 5 training/test splits on the Sentiment andMusic datasets when varying the base classifier. Bold

denotes the best results and * denotes the results within one standard deviation of the best value per row.

Additionally, we chose the l2 parameter for regularization by
choosing from the set {0.0, 0.05, 0.1, 0.15, 0.2} based on a 20% held
out set from the training data.

We also provided as input the class_balance parameter by
estimating class balance with majority vote. Additionally, for using

the score in a labeling function, we simply binarized it with a
threshold. We set the threshold to the (1 − 𝑝)th percentile of the
score distribution, where 𝑝 is the percent of positive labels estimated
from majority vote; this worked much better than simply setting
the score threshold to 0.5, especially for class imbalanced datasets.
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