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Abstract. In this paper, we tackle the challenging problem of Few-shot
Object Detection. Existing FSOD pipelines (i) use average-pooled rep-
resentations that result in information loss; and/or (ii) discard position
information that can help detect object instances. Consequently, such
pipelines are sensitive to large intra-class appearance and geometric vari-
ations between support and query images. To address these drawbacks,
we propose a Time-rEversed diffusioN tEnsor Transformer (TENET),
which i) forms high-order tensor representations that capture multi-way
feature occurrences that are highly discriminative, and ii) uses a trans-
former that dynamically extracts correlations between the query image
and the entire support set, instead of a single average-pooled support em-
bedding. We also propose a Transformer Relation Head (TRH), equipped
with higher-order representations, which encodes correlations between
query regions and the entire support set, while being sensitive to the
positional variability of object instances. Our model achieves state-of-
the-art results on PASCAL VOC, FSOD, and COCO.

Keywords: Few-Shot Object Detection; Transformer; Multiple order
pooling; Heat Diffusion Process

1 Introduction

Object detectors based on deep learning, usually addressed by supervised mod-
els, achieve impressive performance [32,33,34,8,27,13] but they rely on a large
number of images with human-annotated class labels/object bounding boxes.
Moreover, object detectors cannot be easily extended to new class concepts not
seen during training. Such a restriction limits supervised object detectors to
predefined scenarios. In contrast, humans excel at rapidly adapting to new sce-
narios by “storing knowledge gained while solving one problem and applying it
to a different but related problem” [43], also called a “transfer of practice” [44].

Few-shot Object Detection (FSOD) [4,11,12,48,7,51,52] methods mimic this
ability, and enable detection of test classes that are disjoint from training classes.

⋆SZ was mainly in charge of the pipeline/developing the transformer. PK (corre-
sponding author) was mainly in charge of mathematical design of TENET & TSO.
Code: https://github.com/ZS123-lang/TENET.
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They perform this adaptation using a few “support” images from test classes.
Successful FSOD models must (i) find promising candidate regions-of-Interest
(RoIs) in query images; and (ii) accurately regress bounding box locations and
predict RoI classes, under large intra-class geometric and photometric variations.

To address the first requirement, approaches [48,7,51,52] use the region pro-
posal network [34]. For example, FSOD-ARPN [7], PNSD [51] and KFSOD [52]
cross-correlate query feature maps with a class prototype formed from average-
pooled (ie., first-order) features, second-order pooled representations and kernel-
pooled representations, respectively. These methods use a single class prototype
which limits their ability to leverage diverse information from different class
samples. Inspired by Transformers [41], approach [23] uses average pooling over
support feature maps to generate a vector descriptor per map. Attention mech-
anism is then used to modulate query image features using such descriptors.

The above methods rely on first- and second-order pooling, while so-called
higher-order pooling is more discriminative [17,18,15]. Thus, we propose a non-
trivial Time-rEversed diffusioN tEnsor Transformer (TENET). With TENET,
higher-order tensors undergo a time-reversed heat diffusion to condense signal on
super-diagonals of tensors, after which coefficients of these super-diagonals are
passed to a Multi-Head Attention (MHA) transformer block. TENET performs
second-, third- and fourth-order pooling. However, higher-order pooling suffers
from several issues, ie., (i) high computational complexity of computing ten-
sors with three/more modes, (ii) non-robust tensor estimates due to the limited
number of vectors being aggregated, and (iii) tensor burstiness[17].

To this end, we propose a Tensor Shrinkage Operator (TSO) which general-
izes spectral power normalization (SPN) operators [18], such as the Fast Spectral
MaxExp operator (MaxExp(F)) [18], to higher-order tensors. As such, it can be
used to reduce tensor burstiness. Moreover, by building on the linear algebra of
the heat diffusion process (HDP) [36] and recent generalisation of HDP to SPN
operators [18], we also argue that such operators can reverse the diffusion of
signal in autocorrelation or covariance matrices, and high-order tensors, instead
of just reducing the burstiness. Using a parametrization which lets us control
the reversal of diffusion, TSO condenses signal captured by a tensor toward its
super-diagonal, preserving information along it. This super-diagonal serves as
our final representation, reducing the feature size from dr to d, making our rep-
resentation computationally tractable. Finally, shrinkage operators are known
for their ability to estimate covariances well when only a small number of sam-
ples are available [22]. To the best of our knowledge, we are the first to show
that MaxExp(F) is a shrinkage operator, and to propose TSO for orders r≥2.

To address the second requirement, FSOD-ARPN introduces a multi-relation
head that captures global, local and patch relations between support and query
objects, while PNSD passes second-order autocorrelation matrices to a similar-
ity network. However, FSOD-ARPN and PNSD do not model spatial relations
[9]. The QSAM [23] uses attention to highlight the query RoI vectors that are
similar to the set of support vectors (obtained using only first-order spatial
average pooling). Thus, we introduce a Transformer Relation Head (TRH) to
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improve modeling of spatial relations. TRH computes self-attention between
spatially-aware features and global spatially invariant first-, second- and higher-
order TENET representations of support and/or query RoI features. The second
attention mechanism of TRH performs cross-attention between Z support em-
beddings (for Z-shot if Z≥2), and a set of global representations of query RoIs.
This attention encodes similarities between query RoIs and support samples.

The TENET RPN and the TRH blocks of our FSOD pipeline are equipped
with discriminative TENET representations, improving both RoI proposal gen-
eration, and the encoding of relations between query and support features.

Below are our contributions:

i. We propose a Time-rEversed diffusiON tEnsor Transformer unit, called
TENET, which captures high-order patterns (including multi-way feature
occurrences) and decorrelates them/reduces tensor burstiness. To this end,
we generalize the MaxExp(F) operator [18] for autocorrelation and/or co-
variance matrices to higher-order tensors by introducing the so-called Tensor
Shrinkage Operator (TSO).

ii. We propose a Transformer Relation Head (TRH) that is sensitive both to
the variability between the Z support samples provided in a Z-shot scenario,
and to positional variability between support and query objects.

iii. In our Supplementary Material (§A), we demonstrate that TSO emerges
from the MLE-style minimization over the Kullback-Leibler (KL) divergence
between the input and output spectrum, with the latter being regularized
by the Tsallis entropy [1]. Thus, we show that TSO meets the definition of
shrinkage estimator whose target is the identity matrix (tensor).

Our proposed method outperforms the state of the art on novel classes by 4.0%,
4.7% and 6.1% mAP on PASCAL VOC 2007, FSOD, and COCO respectively.

2 Related Works

Below, we review popular FSOD methods and vision transformers, followed by
a short discussion on feature grouping, tensor descriptors and spectral power
normalization.

Few-shot Object Detection. A Low-Shot Transfer Detector (LSTD) [4] lever-
ages rich source domain to construct a target domain detector with few training
samples but needs to be fine-tuned to novel categories. Meta-learning-based ap-
proach [48] reweights RoI features in the detection head without fine-tuning.
Similarly, MPSR [46] deals with scale invariance by ensuring the detector is
trained over multiple scales of positive samples. NP-RepMet [49] introduces a
negative- and positive-representative learning framework via triplet losses that
bootstrap the classifier. FSOD-ARPN [7] is a general FSOD network equipped
with a channel-wise attention mechanism and multi-relation detector that scores
pair-wise object similarity in both the RPN and the detection head, inspired
by Faster R-CNN. PNSD [51], inspired by FSOD-ARPN [7], uses contraction



4

of second-order autocorrelation matrix against query feature maps to produce
attention maps. Single-prototype (per class) methods suffer information loss.
Per-sample Prototype FSOD [23] uses the entire support set to form prototypes
of a class but it ignores spatial information within regions. Thus, we employ
TENET RPN and TRH to capture spatial and high-order patterns, and extract
correlations between the query image and the Z-shot support samples for a class.

Transformers in Vision. Transformers, popular in natural language process-
ing [41], have also become popular in computer vision. Pioneering works such as
ViT [9] show that transformers can achieve the state of the art in image recogni-
tion. DETR [3] is an end-to-end object detection framework with a transformer
encoder-decoder used on top of backbone. Its deformable variant [53] improves
the performance/training efficiency. SOFT [30], the softmax-free transformer ap-
proximates the self-attention kernel by replacing the softmax function with Ra-
dial Basis Function (RBF), achieving linear complexity. In contrast, our TENET
is concerned with reversing the diffusion of signal in high-order tensors via the
shrinkage operation, with the goal of modeling spatially invariant high-order
statistics of regions. Our attention unit, so-called Spatial-HOP in TRH, also
uses RBF to capture correlations of between spatial and high-order descriptors.

Multi-path and Groups of Feature Maps. GoogleNet [38] has shown that
multi-path representations (several network branches) lead to classification im-
provements. ResNeXt [47] adopts group convolution [20] in the ResNet bot-
tleneck block. SK-Net [25], based on SE-Net [10], uses feature map attention
across two network branches. However, these approaches do not model feature
statistics. Somewhat closer to our idea is bilinear pooling [35], which correlates
two groups of feature channels from two regions, whereas ReDRO [31] samples
groups of features to apply the matrix square root over submatrices to improve
the computational speed. In contrast, for TENET, we form fixed groups of fea-
tures to form second-, third- and fourth-order tensors, and we show that simply
using groups of features to form second-order matrices is not effective.

Second-order Pooling (SOP). Region Covariance Descriptors for texture
[39,40] and object category recognition [17] use SOP. SOP [19] uses spectral
pooling for fine-grained image classification, whereas SoSN [50] leverages SOP
and element-wise Power Normalization (PN) [17] for end-to-end few-shot learn-
ing. In contrast, we develop a few-shot detector that tackles multi-object local-
ization and classification. Similarly to SoSN, PNSD [51] uses SOP with PN as
representations which are passed to the detection head. So-HoT [14] that uses
high-order tensors for domain adaptation is also somewhat related to TENET
but So-HoT uses multiple polynomial kernel matrices, whereas we apply TSO
to achieve decorrelation and shrinkage. TENET without TSO reduces to poly-
nomial feature maps and performs poorly.

Power Normalization. PN [16] limits the so-called burstiness of first- and
second-order statistics, which is ‘the property that a given visual element appears
more times in an image than a statistically independent model would predict’,
due to the binomial PMF-based feature detection factoring out feature counts
[16,17,19]. Element-wise MaxExp pooling [16] gives likelihood of ‘at least one
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particular visual word being present in an image’, whereas SigmE pooling [19]
is its practical approximation. Noteworthy are the recent Fast Spectral MaxExp
operator, MaxExp(F) [18], which reverses the heat diffusion on the underlying
loopy graph of second-order matrix to some desired past state [36], and Tensor
Power-Euclidean (TPE) metric [15]. TPE alas uses the Higher Order Singular
Value Decomposition [21], which makes TPE intractable for hundreds of region
proposals per image, and hundreds of thousands of images per epoch. Thus, we
develop TENET and TSO, which reverses diffusion on high-order tensors by
shrinking them towards the tensor’s super-diagonal.

3 Background

Below, we detail notations/tensor algebra pre-requisites, and demonstrate how
to calculate multiple higher-order statistics and Power Normalization functions,
followed by revisiting of Transformer block.

Notations. Let x ∈ Rd be a d-dimensional feature vector. IN stands for the
index set {1, 2, ..., N}. We define a vector of all-ones as 1=[1, ..., 1]

T
. Let X =

↑⊗rx denote a tensor of order r generated by the r-th order outer-product of
x, X ∈ Rd1×d2...×dr . Typically, capitalised boldface symbols such as Φ denote
matrices, lowercase boldface symbols such as ϕ denote vectors and regular case
such as Φi,j , ϕi, n or Z denote scalars e.g ., Φi,j is the (i, j)-th coefficient of ϕ.
High-order Tensor Descriptors (HoTD). Below we formalize the notion of
higher-order descriptors [14].

Proposition 1. Let Φ ≡ {ϕ1, ...,ϕN ∈ Rd} and Φ′ ≡ {ϕ′
1, ...,ϕ

′
M ∈ Rd} be

feature vectors extracted from some two image regions. Let w ∈ RN
+ , w′ ∈ RM

+

be some non-negative weights and µ,µ′ ∈Rd be the mean vectors of Φ and Φ′,
respectively. A linearization of the sum of polynomial kernels of degree r,

⟨M(Φ;w,µ), M(Φ′;w′,µ′)⟩ =

1

NM

N∑
n=1

M∑
m=1

wr
nw

′r
m ⟨ϕn−µ,ϕ′

m−µ′⟩r, (1)

yields the tensor feature map

M(Φ;w,µ) =
1

N

N∑
n=1

wr
n ↑⊗r (ϕn−µ) ∈ Rd×d...×d. (2)

For brevity, in our paper we set w=w′=1 and µ=µ′=0, whereas orders r=
2, 3, 4. Specifically, we formulate the second/third/fourth-order feature map as:

M×2(Φ) =
1
N

N∑
n=1

ϕnϕ
T
n ∈ Rd×d;M×3(Φ) =

1
N

N∑
n=1

(ϕnϕ
T
n )ϕ

T
n ∈ Rd×d×d;M×4

(Φ) = 1
N

N∑
n=1

(ϕnϕ
T
n )(ϕnϕ

T
n ) ∈ Rd×d×d×d
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(Eigenvalue) Power Normalization ((E)PN). For second-order matrices,
MaxExp(F), a state-of-the-art EPN [18], is defined as

g(λ; η)=1− (1− λ)η (3)

on the ℓ1-norm normalized spectrum from SVD (λi :=λi/(
∑

i′ λi′+ε)), and on
symmetric positive semi-definite matrices as

ĜMaxExp(M ; η)=I−(I−M)
η
, (4)

where M is a trace-normalized matrix, that is, M :=M/(Tr(M)+ε) for some
small ε≈ 1e − 6, and Tr(·) defines the trace of tensor. The time-reversed heat
diffusion process is adjusted by integer η ≥ 1. The larger the value of η is, the
more prominent the time reversal is. ĜMaxExp is followed by the element-wise
PN, called SigmE [18]:

GSigmE(p; η
′) =2/(1 + e−η′p)− 1, (5)

where p takes each output entry of Eq. (4), η′≥ 1 controls detecting feature
occurrence vs. feature counting trade-off.
Transformers The transformer [41] is a network architecture based on blocks
of alternating attention and MLP layers. Each attention layer takes as input a
set of query (Q), key (K) and value (V ) matrices. Let Q ≡ {q1, ...,qN ∈ Rd},
K ≡ {k1, ...,kN ∈ Rd}, and V ≡ {v1, ...,vN ∈ Rd}, where N is the number
of input feature vectors, also called tokens, and d is the channel dimension. A
generic attention layer can then be formulated as:

Atten(Q,K,V ) = α(Q,K)V T . (6)

The key self-attention function α is composed of a nonlinear function β and
a relation function γ. A dominant instantiation of α is the scaled dot-product
based softmax function[41], defined as:

β = softmax(·), γ(Q,K) =
QTK√

d
. (7)

In addition, LayerNorm (LN) and residual connections are added at the end of
each block.

To facilitate the design of linear self-attention, [30] introduces a softmax-free
self-attention function with the dot-product replaced by a Gaussian kernel as:

β = exp(·), γ(qi,kj) =
−∥qi − kj∥22

2σ2
, (8)

where (i, j) ∈ IN , σ2 is the kernel variance set by cross-validation, and qi and
kj are l2-normalized.

The multi-head attention layer is an enhancement of the attention layer,
where T attention units are applied and their outputs are then concatenated
together. Concretely, this operation splits input matrices Q, K, and V along
their channel dimension d into T groups and performs attention on each group:

MHA(Q,K,V ) = Concat(head1, . . . , headT ), (9)

where headm=Atten(Qm,Km,Vm), Concat concatenates along the channel di-
mension, and the inputs Qm ∈ Rd/T×N , Km ∈ Rd/T×N , and Vm ∈ Rd/T×N

form the mth group.
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4 Proposed Approach

Our approach follows the paradigm of learning a matching function between rep-
resentations of query RoIs and representations of support RoIs supplied during
testing episodes. Our approach is illustrated in Fig. 1 for a set of Z support RoIs
{X} and a query image X∗. It comprises three main modules:

i. an encoding network (EN) which is used to extract features from both
query and support images. We use ResNet-50 as our EN. Given an input
image, EN outputs a feature map Φ ∈ Rd×N , where N = H×W and H and
W denote the spatial dimensions of the feature map;

ii. an embedding and RoI extraction module which generates RoIs from
the query image and computes discriminative embeddings for both the re-
sultant query RoIs as well as the support RoIs; and

iii. a transformer relation head which encodes relations between query and
support features and embedddings using self- and cross-attention. This head
outputs a set of representations, one per RoI, that is then fed into a classifier
and bounding-box refinement regressor.

Next, we describe the embedding and RoI extraction module, followed by the
transformer relation head.

4.1 Extracting representations for support and query RoIs

Our module for generating embeddings and query RoIs is shown in Fig. 1. Central
to this module is our HOP unit for generating discriminative embeddings by
aggregating over higher-order tensor descriptors (HoTDs). In this unit, features
are split along the channel mode to form multiple feature map tensors, from
which second-, third- and fourth- order tensors are computed. The aggregation
operator is a generalization of the MaxExp(F) to higher-order tensors, called
the tensor shrinkage operator (TSO). Using the TSO, derived later, we extract

representations ψ̂r from HoTDs M(r) as follows:

ψ̂r=Diag
(
ĜTSO

(
M(r); ηr

))
, (10)

ψr=GSigmE

(
ψ̂r; η

′
)
, (11)

where ĜTSO(·) is the TSO, and Diag is the super-diagonal extraction operation.
We now derive the TSO as a generalization of MaxExp(F).

Tensor Shrinkage Operator. Ledoit and Wolf [22] define autocorrelation / co-
variance matrix estimation as a compromise between the sample matrixM and
a highly structured operator F , which achieved by computing a convex linear
combination (1−δ)M+δF . For symmetric positive semi-definite matrices and
other representations which rely on some spectrum, one can estimate in a similar
manner, by minimizing some divergence d(λ,λ′) between the source and target
spectra, where λ′ is regularized by Ω(λ′):

λ∗=argmin
λ′≥0

d(λ,λ′) + δΩ(λ′). (12)
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Fig. 1: Our pipeline. We input ground truth support crops and the query im-
age to the encoding network (EN). The resulting convolutional feature maps (Φ
for support, Φ∗ for query) are input to the TENET-RPN module to produce
feature sets for query image RoIs (Φ∗

b), and high-order pooled representations
for both support crops ( Ψ) and query image RoIs (Ψ∗

b ). TENET contains HOP
units which compute high-order tensor descriptors and then apply a novel tensor
shrinkage operator to them, yielding more discriminative representations (Ψ and
Ψ∗

b ) with identical dimensionality to the input features. These more discrimina-
tive representations are then passed to the Transformer relation head (TRH),
along with the convolutional features Φ and Φ∗

b . The TRH consists of Z-shot
and Spatial-HOP attention units for measuring similarities across support re-
gions and query proposals, and for refining the localization of target objects.
The HOP embeddings of support images and query proposals are Ψ (Z vector)
and Ψ∗

b (b ∈ B, a set of query proposals). ⊕ denotes element-wise addition and
⊙ means matrix multiplication.

Let λ be the ell1-norm normalized spectrum, as in Eq. (3). Then, g(λ; η) =
1 − (1 − λ)η is in fact a shrinkage operator, a solution to the problem in Eq.
(12) with δ = 1, and the Kullback-Leibler divergence and the Tsallis entropy
substituting the divergence d and the regularization term Ω, respectively. Please
refer to §A of supplementary material for the proof, where we also discuss the
highly structured operator F , ie. the target of the shrinkage operator, is the
identity matrix.

Based on these observations, we can readily extend MaxExp(F) to general
high-order tensors with TSO as follows:

ĜTSO

(
M(r); η

)
=Ir−

(
Ir −M(r)

)η

(13)

where the identity tensor of order r is defined as Ir, where all elements I1,...,1=
I2,...,2...= Id,...,d=1 and Ii1,...,ir =0 if ij ̸= ik for j ̸=k, j, k∈Ir.

For integers η ≥ 2 and even orders r ≥ 2, computing η− 1 tensor-tensor

multiplications
(
Ir −M(r)

)η

has the complexity O
(
d

3
2 rη

)
. For odd orders

r ≥ 3, due to alternations between multiplications in
⌊
r
2

⌋
and

⌈
r
2

⌉
modes, we

have the complexity O
(
d⌊

r
2⌋d2⌈

r
2⌉η

)
≈O

(
d

3
2 rη

)
. Thus, the complexity of Eq.

(13) w.r.t. integer η ≥ 2 scales linearly. However, for even orders r, one can

readily replace
(
Ir −M(r)

)η

with exponentiation by squaring [2], whose cost

is log(η). This readily yields the sublinear complexity O
(
d

3
2 r log(η)

)
w.r.t. η.
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Algorithm 1 Tensor Shrinkage Operator with Exponentiation by Squaring, left
part for even orders and right part for odd orders r.

Input: M for a forward pass, η ≥ 1,
r=2, 4, ...

1: M∗
1=Ir−M, n=int(η), t=1, q=1

2: while n ̸=0:
3: if n&1:
4: if t > 1: Gt+1 = Gt×1,...,r/2

M∗
q , else: Gt+1=M∗

q

5: n←n−1, t← t+1

6: n← int(n/2)

7: if n>0:
8: M∗

q+1= M∗
q ×1,...,r/2 M∗

q

9: q←q+1

Output: ĜTSO(M)=Ir−Gt

Input: M for a forward pass, η =

30, 31, 32, ..., r=3, 5, ...

1: M∗
1=Ir−M, n=int(η), q=1

2: while n ̸=0:
3: n← int(n/3)

4: if n>0:
5: M∗

q+1 = M∗
q ×1,...,⌊r/2⌋

M∗
q ×1,...,⌈r/2⌉ M∗

q

6: q←q+1

Output: ĜTSO(M)=Ir−M∗
q

Algorithms 1 shows how TSO can be evaluated very efficiently for even and odd
orders r, respectively. We restrict the latter variant to orders r=30, 31, 32, ... for
brevity but derivations of a more complete recurrent formula for r=3, 5, 7, ... is
straightforward. Finally, we note that matrix-matrix and tensor multiplications
with cuBLAS are highly parallelizable so the d

3
2 r part of complexity can be

reduced in theory even to log(d).

As we have Ir−(Ir −M)
η→Ir as η→∞. For this reason, for sufficiently

large η, the heat reverses to super-diagonals, which carry the majority of the
signal as long as 1 ≪ η ≪ ∞. For this reason, we limit the number of coef-
ficients of feature representations by extracting the super-diagonals from the
TSO-processed M(r) as in Eq. 10, where r indicates the order of HoTD M. In
our experiments, we use r=2, 3, 4.

As super-diagonals contain heat (information) obtained by diffusing the com-
plements 1−λi in η steps in the spectral domain, which is simply realized by
η−1 tensor products, the actual TSO is a form of aggregation along the ten-
sor product mode(s). For this reason, We pass ψ̂r via the element-wise SigmE
from Eq. (5), as in Eq. (11) to detect the presence of at least one feature being

detected in ψ̂r after several aggregation steps. In what follows, we drop the r
subscript from ψr for ease of notation. In section 5.2 we compare performance
for different values of r.

TENET-RPN: Extracting query RoIs and their representations. To
extract query RoIs we first generate a set Z of TSO representations {ψ}z∈Z
from the support images, with Z = |Z|, and let Ψ ≡ {ψ}z∈Z . We then perform
cross-attention between Ψ ∈ Rd×Z and the N features Φ∗ ∈ Rd×N extracted
from the query image. The attention input Q is then generated from Φ∗, while
K and V are both generated from Ψ . The output of the transformer block in
Eq. 6 is fed into an RPN layer to output a set B of B = |B| query RoIs.
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Each of these query RoIs is then represented using TSO representations to
produce the set {ψ∗}b∈B. Both sets of representations, {ψ∗}b∈B and {ψ}z∈Z ,
are passed to the next module, the transformer relation head, described next.
4.2 Transformer relation head

As mentioned previously, the goal of our transformer relation head , illustrated
in Fig. 1, is to enhance features and query RoI embeddings from query and sup-
port images that are similar. It takes, as input, the set of TSO representations
{ψ∗

b ∈ Rd}b∈B generated for each query RoI in B, and the set of TSO represen-
tations {ψz ∈ Rd}z∈Z for support images. TSO representations are derived from
features extracted from layer 4 of ResNet-50, leading to a channel dimension of
size d = 1024. TRH also takes as input query RoI features {Φ∗

b ∈ R2d×N}b∈B
and, lastly, support features {Φz ∈ R2d×N}z∈Z . These are both extracted from
layer 5 of ResNet-50, leading to a channel dimension of size 2d, ie. 2048.

They are then fed into 2 different transformers: (i) a Z-shot transformer
head, which performs cross-attention between globally-pooled representations
of the query images and support images; and (ii) a Spatial-HOP transformer
head, which performs self-attention between the set of global representations
and spatial feature vectors for a given image, be it a query or support image.
We describe both in more detail next.

Z-shot transformer head. This transformer consists of a cross-attention layer
formed with:

Q ≡ {q1, ...,qB , |qb =Wq

[
ϕ̄b ⊕Wpψ

∗
b

]
}, (14)

K ≡ {k1, ...,kZ , |kz =Wk

[
ϕ̄z ⊕Wpψz

]
}, (15)

V ≡ {v1, ...,vZ , |vz =Wv

[
ϕ̄z ⊕Wpψz

]
}, (16)

where ⊕ denotes element-wise addition, and ϕ̄ denotes average-pooled features
(1/N)Φ∗1. The matrices Wq ∈ R2d×2d, Wk ∈ R2d×2d, Wv ∈ R2d×2d, and
Wp ∈ R2d×d are learned weights. The Wp weights are shared by query RoI and
support TSO representations and project such representations into a 2d space.
In this way, each attention query vector qb combines the extracted features for
a query image RoI and the TSO representations for that RoI. Analogously, each
key vector kz and value vector vz combines the extracted features and TSO rep-
resentation for a support image. The layer performs cross-attention, enhancing
representations of the RoIs and support images with similar information.

Spatial-HOP transformer head. This transformer consists of a layer that per-
forms self-attention on sets of representations, both global and local, extracted
either from Z support images, or B query RoIs. We describe its operation for
a set Z of support images. For the set Z we compute Φ†

Z ∈ R2d×N , where

Φ†
Z = (1/Z)

∑
z∈Z Φz, and ψ

†
Z ∈ Rd, where ψ†

Z = (1/Z)
∑

z∈Z ψz. We split Φ†
Z

along the channel dimension of size 2d to create two new matrices Φ†u
Z ∈ Rd×N

and Φ†l
Z ∈ Rd×N . We let Φ†l

Z ≡ {ϕ†l
Z,1, ...,ϕ

†l
Z,N ∈ Rd}. Self-attention is then

performed over the following set T Z of token vectors:

T Z ≡ {ϕ†l
Z,1, ...,ϕ

†l
Z,N ; ϕ̄†u

Z ;Wgψ
†
Z}. (17)
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Table 1: Comparison of different methods in terms of mAP (%) on three splits
of the VOC 2007 testing set.

Method/Shot
Split 1 Split 2 Split 3 Mean±std

1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

FRCN ICCV12 11.9 29.0 36.9 36.9 5.9 23.4 29.1 28.8 5.0 18.1 30.8 43.4 7.6±3.1 23.5±4.5 32.3±3.3 36.4±6.0
FR ICCV19 14.8 26.7 33.9 47.2 15.7 22.7 30.1 39.2 19.2 25.7 40.6 41.3 16.6±1.9 25.0±1.7 34.9±4.3 42.6±3.4
Meta ICCV19 19.9 35.0 45.7 51.5 10.4 29.6 34.8 45.4 14.3 27.5 41.2 48.1 14.9±3.9 30.7±3.2 40.6±4.5 48.3±2.5
FSOD CVPR20 29.8 36.3 48.4 53.6 22.2 25.2 31.2 39.7 24.3 34.4 47.1 50.4 25.4±3.2 32.0±4.8 42.2±4.2 47.9±3.9
NP-RepMet NeurIPS2037.8 41.7 47.3 49.441.643.4 47.4 49.1 33.3 39.8 41.5 44.8 37.6±3.4 41.6±1.5 45.4±2.8 47.8±2.1
PNSD ACCV20 32.4 39.6 50.2 55.1 30.2 30.3 36.4 42.3 30.8 38.6 46.9 52.4 31.3±4.4 36.2±4.2 44.5±3.8 49.9±5.4
MPSR ECCV20 41.7 51.4 55.2 61.8 24.4 39.2 39.9 47.835.642.3 48.0 49.7 33.9±7.2 44.3±5.2 47.7±6.2 53.1±6.2
TFA ICML20 39.8 44.7 55.7 56.0 23.5 34.1 35.1 39.1 30.8 42.8 49.5 49.8 31.4±6.7 40.5±4.6 46.8±8.6 48.3±7.0
FSCE CVPR21 44.2 51.4 61.9 63.4 27.3 43.5 44.2 50.2 22.6 39.5 47.3 54.0 31.4±9.3 44.8±4.9 51.1±7.7 55.9±5.6
CGDP+FRCNCVPR21 40.7 46.5 57.4 62.4 27.3 40.8 42.7 46.3 31.2 43.7 50.1 55.6 33.1±5.6 43.67±2.3 50.0±6.0 54.8±6.6
TIP CVPR21 27.7 43.3 50.2 56.6 22.7 33.8 40.9 46.9 21.7 38.1 44.5 50.9 24.0±2.6 38.4±4.0 45.2±4.3 52.47±5.3
FSODup ICCV21 43.8 50.3 55.4 61.7 31.2 41.2 44.2 48.3 35.5 43.9 50.6 53.5 36.8±5.2 45.1±3.8 50.1±4.6 54.5±5.5
QSAM WACV22 31.1 39.2 50.7 59.4 22.9 32.1 35.4 42.7 24.3 35.0 50.0 53.6 26.1±3.5 35.4±2.9 45.4±3.6 51.9±3.8

TENET (Ours) 46.755.462.366.940.344.749.352.135.546.054.454.640.8±3.648.7±4.755.3±3.157.9±5.8

whereWg ∈ Rd×d denotes learned weights that are shared between support and
query representations. The transformed tokens encode relations among global
and local representations that have been pooled across all Z shots. We compute
similar transformed tokens using analogous representations for each query RoI.

The outputs of the Z-shot and Spatial-HOP transformer heads are aggre-
gated to form representations for each query RoI, which are then fed into a
classifier and bounding-box regressor (see §C of Suppl. Material for details).

5 Experiments

Datasets and Settings. For PASCAL VOC 2007/12 [6], we adopt the 15/5
base/novel category split setting and use training/validation sets from PASCAL
VOC 2007 and 2012 for training, and the testing set from PASCAL VOC 2007
for testing, following [11,7,51,23]. For MS COCO [28], we follow [48], and adopt
the 20 categories that overlap with PASCAL VOC as the novel categories for
testing, whereas the remaining 60 categories are used for training. For the FSOD
dataset [7], we split its 1000 categories into 800/200 for training/testing.

Implementation Details. TENET uses ResNet-50 pre-trained on ImageNet
[5] and MS COCO [28]. We fine-tune the network with a learning rate of 0.002
for the first 56000 iterations and 0.0002 for another 4000 iterations. Images
are resized to 600 pixels (shorter edge) and the longer edge is capped at 1000
pixels. Each support image is cropped based on ground-truth boxes, bilinearly
interpolated and padded to 320×320 pixels. We set, via cross-validation) SigmE
parameter η′=200 and TSO parameters η2 = η3 = η4 = 7. We report standard
metrics for FSOD, namely mAP , AP , AP50 and AP75.

5.1 Comparisons with the State of the Art

PASCAL VOC 2007/12. We compare our method to QSAM[23], FSODup

[45], CGDP+FRCN [26], TIP [24], FSCE [37], TFA [42], Feature Reweighting
(FR) [11], LSTD [4], FRCN [34], NP-RepMet [49], MPSR[46], PSND [51] and
FSOD [7]. Table 1 shows that our TENET method outperforms FSOD by a
7.1–15.4% margin. For the 1- and 10-shot regime, we outperform QSAM [23] by
∼14.7%.
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MS COCO. Table 2a compares TENET with QSAM[23], FSODup [45], CGDP+
FRCN [26], TIP [24], FSCE [37], TFA [42], FR [11], Meta R-CNN [48], FSOD
[7] and PNSD[51] on the MS COCO minival set (20 novel categories, 10-shot
protocol). Although MS COCO is more challenging in terms of complexity and
the dataset size, TENET boosts performance to 19.1%, 27.4% and 19.6%, sur-
passing the current SOTA method QSAM by a large margin, 6.1%, 2.7% and
7.5% on AP , AP50 and AP75.

FSOD. In Table 2b we compare TENET (5-shot protocol) with PNSD [51],
FSOD [7], LSTD [4] and LSTD (FRN [34]). We re-implement BD&TK, modules
of LSTD, based on Faster-RCNN for a fair comparison. TENET gives SOTA
results of 35.4% AP50 and 31.6% AP75.

Table 2: Comparison with SOTA on the MS COCO minival set (2a) and FSOD
testset (2b).
Shot Method AP AP50 AP75

10

LSTD AAAI18 3.2 8.1 2.1
FR ICCV12 5.6 12.3 4.6
Meta ICCV19 8.7 19.18 6.6
MPSR ECCV20 9.8 17.9 9.7
FSOD CVPR20 11.1 20.4 10.6
PNSD ACCV20 12.3 21.7 11.7
TFA ICML20 9.6 10.0 9.3
FSCE CVPR21 10.7 11.9 10.5

CGDP+FRCN CVPR21 11.3 20.3 11.5
FSODup ICCV21 11.6 23.9 9.8
QSAM WACV22 13.0 24.7 12.1

TENET (Ours) 19.1 27.4 19.6

(a)

Shot Method AP50 AP75

5

LSTD
(FRN) AAAI18 23.0 12.9

LSTD AAAI18 24.2 13.5

FSOD CVPR20 27.5 19.4

PNSD ACCV20 29.8 22.6

QSAM WACV22 30.7 25.9

TENET (Ours) 35.4 31.6

(b)

5.2 Hyper-parameter and ablation analysis

TENET. Table 3a shows that among orders r=2, r=3 and r=4, the second-
order variant is, unsurprisingly, the most informative one. We next consider pairs
of orders, and the triplet r=2, 3, 4. As the number of tensor coefficients grows
quickly w.r.t. r, we split the 1024 channels into groups e.g ., r= 2, 3. A 3:1 split
means that second- and third-order tensors are built from 768 and 256 channels
(768+256 = 1024). We report only the best splits. For pairs of orders, variant
r=2, 3 outperforms other combinations. Triplet r=2, 3, 4, the best performer,
outperforms r = 2 by 5.8% and 2.7% in novel classes (5- and 10-shot), and
2.1% and 2.4% in base classes. As all representations are 1024-dimensional, we
conclude that multi-order variants are the most informative.
TSO. Based on the best channel-wise splits in Table 3a, we study the impact of
ηr (shrinkage/decorrelation) of TSO to verify its effectiveness. Figure 2a shows
mAP w.r.t. the individual η2, η3 and η4 for r = 2, r = 3 and r = 4. We then
investigate the impact of ηr on pairwise representations, where we set the same
ηr for pairwise variants, e.g ., η2 = η3. Again, the same value of ηr is used for
triplet r=2, 3, 4. Note that for ηr=1, TSO is switched off and all representations
reduce to the polynomial feature maps in So-HoT [14]. As shown in Figure 2a,
TSO is very beneficial (∼ 5% gain for triplet r= 2, 3, 4 over not using TSO).
TRH. Our detector is designed to have a heightened discriminative ability to
distinguish between different classes. Its Z-Shot and Spatial-HOP Transformer
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Table 3: Results on VOC2007 testset for applying TENET in RPN or TRH (3a,
top panel of 3b). TRH ablation shown in bottom panel of 3b.

r dim.
split

Shot(Novel) Shot(Base) Speed

2 3 4 5 10 5 10 (img/ms)

✓ 56.5 64.2 71.7 75.5 32

✓ 55.7 63.2 67.0 72.1 69

✓ 51.4 58.9 68.7 74.8 78

✓ ✓ 3:1 58.3 63.2 69.3 75.1 42

✓ ✓ 3:1 56.1 62.4 70.8 75.4 68

✓ ✓ 2:2 51.8 61.7 68.1 73.6 71

✓ ✓ ✓

6:1:1 53.6 62.7 69.4 72.8

5:2:1 62.3 66.9 73.8 77.9 59

5:1:2 53.9 63.1 69.7 73.3

4:2:2 61.4 65.0 70.4 74.9

4:3:1 59.1 63.6 71.8 75.2

4:1:3 61.0 64.1 68.9 72.5

(a)

RPN TRH Shot(Novel) Shot(Base)

r 5 10 5 10

a 1 1 53.4 61.8 64.9 72.1

b 2,3,4 1 57.2 63.7 68.8 76.6

c 2,3,4 2,3,4 61.0 65.4 71.3 77.3

d 2,3,4 1,2,3,4 62.3 66.9 73.8 78.2

TRH Shot(Novel) Shot(Base)

Z-shot Spatial-HOP 5 10 5 10

✓ 58.5 63.2 69.3 75.1

✓ 61.0 65.8 71.7 76.5

✓ ✓ 62.3 66.9 73.8 78.2

(b)

Table 4: Effect of varying (a) group within MHA in Tab. 4a and (b) TENET
block in Tab. 4b on PASCAL VOC 2007 (5/10-shot, novel classes). When varying
TENET block, group number is fixed to 4 (best value).

TA 1 2 4 8 16 32 64

Shot
(Novel)

5 58.3 59.1 61.8 60.5 58.4 58.5 56.0

10 61.2 62.8 65.8 64.2 61.2 61.7 60.4

(a)

TB 1 2 3 4 5

Shot
(Novel)

5 61.8 62.3 62.1 61.8 61.9

10 65.8 66.9 66.4 66.1 66.4

(b)

Relation Heads encode similarities between support and query images. We quan-
tify the empirical impact of each in Table 3b (bottom), which shows that both
heads complement each other to produce higher performance.

Other hyperparameters. We first examine the influence of Gaussian kernel
parameter σ. We vary σ from 0.3 to 3 and show in Fig 2b that σ=0.5 gives the
best performance. We now fix σ and investigate the impact of varying the number
of heads used in T-Heads Attention (TA). Table 4a shows best performance with
TA=4. Lastly, we vary the number of TENET blocks (TB) and show in Table
4b that our model performance is stable across different choices, particularly
for TB ≥ 2. Unless otherwise noted, TA = 2 and TB = 4, respectively, on
VOC dataset. In our suppl. material, we present more results and discussions on
FSOD and MS COCO dataset.

Impact of TENET on RPN and TRH. Table 3b shows ablations w.r.t.
TENET variants: 1) either in RPN or in TRH, or 2) in both RPN and TRH.
Comparing results for settings a,b, and c confirms that using second-, third- and
fourth-orders simultaneously is beneficial for both RPN and TRH, achieving
3.8%/1.9% as well as 3.8%/1.8% improvement on novel classes over the first-
order-only variant. In addition, results for settings c and d show that TRH can
better encode the information carried within support regions by leveraging both
first-order and higher-order representations.
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(a) (b)

Fig. 2: mAP (VOC2007 dataset, novel classes, 10-shot) w.r.t. varying ηr in TSO
(Fig. 2a) and the σ of Gaussian Kernel in self-attention function (Fig. 2b) .

6 Conclusion

We have proposed TENET, which uses higher-order tensor descriptors, in combi-
nation with a novel tensor shrinkage operator, to generate highly-discriminative
representations with tractable dimensionality. We use these representations in
our proposed transformer relation heads to dynamically extract correlations be-
tween query image regions and the entire support set for a class. TENET has
heightened robustness to large intra-class variations, leading to SOTA perfor-
mance on popular benchmarks.
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Below are additional derivations, evaluations and illustrations of our method.
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Fig. 3: Detailed illustration of our pipeline. We follow the architecture from Fig.
1 and expand blocks such as HOP, ‘Orderless FO, Spatial, Orderless HO’, Z-shot
T-RH and Spatial-HOP T-RH. See the text for detailed descriptions.

In Figure 3, we have:

i. The HOP unit uses operator ⊚ to split the channel mode into groups (e.g .,

2:1:1 split means two parts of the channel dimension are used to form M(2),
one part to form M(3), and one part to form M(4) ). Subsequently, TSO
with parameters η2 = ... = ηr = η are applied for orders r = 2, ..., r, and
diagonal entries are extracted from each tensor and concatenated by ⊙.
Finally, element-wise SigmE pooling with parameter η′ is applied.

⋆SZ was mainly in charge of the pipeline/developing the transformer. PK (corre-
sponding author) was mainly in charge of mathematical design of TENET & TSO.
Code: https://github.com/ZS123-lang/TENET.
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ii. The ‘Orderless FO, Spatial, Orderless HO’ block combines the first-order
(FO), spatial and high-order (HO) representations. Operator ‘Z-avg’ per-
forms average pooling along Z-way mode, operator ‘Sp-avg’ performs aver-
age pooling along the spatial modes of feature maps, operator ⊚ simply splits
the channel mode into two equally sized groups (each is half of the channel
dimension), and operator ⊛ performs concatenation of FO, spatial and HO
representations along the spatial mode of feature maps e.g ., we obtain N+2
fibers times 1024 channels.

iii. The Z-shot T-RH is a transformer which performs attention on individual
Z-shots. The spatial representation Φ is average pooled along spatial dimen-
sions by ‘Sp-avg’ and combined with high-order Ψ (passed by a FC layer) via
addition ⊕. Another FC layer follows and subsequently the value, key and
query matrices are computed, with an RBF attention between the key and
query, and operator • multiplying the value matrix with the RBF attention
matrix. The whole head may be repeated T times and outputs concatenated
by ⊙ to form the output of this transformer block.

iv. The Spatial-HOP T-RH simply takes the inputs from the ‘Orderless FO, Spa-
tial, Orderless HO’ block, and computes the value, the key and the query
matrices per support and query RoIs. The attention obtained with the RBF
kernel has (N +2)× (N +2) size. Thus, the attention kernel is composed
of spatial attention, FO-spatial and HO-spatial attention. After multiplying
the kernel with the value matrix, we extract the spatial, FO and HO repre-
sentations, respectively. Support and query first-order representations (FO)
are element-wisely multiplied by • (we call it the multiplicative relationship
operator). Support and query high-order representations (HO) also use the
multiplicative relationship operator. Finally, support and query spatial rep-
resentations use the subtraction operator ⊖. After the concatenation of FO
and HO relational representations by ⊙, passing via an MLP (FC+ReLU+
FC), and concatenation with the spatial relational representations, we have
an output of the single attention block, which can be repeated T times.

A TSO acts as the shrinkage estimator with the target of
identity matrix.

Theorem 1. Let λ be the ell1-norm normalized spectrum, as in Eq. (3). Then,
g(λ; η) = 1 − (1 − λ)η is in fact a shrinkage operator, a solution to the prob-
lem in Eq. (12) with δ=1, and the Kullback-Leibler divergence and the Tsallis
entropy substituting the distance/divergence1 d and the regularization term Ω,
respectively.

Proof. Let d(λ,λ′)=DKLλ
◦λ◦′=−

( ∑
i∈Id

λ◦
i log λ

◦
i
′)+( ∑

i∈Id

λ◦
i log λ

◦
i

)
, where λ◦=

1−λ and λ◦′=1−λ′ are complements of λ and λ′. Let Ω(λ′;α)= 1
α (1−

∑
i∈Id

λ◦′α)=

1 The KL divergence is not a distance, as it is not a metric measure due to its non-
symmetric nature.
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1
α (1−

∑
i∈Id

(1−λ′)
α
). We define f(λ,λ′)=−

( ∑
i∈Id

λ◦
i log λ

◦
i
′)+( ∑

i∈Id

λ◦
i log λ

◦
i

)
+1

α (1−∑
i∈Id

λ◦′α) which we minimize w.r.t. λ′ by computing ∂f
∂λ′

i
=0, that is,

∂f

∂λ′
i

=
1−λi

1−λ′
i

−(1−λ′
i)

α−1=0 ⇔ λ′
i=1−(1−λi)

1
α . (18)

Let 1
α =η in Eq. (18), which completes the proof.

Moreover, from the above proof, it is easy to conclude that TSO is not a
mere naive linear interpolation between λ and the target 1.

Theorem 2. The highly structured operator F , that is, the target of the shrink-
age operator is the identity matrix.

Proof. This is easily seen because lim
η→∞

1−(1−λi)
η = 1 if λ ̸= 0 is the ℓ1-norm

normalized spectrum from SVD e.g ., UλUT=M≽0, that is, λi :=λi/(
∑

i′ λi′+
ε), ε>0, and thus we have UUT=I.

B Ablation Study on Encoding Network

Below we perform ablations of the backbone (Encoding Network, termed as
EN in main paper). We use ConvNet (ResNet-50) and Transformer network [29]
(Swin-B7/ Swin-B12 pre-trained on ImageNet-22K [5] with window size of 7/12),
as shown in Table 5c. The comparisons are conducted by changing the backbone,
whereas other settings remain unchanged. When ResNet-50 is replaced by Swin-
B7, we gain an improvement of 0.3% and 0.5% in the 5/10-shot setting (novel
classes).

C Details of Transformer Relation Head (TRH) with
Z-shot and Spatial-HOP blocks.

As Z-shot T-RH is described in Eq. (14)–(16) of the main paper, below we focus
on describing Spatial-HOP T-RH.

This head first forms a so-called self-attention on a set Z of support re-
gions and B query RoIs, respectively. We formulate its operation for B query
RoIs (refer §4.2 of main paper for support regions). Concretely, it takes, as
input, RoI features Φ∗

B ∈ R2d×NB (2d because layer 5 of ResNet-50 maps d-
dimensional features to 2d-dimensional features), where {Φ∗

b ∈ R2d×N}b∈B, and
ψ∗

B ∈ Rd×B , where {ψ∗
b ∈ Rd}b∈B. We split Φ∗

B along the channel dimension
of size 2d to create two new matrices Φ∗u

B ∈ Rd×NB and Φ∗l
B ∈ Rd×NB . We let

Φ∗l
b ≡ {ϕ∗l

b,1, ...,ϕ
∗l
b,N ∈ Rd}. Self-attention is then performed over the following

set T b of token vectors, in parallel across B RoIs of T B:

T b ≡ {ϕ∗l
b,1, ...,ϕ

∗l
b,N ; ϕ̄∗u

b ;Wgψ
∗
b}. (19)
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where ϕ̄ denotes average-pooled features and Wg ∈ Rd×d denotes learning
weights that are shared between query and support representations.

Based on these representations between support regions (with subscript Z)
and query RoIs, we then perform cross-attention R, as follows:

Rl =
[
Φ†l

Z,i −Φ∗l
B,i

]
∈ Rd×B , i ∈ IN , (20)

Ru =

[
ϕ̄†u

Z · ϕ̄∗u
B

ψ†
Z ·ψ∗

B

]
∈ R2d×B , R =

[
Rl

WuRu

]
∈ R2d×B , (21)

where the learnable weightWu ∈ Rd×2d projects the channel-wise concatenated
matrix to a d dimension; operators (-) and (·) indicate broadcast element-wise
subtraction and multiplication, respectively, where support feature is replicated
B times to match with the query RoIs.

Finally, the outputs of the Z-shot and Spatial-HOP transformer heads are
individually fed into a classifier, which are aggregated to form a classification
score for each query RoI. Bounding-box regressor takes the output of Spatial-
HOP transformer head as input for localization. The above process is shown in
Fig. 3.

D Ablation Study on Transformer Relation Head (TRH)
with Z-shot and Spatial-HOP blocks.

As the supplementary setting for the top panel of Tab. 3b (in the main paper), we
utilize r=1 in RPN and r=2, 3, 4 in TRH, achieving 2.7%/2.4% improvement
on novel/base classes, 5-shot protocol, over the variant applied r = 1 in both
RPN and TRH.

We then conduct more ablation studies on Spatial-HOP transformer head
to analyze the impact brought by each component (5/10-shot setting on novel
classes, VOC 2007). The results are shown on Table 5a. Specifically, we mainly
ablate three variants: spatial maps of assorted size (as in the table) with either
orderless HOP representation of order r=1 or r=2, 3, 4, or both r=1, 2, 3, 4.

Furthermore, to investigate the impact of spatial attention, we use bilinearly
subsampled maps, ranging from 1 × 1 to 7 × 7 in spatial size. Not surprisingly,
the Spatial-HOP head performs best when utilizing larger spatial maps, together
with the orderless high-order and first-order tensor descriptors.

E Visualization of Attention Maps of the Spatial-HOP
block.

To explain why our model benefits from the combination of spatial attention,
and orderless first-order and high-order representations, we provide qualitative
results based on displaying attention maps.

Firstly, we performed training where Spatial-HOP T-RH used only spatial
and first-order information (FO) during training. To obtain the picture, we
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First-order fiber (FO) is visualised
(Spatial-HOP T-RH used only spa-
tial and FO (r=1) information dur-
ing training)

High-order fiber (HO) is visualised
(Spatial-HOP T-RH used only spa-
tial and HOP (r = 2, 3, 4) informa-
tion during training)

Spatial fibers are max-pooled and
then visualised (Spatial-HOP T-RH
used spatial, FO and HOP informa-
tion (r=1, 2, 3, 4) during training)

First-order fiber (FO) and High-
order fiber (HO) are averaged and
then visualised (Spatial-HOP T-RH
used spatial, FO and HOP informa-
tion (r=1, 2, 3, 4) during training)

Fig. 4: Visualization of attention maps of self-attention w.r.t. support regions.
The results are produced on VOC2007 test set, novel classes (motorbike, bird,
bus and cow). See text for detailed descriptions.
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Table 5: Experimental results of different variants of Transformer Relation Head
(TRH), by varying Z-shot and Spatial-HOP blocks, are in Tab. 5a. Digits 1, ..., 4
indicate different orders included or excluded from each experiment. ‘Spatial’ is
the size of spatial map (downsampled by the bilinear interpolation). Next, Tab.
5c is an ablation of different variants of Encoding Network (5/10-shot setting on
VOC2007 testing set was used in Tab. 5a and 5c). Finally, Fig. 5b shows mAP
w.r.t. η′ in SigmE (10-shot protocol on VOC2007 and COCO testing dataset,
5-shot setting on FSOD testing dataset).
Z−shot
(1,2,3,4) Spatial 1 2,3,4 5-shot 10-shot

✓

7×7
✓ 57.9 64.2

✓ 61.3 65.8
✓ ✓ 62.3 66.9

5×5
✓ 58.7 63.7

✓ 60.3 64.3
✓ ✓ 61.1 65.2

3×3
✓ 54.8 57.9

✓ 56.0 59.2
✓ ✓ 56.6 60.1

1×1
✓ 45.1 49.3

✓ 46.8 51.9
✓ ✓ 47.4 52.4

7×7
✓ 55.2 60.7

✓ 59.4 64.6
✓ ✓ 61.0 65.8

5×5
✓ 57.6 61.5

✓ 58.6 63.0
✓ ✓ 60.3 63.4

3×3
✓ 52.4 54.8

✓ 54.1 57.8
✓ ✓ 54.5 58.3

1×1
✓ 44.0 47.1

✓ 45.2 48.4
✓ ✓ 46.3 50.1

(a)

(b)

EN 5-shot 10-shot

ResNet-50 62.3 66.9

Swin-B7 62.6 67.4

Swin-B12 62.0 66.7

(c)

picked ϕ̄†u
Z from Eq. (17) and we looked how it correlates with the N spatial

representations ϕ†l
Z,1, ...,ϕ

†l
Z,N . To that end, we passed these ‘spatial fibers’ and

FO representation via the RBF kernel of Eq. (8), and we then reshaped N into
the spatial map (7×7 size).

Figure 4 (top left) shows how the first-order representation (FO) correlates
with each spatial fiber in the attention of transformer. As Spatial-HOP T-RH
block uses information averaged over K images of the same class in an episode
(K-way images), each column shows one of these support images. Each row
shows a different class image from Z-shot support images in the episode.

Subsequently, we performed training where Spatial-HOP T-RH used only
spatial and high-order information (HO) during training. Thus, we picked the

high-order representation Wgψ
†
Z from Eq. (17) and we looked how it correlates

with the N spatial representations ϕ†l
Z,1, ...,ϕ

†l
Z,N . To that end, we passed these

‘spatial fibers’ and HO representation via the RBF kernel of Eq. (8), and we
then reshaped N into the spatial map (7×7 size).
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Figure 4 (top right) shows how the high-order representation (HO) correlates
with each spatial fiber in the attention of transformer. As before, we visualise
K×Z images from an episode given the K-way Z-shot problem.

Comparing FO an HO representations, HO is by far more focused on the fore-
ground objects that correlate in the semantic sense with the object class. This
explains why HO representations help our model obtain better results compared
to traditional attention mechanisms that focus only on capturing spatial corre-
lations of a region.

Figure 4 (bottom left) shows how the spatial fibers from the attention ma-
trix that is max-pooled along columns (we of course removed FO and HO before
pooling along columns). We follow the same procedure as above, however, this
time the Spatial-HOP T-RH block was utilizing the spatial, FO and HO infor-
mation during training. Clearly, spatial attention can focus on complex spatial
patterns in contrast to the focus of FO and HO.

Figure 4 (bottom right) shows how the first-order representation (FO), aver-
aged with the high-order representation (HO), correlate with each spatial fiber
in the attention of transformer. We follow the same procedure as above, and still
use the spatial, FO and HO information in the Spatial-HOP T-RH block during
training. Clearly, utilizing r=1, 2, 3, 4 compares favourably with utilizing either
r=1 or r=2, 3, 4 during training.

F Impact of η′ of SigmE.

According to Section 4, TSO benefits from element-wise PN, realized by the
SigmE operator in Eq. (5), which depends on the parameter η′. Figure 5b shows
that η′ = 200 is a good choice on VOC dataset but η′ = 300/400 helps obtain
the best results on FSOD/COCO dataset. Overall, our approach is not overly
sensitive to this parameter, and setting η′=200 on all datasets if a good choice.

G Hyperparameters on the FSOD and COCO datasets.

Tables 6a and 6b present the impact of the number of head used in T-Heads
Attention (TA) and TENET block (TB) on results. We fix the σ = 0.5 (the
best value of standard deviation of the RBF kernel of transformers, selected by
cross-validation on FSOD and COCO dataset) and then we investigate TA and
TB (the number of attention units per block, and the number of blocks, respec-
tively). Two heads together with two blocks are the best on the FSOD dataset,
while eight heads aligned with three blocks yield the best results on the COCO
dataset. Table 6c shows results on FSOD and COCO w.r.t. the dimension split
along the feature channel (e.g ., if r = 2, 3, ratio 3:1 means that three parts of
channel dimension are taken to form the second-order representation, and one
part of channel dimension is taken to form the third-order representation). The
table also shows the impact of ηr of TSO on results, where ηr are individual pa-
rameters for each order r. Overall, using all three orders, as denoted by r=2, 3, 4,
outperforms a second-order representation, indicated by r=2. Importantly, TSO
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Table 6: Ablation studies on the FSOD and COCO datasets (5/10-shot, novel
classes), w.r.t. the effect of varying (a) the number of heads used in T-Heads
Attention, as shown in Tab. 6a, and (b) the number of TENET blocks as shown
in Tab. 6b. mAP of variants of High-order Tensor Descriptors (HoTD) with TSO
(ηr>1) and without TSO (ηr=1) is in Tab. 6c.

TA
FSOD COCO

5-shot 10-shot

1 30.5 20.1

2 31.7 22.3

4 31.2 22.6

8 30.8 23.5

16 30.0 23.0

32 29.4 21.8

64 29.5 21.5

(a)

TB
FSOD COCO

5-shot 10-shot

1 31.7 23.5

2 33.5 24.2

3 32.6 25.1

4 31.0 24.8

5 31.2 23.1

(b)

r
dim.
split

ηr
(FSOD)

5-shot ηr
(COCO)

10-shot

2 3 4 AP50 AP75 AP50 AP75

✓ 7 33.1 29.6 10 25.7 17.5

✓ ✓ 3:1 7,7 33.7 30.4 10,10 26.0 18.2

✓ ✓ ✓ 5:2:1 7,7,7 35.4 31.6 10,10,10 27.4 19.6

✓ ✓ ✓ 5:2:1 1,1,1 30.8 28.4 1,1,1 22.1 14.3

(c)

is used when ηr>1. Without TSO (ηr=1), results drop by a large margin, which
highlights the practical importance of TSO on results.


