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ABSTRACT

The issue of fairness arises when the automatic speech recognition
(ASR) systems do not perform equally well for all subgroups of the
population. In any fairness measurement studies for ASR, the open
questions of how to control the confounding factors, how to han-
dle unobserved heterogeneity across speakers, and how to trace the
source of any word error rate (WER) gap among different subgroups
are especially important - if not appropriately accounted for, incor-
rect conclusions will be drawn. In this paper, we introduce mixed-
effects Poisson regression to better measure and interpret any WER
difference among subgroups of interest. Particularly, the presented
method can effectively address the three problems raised above and
is very flexible to use in practical disparity analyses. We demonstrate
the validity of proposed model-based approach on both synthetic and
real-world speech data.

Index Terms— Automatic speech recognition, fairness, Poisson
regression, random effect

1. INTRODUCTION

Automatic speech recognition (ASR) systems are getting better with
the advent of new technologies. However, the issue of fairness arises
when these tools do not perform equally well for all subgroups of the
population [1, 2, 3, 4, 5]. The concern of fairness is not limited to
speech recognition tasks, but also comes to light in other machine
learning applications, including facial recognition [6, 7], natural lan-
guage processing [8, 9], and healthcare [10].

The fairness issue was highlighted most recently by authors in
[4] who found that five state-of-the-art ASR systems showed sub-
stantial racial disparities, having an average word error rate (WER)
of 0.35 for black speakers compared with 0.19 for white speakers.
Here, WER serves as the most widely used metric for measuring the
performance of an ASR system, which is derived from the Leven-
shtein distance [11] working at the word level:

WER =

∑n
s=1 es∑n
s=1ms

(1)

where ms is the number of words in the sth sentence (i.e. reference
text of audio) of the evaluation dataset, and es represents the sum
of insertion, deletion, and substitution errors computed from the dy-
namic string alignment of the recognized word sequence with the
reference word sequence.

In most of previous research studies on measuring fairness in
ASR, WER was computed per each subgroup (e.g. black speakers
versus white speakers) and from the comparison of these WER num-
bers, conclusions were drawn on whether significant disparities exist
among these subgroups of interest. Although this is a very simple
way for fairness measurement, there are several open questions that
have not yet been properly addressed in these analyses.

First, how to effectively control the confounding factors which
may affect the measured results but are not of primary interest? For
example, we need to deal with any unbalanced gender or age distri-
bution of speakers in a racial disparity study; otherwise, it would be
difficult to tell whether any WER gap among different racial groups
is due to the race factor or any confounding factor of gender or age.
Propensity-score matching was utilized in [4] to select a subset of
audio snippets of white and black speakers with similar distributions
of age and gender. However, this matching procedure suffers from
discarding “unmatched” but informative samples from the analysis
and in some scenarios, a good matching might not even exist.

Secondly, how to appropriately take into account speaker-level
effect on measured WERs and handle unobserved heterogeneity
across different speakers? Speech recognition accuracy on utter-
ances from the same speaker could be highly correlated and a
neglect of such dependency structure in speech data might lead to
underestimated variance and wrong conclusions. Moreover, it is typ-
ically reasonable to consider speakers were being randomly selected
from the subgroups of interest, and we are not particularly interested
in these specific speakers, but in the population that they represent.

Third, how to efficiently trace the source of any WER gap
among different subgroups, that is, does such disparity mainly come
from phonetic, phonological, prosodic characteristics, or grammat-
ical, lexical, semantic characteristics, or both? Perplexity was used
in existing literature to evaluate the grammatical, lexical, semantic
properties of disparities across different subgroups. However, more
advanced approaches are still called for to provide deeper insights
and analyses on whether language model or acoustic model should
account for the overall disparities in WERs if at all.

In this paper, we present a model-based approach to better mea-
sure the fairness issue in ASR and study any performance disparities
across different subgroups of our interest. In particular, we introduce
mixed-effects Poisson regression [12, 13, 14], treating utterance-level
word errors as the regression response, logarithm number of words
in the reference text as an offset, speaker identification as a random
effect, subgroup label of interest and any other explanatory or con-
founding variables as fixed effects. The presented method can ad-
dress the three problems that we previously raised, and is very flex-
ible to use. As classical and powerful statistical tools, mixed-effects
model and Poisson regression are not new in analyzing real-world
scientific problems. But to the best of our knowledge, our work
is the first to introduce sophisticated statistical regression-based ap-
proach to investigate fairness issues in ASR and illustrate how it
helps measure and interpret any WER difference across different
subgroups of the population in any disparity study. In particular,
our proposed method prevents underestimating the standard errors
and avoids drawing false positive conclusions on non-fairness.

The rest of this paper is structured as follows. Section 2 intro-
duces the use of mixed-effects Poisson regression on ASR fairness.
Sections 3 and 4 demonstrate the validity of the proposed method on
synthetic and real-world speech data. We conclude in Section 5.



2. METHODS

In this section, we present mixed-effects Poisson regression method
and illustrate how it helps measure any WER gap between different
subgroups in disparity studies.

Suppose we would want to investigate the fairness in ASR with
respect to some factor variable of primary interest (e.g. gender of
speakers). For the sth utterance in the evaluation dataset, we denote
its factor level as f(s) (e.g. male speaker or female speaker), where
f is a deterministic function with l as the total number of levels. We
aim to test whether the effect of this factor is statistically significant
on measured WER results across its different groups of levels.

2.1. Poisson Regression for Measuring Fairness

Poisson regression serves as an appropriate approach to model rate
data [15], where the rate is a count of events (e.g. word errors in our
use case) divided by some measure of that unit’s exposure (e.g. num-
ber of words in the reference). An offset variable is needed to scale
the modeling of the mean parameter in Poisson regression with a log
link. Here, the underlying assumption is that the number of word er-
rors occurred in any utterance is proportional to the number of words
in the corresponding reference text.

More specifically, to measure the effect of factor f(·) on WER
results across l different subgroups, the vanilla Poisson regression
model is described as follows:

Cs
i.i.d.∼ Poisson(λs) (2)

log(λs) = log(Ns) + µf(s) (3)

where Cs is the count of word errors (sum of insertion, deletion, and
substitution errors), λs is the Poisson (mean) parameter, Ns is the
number of words in the reference text for the sth utterance in the
evaluation dataset, and µf(s) refers to the factor effect correspond-
ing to the subgroup of f(s). The notation of i.i.d in (2) represents
independent and identically distributed, where we will revisit this
distribution assumption later in this section. Note that any utterance
with empty reference text should be removed from the analysis since
it does not provide any insight on fairness measurement.

This model can be fitted using maximum likelihood approach.
Standard statistical testing, for example, likelihood ratio test (LRT)
[16], can be conducted afterwards to compute the p-value of the fac-
tor f(·) on measured WER results.

Sometimes, it is possible to analyze rate data using a binomial
response model. However, in our application, number of word errors
occurred in some utterance could be larger than the total number of
words in the reference, which limits the use of binomial regression
here. If the rate is relatively small, the Poisson approximation to the
binomial is effective.

One of the key features of Poisson distribution is that the vari-
ance equals the mean. In certain circumstances, it is found that the
empirical variance is greater than the mean, known as overdispersion
[17, 18]. A common reason is the omission of relevant explanatory
variables, or the present of dependent samples, which we will ex-
plore more in the next two subsections.

2.2. Poisson Regression with Explanatory Covariates

It is natural and flexible to extend the vanilla Poisson regression
model (2) (3) to include additional explanatory or confounding co-
variates, which can be utilized to capture effects of confounding vari-
ables on WERs among different subgroups:

log(λs) = log(Ns) + µf(s) + θTxs (4)

Here, xs represents the vector of any explanatory variables in the
regression model and θ refers to the coefficient parameter vector
that shall be learned. For example, in a racial disparity analysis,
we would want to add the gender or age information of speakers to
the regression model in order to control any confounding effects.

In particular, we can include any representative vector [19],
for example, sentence embedding, of the true reference text per
each utterance as extra explanatory variables, which would help us
understand the source of any performance gap between different
subgroups of interest. For instance, after controlling the effect of
sentence embedding covariates that account for grammatical, lex-
ical, or semantic characteristics, if the factor effect of interest is
still statistically significant, we can tell that phonetic, phonological,
or prosodic characteristics substantially contribute to the overall
disparities among different subgroups of the factor f(·). Thus this
can provide insights on whether language model or acoustic model
should be responsible for the overall disparities in WERs if at all.

2.3. Mixed-Effects Poisson Regression

Block-structured evaluation data arises naturally in any real-world
speech recognition applications. In particular, utterances from the
same speaker could share common correlated features (e.g. accent
of speaker), and thus analyses that assume independence of these
observations will be inappropriate. The use of random effect [13, 14]
is one usual and convenient way to model such structure.

Suppose we want to investigate the effect of race on speech
recognition accuracy across a sample of speakers. Typically, we
would treat the racial effect as fixed in the regression. On the other
hand, it makes more sense to treat the speaker effect as random. It
is reasonable to consider these speakers as being randomly selected
from a larger collection of speakers whose characteristics we would
like to estimate. We are not particularly interested in these specific
speakers, but in the whole population. Generally, blocking factors
can often be viewed as random effects.

A mixed-effects Poisson regression is a model containing both
fixed effect and random effect. Regarding the fairness measurement
of speech recognition accuracy among different subgroups of the
factor f(·), we describe the model in detail as follows:

ri
i.i.d.∼ N (0, σ2) (5)

Cij |λij
i.i.d.∼ Poisson(λij) (6)

log(λij) = log(Nij) + µf(i) + ri + θTxij (7)

where the utterance-level index of subscription notation ij represents
the jth utterance from the ith speaker, ri denotes the speaker-level
random effect that is independently sampled from a Gaussian distri-
bution with mean 0 and variance σ2 which is learnable. Note that
any Cij and Cij′ are no longer independent for j 6= j′ since they
are observed from the same speaker i, while any Ci· and Ci′· are
still independent for i 6= i′ since they are observed from different
speakers. Also, we use µf(i) to denote the fixed effect for the factor
f(·) of primary interest, since typically it is at speaker level.

This mixed-effects model can be fitted via maximum likelihood
and the expression for its likelihood is an integral over the random ef-
fect, which must be approximated, for example, via adaptive Gauss-
Hermite quadrature [20]. Again, LRT can be performed to calculate
the p-value of the factor f(·) on measured WER results. In practice,
it would be particularly interesting to extract the conditional modes
of the speaker-level random effect for subsequent analysis and as-
sumption verification.



3. SIMULATION EXPERIMENTS

In this section, we conduct simulation experiments to show that the
proposed mixed-effects Poisson regression could properly address
the problems of confounding factor and speaker effect in ASR fair-
ness measurements.

3.1. Experiment on Confounding Factor

We generate synthetic data to investigate the effect of confounding
factor on ASR fairness measurements over case group and control
group, defined by some primary factor of interest.

Under the scenario that recognition errors from different utter-
ances are independent from each other, the number of errors on the
sth utterance is randomly sampled from a Poisson distribution with
the mean parameter written as

λs = Ns · exp(µf(s) + θs · Bernoulli(pf(s))) (8)

where f(s) ∈ {case, control} indicates which group the utterance
comes from,Ns denotes the number of words in the reference, µf(s)

refers to the group effect, θs represents the effect of confounding
factor, and pf(s) is the mean parameter of a Bernoulli distribution
which controls the frequency that the confounding effect is present
in the corresponding group.

In our experiment, we set Ns = 10, µf(s) = log(0.05), θs =
0.1 for every s, and pf(s) is varied at 50%, 60%, 70%, 90% for
the case group, and 50%, 40%, 30%, 10% for the control group,
respectively. For each of case or control group, we generate 5,000
utterances independently.

Here, we would like to evaluate the ratio of WERs between the
case and control groups, and in particular, conduct statistical testing
to determine whether significant difference on WERs exists between
the two groups. Based on our setup, the ground truth WER ratio
is 1.0, that is, in theory there is no WER difference between the
two groups. Notice that the presence of confounding factor could
introduce confounding and mislead the results since it raises up the
mean number of errors by exp(0.1)− 1 ≈ 11% at utterance level.

In this study, we consider the baseline measurement method as
the one that computes the ratio of empirical WER of case group over
the one of control group. The bootstrap method [21, 22] is applied
to compute the 95% confidence interval (CI) of the ratio. Then if the
CI does not cover the point of 1.0, we claim the WER gap between
the two groups is statistically significant. Regarding model-based
approach, we fit a Poisson regression according to (2) (4) which lin-
early incorporates the confounding factor, and then compute the 95%
CI associated with the group effect ratio.

For each approach, we repeat the simulation for 1,000 times and
compare the average of estimated WER ratios as well as the false
positive rate, that is, the frequency of times that the statistical sig-
nificance on WER ratio is falsely claimed by the method. Strictly
speaking, a 95% CI means that if we were able to have 100 different
datasets from the same distribution of the original data and compute
a 95% CI based on each of these datasets, then approximately 95 of
these 100 CIs will contain the true value of the statistic of interest
[23, 24, 25]. Thus in theory, we expect 5% false positive rate if the
method works correctly and generates valid CIs.

The result is shown in Table 1, where we can see that the mean
ratio and false positive rate of the baseline method increase dramati-
cally when the confounding rate differs more and more between case
and control groups. This is expected since the baseline method does
not take into account the information of confounding factor which
does harm to the inference. For model-based approach, we observe

Table 1. Simulation result on confounding factor experiment with
various confounding rates pcase and pcontrol across groups.

Confounding Rate Baseline Model-Based
within
Case

within
Control

Mean
Ratio

% False
Positive

Mean
Ratio

% False
Positive

50% 50% 1.000 4.9% 1.000 4.7%
60% 40% 1.021 12.1% 1.001 5.8%
70% 30% 1.041 29.8% 1.000 5.4%
90% 10% 1.084 83.3% 1.001 5.1%

the mean ratios are around 1.0 and the false positive rates are around
5% for all the setups, which demonstrates that it can successfully
address the confounding effect and result in valid estimates of WER
ratios and corresponding CIs.

3.2. Experiment on Speaker Effect

In this experiment, we generate synthetic data to study the impact of
speaker effect on ASR fairness measurements of the two groups.

For any of case or control group, assume there are I distinct
speakers and each speaker has equal number of utterances. For the
ith speaker and jth utterance from the speaker, the number of er-
rors is sampled from a Poisson distribution with the mean parameter
written as

λij = Nij · exp(µf(i) + ri), ri
i.i.d.∼ N (0, σ2) (9)

where f(i) indicates which group the speaker is from, Nij denotes
the number of words in the reference, µf(i) refers to the group effect,
and ri represents the speaker effect drawn from a Gaussian distribu-
tion with mean 0 and standard deviation σ.

In our experiment, we set Nij = 10, µf(i) = log(0.05) for
every i, j, number of speakers I is varied at 100, 500 and standard
deviation σ is varied at 0.2, 0.4. For any of case or control group, we
generate 5,000 utterances.

Again, we want to evaluate the ratio of WERs and the ground
truth shall be 1.0. The baseline method is the same with the one
used for confounding factor experiment while for the model-based
approach, we fit a mixed-effects Poisson regression according to
(5) (6) (7) which treats the speaker identification as a random effect
with learnable σ.

The result is shown in Table 2, where we can see that the mean
ratios of both methods are around 1.0. However, for the baseline
method, we observe high false positive rates and in particular, the
higher the standard deviation σ or the smaller the number of speak-
ers, the larger the false positive rate. Instead, the model-based ap-
proach always results in approximate 5% false positive rate. This
demonstrates that it can successfully deal with speaker effect and is
superior than the traditional baseline method.

4. REAL DATA EXPERIMENTS

In this section, we apply the proposed mixed-effects Poisson regres-
sion on real-world speech datasets for fairness investigation.

4.1. Datasets and Setup

We consider the following two ASR datasets in the experiments:



Table 2. Simulation result on speaker effect experiment with various
numbers of speakers and values of standard deviation σ.

Speaker Effect Baseline Model-Based
Num of

Speakers
Standard
Deviation

Mean
Ratio

% False
Positive

Mean
Ratio

% False
Positive

500 0.2 1.000 8.0% 1.000 4.8%
500 0.4 1.001 14.9% 1.001 4.5%
100 0.2 1.000 16.6% 1.000 5.0%
100 0.4 0.999 42.6% 0.999 5.2%

Table 3. Summary of LibriSpeech and Voice Command evaluation
datasets in the experiments of real-world data analysis.

Evaluation Dataset

Feature
LibriSpeech
Test-Clean

LibriSpeech
Test-Other

Voice
Command

# of Utterances 2,620 2,939 17,783
# of Speakers 40 33 95
# of Male Speakers 20 16 41

• LibriSpeech [26]. A widely used voice dataset which consists
of 960 hours transcribed training utterances. The evaluation
dataset has the splits of Test-Clean from 40 speakers and Test-
Other from 33 speakers.

• Voice Command. This is a de-identified dataset collected us-
ing mobile devices through crowd-sourcing from a data sup-
plier for ASR. No personally identifiable information (PII) is
contained in this dataset. The participants are instructed to
say voice commands on the topics of calling friends, playing
music, etc. It consists of 2,440 hours transcribed training ut-
terances. The evaluation set contains around 18K utterances
from 95 speakers.

Table 3 shows details of the two evaluation datasets on number of
utterances and number of speakers.

The ASR system in this investigation is an RNN-T model with
Emformer encoder [27], LSTM predictor, and a joiner, having ap-
proximately 80 million parameters in total. For each of LibriSpeech
or Voice Command data, the ASR model is trained from scratch us-
ing the corresponding training utterances.

4.2. Evaluation Results

For the LibriSpeech data, we study the ASR fairness on gender, that
is, we would like to test whether there exists statistical significance
on the WER ratio between male speakers and female speakers.

The baseline approach, which is widely used in practice, com-
putes the ratio of empirical WER from male speakers group over the
empirical WER from female speakers group. The bootstrap method
is applied to compute the 95% CI of the ratio. For model-based ap-
proach, we fit a mixed-effects Poisson regression based on (5) (6) (7)
with gender as the fixed effect and speaker label as a random effect.

Result is shown in Table 4. We can see that the baseline method
leads to statistically significance claims on both Test-Clean and Test-
Other sets, and interestingly, their conclusions are actually opposite.
Specifically, on Test-Clean split of evaluation dataset, the baseline
method shows that male speakers group has significant lower WER
compared to female speakers group, while on Test-Other split, male

Table 4. Real-world analysis result on LibriSpeech dataset.

Baseline Model-Based
LibriSpeech

Dataset
WER
Ratio

Confidence
Interval

WER
Ratio

Confidence
Interval

Test-Clean 0.86 (0.76, 0.97) 0.88 (0.67, 1.14)
Test-Other 1.34 (1.23, 1.46) 1.28 (0.93, 1.76)

Table 5. Real-world analysis result on LibriSpeech dataset with sen-
tence embedding as explanatory variables.

Model-Based (Embed)
LibriSpeech

Dataset
WER
Ratio

Confidence
Interval

Test-Clean 1.01 (0.76, 1.33)
Test-Other 1.19 (0.87, 1.64)

speakers group has significant higher WER compared to the group
of female speakers. On the other hand, the model-based approach
does not claim any significant results on both splits. This makes
sense since numbers of speakers in both splits are quite small, which
results in high variance estimation that does not lead to statistically
significant results. Thus utterances from more speakers are needed
to reduce the standard errors and draw a more sound conclusion.

To further trace the source of WER gap, Table 5 shows the result
of mixed-effect Poisson regression with sentence embedding of the
true reference text as extra explanatory variables. We use pre-trained
fastText word embeddings [28] with 300 dimensions and take their
average to obtain the representation at sentence level. From the re-
sult, after excluding the effect from grammatical, lexical, or seman-
tic characteristics, the WER gap between the two groups become
smaller. Although it is not statistically significant, acoustic charac-
teristics appear to contribute to the WER disparity on Test-Other.

Table 6. Real-world analysis result on Voice Command dataset.

Baseline Model-Based

Voice Command
Dataset

WER
Ratio

Confidence
Interval

WER
Ratio

Confidence
Interval

Test 1.08 (0.99, 1.20) 1.15 (0.78, 1.72)

We also investigate ASR fairness on gender for Voice Command
dataset. The baseline and model-based methods are the same with
the ones applied for LibriSpeech. Result is shown in Table 6. The
baseline method does not claim that the WER on male speakers
group is statistically significantly higher than the WER of female
speakers group, but it is very close. The model-based method clearly
does not lead to significant result, due to the relatively small number
of speakers in each group.

5. CONCLUSIONS

In this paper, we introduce mixed-effects Poisson regression to bet-
ter measure and interpret any WER difference among subgroups of
interest. The presented method is very flexible and can effectively
address the open problems of how to control the confounding fac-
tors, how to handle unobserved heterogeneity across speakers, and
how to trace the source of any WER gap among different subgroups.
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