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Abstract

The limited and dynamically varied resources on edge de-
vices motivate us to deploy an optimized deep neural network
that can adapt its sub-networks to fit in different resource con-
straints. However, existing works often build sub-networks
through searching different network architectures in a hand-
crafted sampling space, which not only can result in a subpar
performance but also may cause on-device re-configuration
overhead. In this paper, we propose a novel training algo-
rithm, Dynamic REal-time Sparse Subnets (DRESS). DRESS
samples multiple sub-networks from the same backbone net-
work through row-based unstructured sparsity, and jointly
trains these sub-networks in parallel with weighted loss.
DRESS also exploits strategies including parameter reusing
and row-based fine-grained sampling for efficient storage
consumption and efficient on-device adaptation. Extensive
experiments on public vision datasets show that DRESS
yields significantly higher accuracy than state-of-the-art
sub-networks.

1. Introduction

There is a growing interest to deploy deep neural networks
(DNNs) on resource-constrained edge devices to enable new
intelligent services such as mobile assistants, augmented
reality, etc. However, state-of-the-art DNNs often make
significant demands on memory, computation, and energy.
Extensive works [5,8,9,28] have proposed to first compress a
pretrained model given resource constraints, and then deploy
the compressed model for on-device inference.

However, the time constraints of many practical embed-
ded systems may dynamically change at run-time, e.g. de-
tecting hand position with different speed in real-time, au-
tonomous vehicles’ reaction time on city roads and highways.
On the other hand, the available resources on a single de-
vice may also vary, e.g. the battery energy, the amount of
allocatable RAM. All these considerations indicate that the
deployed inference model should maintain a dynamic capac-
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ity to be executed under different resource constraints.
Making DNNs adaptable on resource-constrained edge

devices is even more challenging. Existing works either
fail to adapt to different resource constraints, or result in a
subpar performance. Traditional compression techniques,
e.g. pruning, quantization, only result in a static inference
model. Although the compressed model is well-optimized
and deployed on edge devices, it can not meet various re-
source requirements. As an alternative, we may deploy
for example multiple networks with different sparsity lev-
els [22, 35], which however need several times more storage
consumption in comparison to a single sparse network. Re-
cent works [4, 37] show that the sub-networks from a pre-
trained backbone network can reach a decent performance
compared to the sub-networks trained individually from
scratch. Nevertheless, they only sample the sub-network
architectures along hand-crafted structured dimensionalities,
e.g. width, kernel size, which leads to sub-optimal results.
Switching among different architectures in run-time may
also cause extra re-configuration overhead.

In this paper, we propose Dynamic REal-time Sparse
Subnets (DRESS). DRESS samples sub-networks from the
backbone network through row-based unstructured sparsity,
while ensuring that nonzero weights of the higher sparsity
networks are reused by the lower sparsity networks. This
way, the overall memory consumption is bounded by the
network with the lowest sparsity and does not depend on
the number of networks, resulting in memory efficiency; all
sparse sub-networks leverage the same architecture as the
backbone network, leading to re-configuration efficiency.
The sub-network with a higher sparsity (i.e. fewer nonzero
weights) needs a smaller amount of on-device memory fetch-
ing and fewer multiply-accumulate operations (FLOPs), thus
shall be adopted to inference under more severe resource
constraints, e.g. lower energy budget, limited inference time.

Specifically, we (i) sample weights w.r.t. their magni-
tudes in a row-based fine-grained manner; (ii) train all sam-
pled sparse sub-networks with weighted loss in parallel; (iii)
further fine-tune batch normalization for each sub-network
individually. Our contributions are summarized as,

• We design a training pipeline DRESS that generates



multiple sub-networks from the backbone network with
weight sharing.

• We propose a row-based fine-grained sampling that al-
lows subnets to be efficiently stored and executed using
our proposed compressed sparse row (CSR) format.

• Experimental results show DRESS reaches a similar
accuracy while only requiring 50%-60% disk storage
as unstructured pruning.

2. Related Works

Network compression & deployment. Network compres-
sion focuses on trimming down the DNN model size. Com-
monly used compression techniques consist of, (i) designing
efficient network architectures manually [14, 31] or automat-
ically [4, 13, 33]; (ii) quantizing weight into lower bitwidth
[5, 27, 28]; (iii) structured [20, 22]/unstructured [7–9, 25, 29]
pruning unimportant weights as zeros to reduce the num-
ber of operations (also compute energy) and the number
of nonzero weights (also memory consumption). The com-
pressed model is further optimized by some libraries to speed
up inference on certain edge platforms, e.g. XNNPACK for
ArmV7 CPU [1]. Note that the optimized model often only
supports a static computation graph due to the limited re-
sources on edge devices [1, 2, 18]. We focus on unstructured
pruning, since (i) it often yields a higher compression ra-
tio [29]; (ii) the networks with different unstructured spar-
sity may share the same network architecture, i.e. the same
computation graph. Furthermore, the recently released XN-
NPACK library includes fast kernels for sparse matrix-dense
matrix multiplication, which enables sparse DNN accelera-
tion on edge platforms [6].

Dynamic networks and anytime networks. Dynamic
networks and anytime networks aim at an efficient infer-
ence through adapting network structures. Dynamic net-
works [10, 15, 21, 34] realize an input-dependent adaptation
to reduce the average resource consumption during infer-
ence. Unlike dynamic networks, anytime networks refer to
the network whose sub-networks can be executed separately
under a resource constraint while achieving a satisfactory
performance. DRESS falls into the same scope of anytime
networks. MSDNet [15] densely connects multiple convo-
lutional layers in both depth direction and scale direction,
such that the computation can be saved by early-exiting from
a certain layer. Slimmable networks [36, 37] propose to
train a single model which supports multiple width multi-
pliers (i.e. number of channels) in each layer. Subflow [19]
executes only a sub-graph of the full DNN by activating
partial neurons given the varied time constraints. State-
of-the-art anytime networks always sample sub-networks
from the backbone network along hand-crafted structured
dimensionalities, e.g. depth, width, kernel size, neuron. As
zero weights have no effects on the calculation, anytime

networks actually perform structured pruning on the back-
bone network, which could result in a subpar performance in
comparison to unstructured sampling. In addition, resulted
sub-networks often have different architectures, e.g. different
kernel sizes, the re-configuration of the computation graph
may bring extra overhead during on-device adaptation.

3. Dynamic Real-time Sparse Subnets

Problem Definition We aim at sampling multiple subnets
from a backbone network. The backbone network is a tradi-
tional DNN consisting of L convolutional (conv) layers or
fully connected (fc) layers. To achieve memory efficiency,
the nonzero weights of the subnet with a higher sparsity are
reused by the subnet with a lower sparsity. This way, we
only need to store a table for the lowest sparsity network,
including its nonzero weights sorted w.r.t. importance and
corresponding indices. Accordingly, the other networks can
be built from the top important weights through a pre-defined
sparsity level. Assume that we sample altogether K sparse
subnets, then the preliminary problem is defined as,

min
w,mk

L(w ⊙mk) ∀k ∈ 1...K (1)

s.t. ∥mk∥0 = (1− sk) · I ∀k ∈ 1...K (2)
mi ⊙mj = mj ∀1 ≤ i < j ≤ K (3)

where w stands for the weights of the (dense) backbone
network; mk stands for the binary mask of the k-th subnet;
sk stands for the pre-defined sparsity level. L(.) denotes
the loss function, ∥.∥0 denotes the L0-norm, ⊙ denotes the
element-wise multiplication. Note that w ∈ RI , mk ∈
{0, 1}I , where I is the total number of weights. We have
0 < s1 < ... < sK ≤ 1. wk is denoted as nonzero weights
of the k-th sparse subnet, i.e. wk = w ⊙mk.

In the following sections, we detail how to solve Eq.(1)-
Eq.(3) in our DRESS algorithm. DRESS consists of three
training stages, (i) dense pre-training, where the backbone
network is trained from scratch to provide a good initial point
for the following sparse training; (ii) DRESS training, where
multiple sparse subnets are sampled from the backbone net-
work (Sec. 3.1, Sec. 3.3) and are jointly trained in parallel
with weighted loss (Sec. 3.2); (iii) post-training on batch
normalization (BN), where BN layers are further optimized
individually for each subnet to better reveal the statistical in-
formation, as BN layers often require a rather small amount
of memory and computation. The overall pseudocode is
shown in Alg. 1 in Appendix A.

3.1. How to Sample Sparse Subnets

Unlike traditional anytime networks that sample subnets
along structured dimensionalities, DRESS samples subnets
weight-wise which extremely enlarges the sampling space.
The naive approach could be iteratively sampling K subnets
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Figure 1. (a) The computation graph used in parallel training multiple subnets. The orange blocks are the leaf variables to be optimized; the
green blocks are the intermediate variables; the gray blocks are the computation units. The solid arrows are the differentiable operation
to be backpropagated, but the dashed arrows are not. (b) The cosine similarity between the loss gradients of 5 subnets (with sparsity
0.8,0.9,0.95,0.98,0.99) and that of the lowest sparsity subnet with sparsity 0.8. We show two typical layers in ResNet20.

by exhaustively searching the best-performed subnet inside
the current subnet. However, it can be either conducted
rarely or infeasible due to the high complexity. To reduce the
complexity, we propose to greedily sample the subnets based
on the importance of weights. As previous pruning works
[8, 9, 29], the importance of weights is measured by their
magnitudes. Given an overall sparsity level sk, the (1−sk)·I
weights with the largest magnitudes will be sampled to build
the subnet. To further reduce the sorting complexity, the
weights are only sorted inside each layer according to a
layer-wise sparsity sk,l, where l denotes the layer index. The
global sorting, also the (re-)allocation of layer-wise sparsity,
is conducted only if the average accuracy of subnets does
not improve anymore, see Alg. 1. During (re-)allocation, the
weights of all layers with the largest magnitudes are selected
in sequence until reaching the overall sparsity sk, and the
layer-wise sparsity can be then calculated accordingly.

3.2. How to Optimize Subnets

With sampled binary masks, we can now build and train
the subnets. Our concept for optimizing subnets is based
on the key insight: in comparison to iterative training of
subnets in progressively decreased/increased sparsity, par-
allel training allows multiple subnets to be sampled and
optimized jointly, which avoids being stuck into bad local
optimum and thus yields higher performance. Experimental
results in Appendix C.1 verify that parallel training yield
significantly higher performance than iterative training. In
parallel training, Eq.(1) can be re-written as,

min
w,mk

K∑
k=1

πk · L(w ⊙mk) (4)

where πk is the normalized scale (
∑K

k=1 πk = 1) used to
weight K loss items, which will be discussed later. This
process determines a threshold tk, the mask value mk,i = 1
if abs(wi) ≥ tk, otherwise 0, ∀i ∈ 1...I . tk is set to the
value such that (1 − sk) of weights have a larger absolute
value than tk. Clearly, we have t1 < t2 < ... < tK due to the

constraints of Eq.(2)-Eq.(3). In each training iteration, we
sample K sparse subnets w1:K and optimize the backbone
w with the weighted sum of their losses, see in Fig. 1a.

We parallelly train 5 subnets of ResNet20 [11] on CI-
FAR10, and let 5 loss items weighted equally, i.e. π1:5 = 0.2.
We plot the cosine similarity between the loss gradients (i.e.
(∂L(wk)/∂wk) ⊙mk) of 5 subnets and that of the low-
est sparsity subnet along with the training iterations, see in
Fig. 1b. It shows that the loss gradients of different sub-
nets are always positively correlated, which also verified
that multiple subnets are jointly trained towards the optimal
point in the loss landscape. Because of Eq.(3), the nonzero
weights in higher sparsity subnets are also selected by other
subnets, which means these weights are optimized with a
larger step size than others. To balance the step size, we
propose to weight the loss items by the ratio of trainable
weights (i.e. 1 − sk) together with a correction factor γ.
Particularly, αk = (1 − sk)

γ , and with the normalization,
πk = αk/

∑K
k=1 αk. Note that γ = 0 means weighting loss

items equally. Experimentally, we find that γ = 0.5 often
yields a satisfactory performance, see Appendix C.2.

3.3. How to Store Subnets

State-of-the-art libraries often encodes sparse tensor in
compressed sparse row (CSR) format for sparse inference
[1, 6]. To achieve an efficient inference on different sparse
subnets while without extra memory overhead, we adopt a
row-based unstructured sparsity, where different rows lever-
age the same sparsity level. Especially, for sparsity sk, all
rows have exactly (1− sk) ·N nonzero weights, where N
is the number of weights per row. In comparison to con-
ventional unstructured sparsity, this kind of sparsity (a.k.a.
N:M fine-grained structure sparsity [16, 32, 38]) can also
be accelerated with sparse tensor cores of A100 GPUs [23]
for both training and inference, and thus becomes prevailing
recently. The column indices of nonzero weights are stored
in descending order of the importance (also the weight mag-



Figure 2. DRESS CSR format of row-based unstructured sparse
tensor. The example weight tensor is from a 1× 1 conv layer with
8 input channels and 4 output channels. Each row has 8 weights
in total, also the row size N = 8. There are 3 sparse subnets with
sparsity 0.5, 0.75, and 0.875. Each subnet has 4, 2, and 1 nonzero
weights per row, respectively.

nitude) in a two-dimensional table. The nonzero weights
are stored in a table with the same order as the column in-
dices. This DRESS CSR format needs to store (i) the subnet
with the lowest sparsity including the table of the column
indices and the table of nonzero weights, (ii) K integers
{(1 − sk) · N}Kk=1. When adopting the k-th subnet, we
fetch the first (1 − sk) · N columns from both tables as
shown in Fig. 2. Note that all fetched subnets follow the
CSR format ((1 − sk) ·N is used to build the row indices
in CSR) under the same architecture, which allows us to
leverage available libraries to achieve a fast on-device infer-
ence without re-configuration overhead. To obtain DRESS
CSR format, the sampling process needs to be adjusted ac-
cordingly. Especially, for layer l, we first pre-define a row
size Nl and reshape the weight tensor into rows. In this
paper, the weights corresponding to each output channel (e.g.
each conv filter) are formed into one row. The row-based
sampling is shown in Alg. 4 in Appendix A.3.

4. Experiments
We implement DRESS with Pytorch [24], and evaluate

its performance on CIFAR10 [17] using ResNet20 [11], on
ImageNet [30] using ResNet50 [11]. We randomly select
20% of each original test dataset (original validation dataset
for ImageNet) as the validation dataset, and the remainder
as the test dataset. We use the Nesterov SGD optimizer
with the cosine schedule for learning rate decay in all meth-
ods. We report the Top-1 test accuracy for the subnets of
the epoch when the validation dataset achieves the highest
average accuracy over all subnets. More implementation
details are provided in Appendix B. Row-based unstructured
sampling is conducted in all layers except for BN layers. We
set the sparsity levels s1:5 = 0.8, 0.9, 0.95, 0.98, 0.99 for
ResNet20, and s1:4 = 0.5, 0.8, 0.9, 0.95 for ResNet50.

We compare the performance of the subnets generated
by DRESS with various methods, including (i) anytime net-
works [15, 37], where the sub-networks with different width
or depth can be cropped from the backbone network; (ii)
unstructured pruning [29], where the backbone network is
pruned with the same sparsity as DRESS; (iii) N:M fine-
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Figure 3. Comparing DRESS with other baselines. The methods
that do not involve weight sharing among different networks are
plotted with dotted curves. The memory cost and the number of
MFLOPs of the original backbone networks are reported in the
parentheses in titles; their accuracy is shown as red horizontal lines.

grained structure pruning [32, 38]. We choose two metrics
for comparison, the memory cost of parameters and the num-
ber of FLOPs. FLOPs dominate in the entire computation
burden, thus fewer FLOPs can (but does not necessarily)
result in a smaller computation time. The memory cost of
parameters represents not only the disk storage consumption
but also the amount of memory fetching during on-device
inference. Note that memory access often consumes more
time and energy than computation [12]. Assume that each
weight uses 32-bit floating point. DRESS, (ii), and (iii) gen-
erate sparse tensors, thus their memory cost also includes the
indices of nonzero weights. Each index of nonzero weights
are encoded into 8-bit in DRESS and (ii) as [1, 3], wheres
the binary mask is stored for indexing in [32, 38].

The results are plotted in Fig. 3. DRESS require a sig-
nificantly lower memory cost and fewer FLOPs than other
anytime networks. Furthermore, different subnets of DRESS
leverage the same architecture as the backbone network,
which avoids the re-configuration overhead of switching dif-
ferent architectures in other anytime networks [15, 36, 37].
Thanks to the weight reusing, the disk storage is only deter-
mined by the largest network for both DRESS and anytime
networks [15, 36, 37]. In comparison to (ii), i.e. without
weight reusing, DRESS reaches a similar accuracy while
only requiring 50%-60% of disk storage.

5. Conclusion
In this paper, we introduce DRESS. DRESS is able to

build multiple subnets via row-based unstructured sparsity
with weight sharing and architecture sharing. The resulted
multiple subnets achieve a similar accuracy as state-of-the-
art single compressed network, while enabling memory effi-
ciency and configuration efficiency.
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Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke,
Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. 4

[4] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and
Song Han. Once-for-all: Train one network and specialize
it for efficient deployment. In International Conference on
Learning Representations (ICLR), 2020. 1, 2

[5] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David.
Binaryconnect: Training deep neural networks with binary
weights during propagations. In Proceedings of Advances
in Neural Information Processing Systems (NeurIPS), pages
3123–3131, 2015. 1, 2

[6] Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Si-
monyan. Fast sparse convnets. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2020.
2, 3

[7] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro,
and Erich Elsen. Rigging the lottery: Making all tickets
winners. In Proceedings of the 38th International Conference
on Machine Learning (ICML), 2021. 2

[8] Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks. In In-
ternational Conference on Learning Representations (ICLR),
2019. 1, 2, 3

[9] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. In Proceedings
of International Conference on Learning Representations
(ICLR), 2016. 1, 2, 3

[10] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui
Wang, and Yulin Wang. Dynamic neural networks: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine
Intelligence, page 1–1, 2021. 2

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In 2016
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016. 3, 4, 8, 9

[12] Mark Horowitz. 1.1 computing’s energy problem (and what
we can do about it). In 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
2014. 4

[13] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang,
Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasude-

van, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, Quoc Le,
and Hartwig Adam. Searching for mobilenetv3. In 2019
IEEE/CVF International Conference on Computer Vision
(ICCV), Oct 2019. 2

[14] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. 2017.
2

[15] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens
van der Maaten, and Kilian Weinberger. Multi-scale dense
networks for resource efficient image classification. In In-
ternational Conference on Learning Representations (ICLR),
2018. 2, 4

[16] Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Seffi
Naor, and Daniel Soudry. Accelerated sparse neural training:
A provable and efficient method to find n:m transposable
masks. In Proceedings of Advances in Neural Information
Processing Systems (NeurIPS), 2021. 3

[17] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar
(canadian institute for advanced research), 2009. 4, 8

[18] Liangzhen Lai, Naveen Suda, and Vikas Chandra. Cmsis-nn:
Efficient neural network kernels for arm cortex-m cpus. 2018.
2

[19] Seulki Lee and Shahriar Nirjon. Subflow: A dynamic induced-
subgraph strategy toward real-time dnn inference and training.
In 2020 IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS), pages 15–29, 2020. 2

[20] Bailin Li, Bowen Wu, Jiang Su, Guangrun Wang, and Liang
Lin. Eagleeye: Fast sub-net evaluation for efficient neural
network pruning. In Proceedings of European Conference on
Computer Vision (ECCV), 2020. 2

[21] Changlin Li, Guangrun Wang, Bing Wang, Xiaodan Liang,
Zhihui Li, and Xiaojun Chang. Dynamic slimmable network.
In 2020 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020. 2

[22] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin
Yang, Tim Kwang-Ting Cheng, and Jian Sun. Metapruning:
Meta learning for automatic neural network channel pruning.
In 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), Oct 2019. 1, 2

[23] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic,
Dusan Stosic, Ganesh Venkatesh, Chong Yu, and Paulius Mi-
cikevicius. Accelerating sparse deep neural networks. 2021.
3

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In Proceedings of NIPS Autodiff
Workshop: The Future of Gradient-based Machine Learning
Software and Techniques, 2017. 4, 8

[25] Alexandra Peste, Eugenia Iofinova, Adrian Vladu, and Dan
Alistarh. Ac/dc: Alternating compressed/decompressed train-
ing of deep neural networks. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2021. 2

[26] Pytorch. Pytorch example on resnet, 2019. Accessed: 2021-
10-15. 8



[27] Zhongnan Qu, Zimu Zhou, Yun Cheng, and Lothar Thiele.
Adaptive loss-aware quantization for multi-bit networks. In
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[28] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and
Ali Farhadi. Xnor-net: Imagenet classification using binary
convolutional neural networks. In Proceedings of European
Conference on Computer Vision (ECCV), pages 525–542,
2016. 1, 2

[29] Alex Renda, Jonathan Frankle, and Michael Carbin. Com-
paring fine-tuning and rewinding in neural network pruning.
In International Conference on Learning Representations
(ICLR), 2020. 2, 3, 4, 7

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015. 4, 8

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In 2018 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
2018. 2

[32] Wei Sun, Aojun Zhou, Sander Stuijk, Rob G. J. Wijnhoven,
Andrew Nelson, Hongsheng Li, and Henk Corporaal. Domi-
nosearch: Find layer-wise fine-grained n:m sparse schemes
from dense neural networks. In Proceedings of Advances in
Neural Information Processing Systems (NeurIPS), 2021. 3,
4

[33] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. In Pro-
ceedings of the 36th International Conference on Machine
Learning (ICML), 2019. 2

[34] Thomas Verelst and Tinne Tuytelaars. Dynamic convolu-
tions: Exploiting spatial sparsity for faster inference. In
2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 2

[35] Jiahui Yu and Thomas Huang. Autoslim: Towards one-shot
architecture search for channel numbers. 2019. 1

[36] Jiahui Yu and Thomas Huang. Universally slimmable net-
works and improved training techniques. In 2019 IEEE Inter-
national Conference on Computer Vision (ICCV), Oct 2019.
2, 4

[37] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas
Huang. Slimmable neural networks. In International Con-
ference on Learning Representations (ICLR), 2019. 1, 2,
4

[38] Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n:m fine-grained structured sparse neural networks from
scratch. In International Conference on Learning Represen-
tations (ICLR), 2021. 3, 4



Appendix

A. Pseudocodes

A.1. Parallel Training Subnets (DRESS)

DRESS consists of three training stages, (i) dense pre-
training, where the backbone network is trained from scratch
with a traditional optimizer to provide a good initial point
for the following sparse training; (ii) DRESS training, where
the multiple sparse subnets are sampled from the backbone
network and are jointly trained in parallel with weighted
loss; (iii) post-training on batch normalization (BN), where
BN layers are further optimized individually for each sub-
net to better reveal the statistical information. The overall
pseudocode is shown in Alg. 1.

A.2. Iterative Training Subnets

Recall that we assume there are K sparsity levels, s1:K ,
where 0 < s1 < s2 < ... < sK ≤ 1. In iterative
training, each subnet is optimized separately in each iter-
ation, also altogether K iterations. In each iteration, we
mainly adopt the idea of traditional unstructured magnitude
pruning [29], which is the current best-performed pruning
method aiming at the trade-off between the model accu-
racy and the number of zero’s weights. Traditional un-
structured pruning [29] conducts iterative pruning with a
pruning scheduler p1:R. The network progressively reaches
the desired sparsity s until the R-th pruning iteration. We
choose p1:5 = 0.5, 0.8, 0.9, 0.95, 1, i.e. the sparsity is set
to 0.5s, 0.8s, 0.9s, 0.95s, s in 5 pruning iterations, respec-
tively. During each pruning iteration, the network is pruned
with the corresponding sparsity, and the nonzero weights
are sparsely fine-tuned for several epochs with learning rate
rewinding [29].

The pseudocode of training multiple subnets iteratively
with increased sparsity is shown in Alg. 2. With progres-
sively increased sparsity (from s1 to sK ), the first optimized
subnet of w ⊙m1 already contains all subsequent subnets
with higher sparsity due to the constraint of Eq.(3) (see in
the main text). The first sparse subnet w ⊙m1 is trained by
traditional unstructured pruning [29] as discussed above. In
the following iteration k (k ∈ 2...K), the subnet with spar-
sity sk is directly sampled from the previous subnet without
any retraining regarding the constraint of Eq.(3) (see in the
main text).

The pseudocode of training multiple subnets iteratively
with decreased sparsity is shown in Alg. 3. For progressively
decreased sparsity (from sK to s1), the sampling and train-
ing process only happen in the complementary part of the
previous subnet, due to the constraint of Eq.(3). Particularly,
in iteration k (k ∈ K...1), we should (i) sample the new sub-
net from the backbone network with sparsity sk that contains
the subnet of w⊙mk+1; (ii) freeze the subnet of w⊙mk+1

Algorithm 1: Dynamic REal-time Sparse Subnets
Input: Initial random weights w, training dataset

Dtr, validation dataset Dval, overall sparsity
{sk}Kk=1, normalized loss weights {πk}Kk=1

Output: Optimized weights w, binary masks
{mk}Kk=1

/* Dense pre-training */
Train dense network w with traditional optimizer;
/* DRESS training */
Allocate layer-wise sparsity {sk,l}Ll=1 for each sk;
Initiate w0 = w;
for q ← 1 to Q do

// The q-th training iteration
Fetch mini-batch from Dtr;
Initialize backbone-net gradient g(wq−1) = 0;
for k ← 1 to K do

Sample a subnet with layer-wise sparsity
{sk,l}Ll=1 and get its mask mk;

Get sparse subnet wq−1
k = wq−1 ⊙mk;

Back-propagate subnet gradient

g(wq−1
k ) = πk ·

∂L(wq−1
k )

∂wq−1
k

;
Accumulate backbone-net gradient
g(wq−1) = g(wq−1) + g(wq−1

k )⊙mk;

Compute optimization step ∆wq with g(wq−1);
Update wq = wq−1 +∆wq;
if Higher average (epoch) accuracy on Dval then

Save w = wq and {mk}Kk=1;
else

Re-allocate layer-wise sparsity {sk,l}Ll=1 for
each sk;

/* Post-training on batch
normalization (BN) */

for k ← 1 to K do
Load w and mk;
Fine-tune BN layers of subnet w ⊙mk;

and only update the other weights. We still adopt the iterative
pruning idea when training each subnet as mentioned before,
i.e. the sparsity of the k-th subnet gradually approaches the
target sparsity sk. Note that the dense backbone network is
maintained and updated during iterative training subnets,

A.3. Row-Based Unstructured Sampling

In this section, we present our algorithm of row-based
unstructured sampling, see Alg. 4. We focus on sampling
a weight tensor w from a conv layer or a fc layer. We first
define a row size N for the weight tensor. Note that N
must be divisible by the total number of weights in w. The
weight tensor w is then reshaped into the form of RH×N , i.e.
N weights per row and H rows in total. Given K sparsity



Algorithm 2: Iterative training with increased spar-
sity

Input: Initial random weights w, training dataset
Dtr, validation dataset Dval, sparsity
{sk}Kk=1, pruning scheduler {pr}Rr=1

Output: Optimized weights w, binary masks
{mk}Kk=1

/* Dense pre-training */
Train dense network w with traditional optimizer;
/* Traditional pruning, also k=1 */
for r ← 1 to R do

// The r-th pruning iteration
Prune with sparsity s1 · pr and get mask mr

1;
Sparsely fine-tune nonzero weights w ⊙mr

1

with several epochs on Dtr;

Get mask m1 = mR
1 ;

/* Iterative (training) */
for k ← 2 to K do

Get the previous subnet wk−1 = w ⊙mk−1;
Sample a subnet from wk−1 with sparsity sk and
get mask mk;
// Note no training here.

levels s1:K , K binary masks with the form of {0, 1}H×N are
generated. Binary masks can be reshaped into the original
form of the weight tensor accordingly.

B. Implementation Details
B.1. ResNet20 on CIFAR10

CIFAR10 [17] is an image classification dataset, which
consists of 32× 32 color images in 10 object classes. Each
class contains 6000 data samples. It contains a training
dataset with 50000 data samples, and a test dataset with
10000 data samples. We use the original training dataset for
training, and randomly select 2000 samples in the original
test dataset for validation, and the rest 8000 samples for
testing. We use a mini-batch with a size of 128 training on 1
NVIDIA V100 GPU.
ResNet20. The network architecture is the same as ResNet-
20 in the original paper [11]. ResNet20 needs around
1.09MB (1.11MB for CIFAR100) to store the weights and
around 41MFLOPs for a single image inference. We use
the Nesterov SGD optimizer with the cosine schedule for
learning rate decay. The initial learning rate is set as 0.1; the
momentum is set as 0.9; the weight decay is set as 0.0005;
the number of training epochs is set as 100.

B.2. ResNet50 on ImageNet

ImageNet [30] is an image classification dataset, which
consists of high-resolution color images in 1000 object

Algorithm 3: Iterative training with decreased spar-
sity

Input: Initial random weights w, training dataset
Dtr, validation dataset Dval, sparsity
{sk}Kk=1, pruning scheduler {pr}Rr=1

Output: Optimized weights w, binary masks
{mk}Kk=1

/* Dense pre-training */
Train dense network w with traditional optimizer;
/* Iterative training */
Set sK+1 = 1 and mK+1 = 0;
for k ← K to 1 do

Get the complementary subnet
wcs = w ⊙ (1−mk+1);

for r ← 1 to R do
// The r-th pruning iteration
Sample a subnet from wcs with sparsity
(1− (sk+1 − sk)) · pr and get mask mcs,r

k ;
Merge mask mr

k = mk+1 +mcs,r
k ;

Initiate w0 = w;
for q ← 1 to Q do

// The q-th training
iteration

Fetch mini-batch from Dtr;
Get sparse subnet
wr,q−1

k = wq−1 ⊙mr
k;

Back-propagate subnet gradient

g(wr,q−1
k ) =

∂L(wr,q−1
k )

∂wr,q−1
k

;

Compute optimization step ∆wq with
g(wr,q−1

k )⊙mcs,r
k ;

Update wq = wq−1 +∆wq;

Save w = wQ

Save mask mk = mR
k ;

classes. It contains a training dataset with 1.2 million data
samples, and a validation dataset with 50000 data samples.
Following the commonly used pre-processing [24], each
sample (single image) is randomly resized and cropped into
a 224×224 color image. We use the original training dataset
for training, and randomly select 10000 samples in the orig-
inal validation dataset for validation, and the rest 40000
samples for testing. We use a mini-batch with a size of 1024
training on 4 NVIDIA V100 GPUs.

ResNet50. We use pytorch-style ResNet50, which is slightly
different than the original Resnet-50 [11]. The down-
sampling (stride=2) is conducted in 3× 3 conv layer instead
of 1 × 1 conv layer. The network architecture is the same
as “resnet50” in [26]. ResNet50 needs around 102.23MB
to store the weights and around 4089MFLOPs for a single
image inference. We use the Nesterov SGD optimizer with



Algorithm 4: Row-based unstructured sampling

Input: Weight tensor w ∈ RH×N , row size N ,
sparsity {sk}Kk=1

Output: Binary masks {mk}Kk=1

for k ← 1 to K do
Initiate binary mask mk = 0H×N ;
Get the number of nonzero weights per row,
Nnz

k = N · (1− sk);

for h← 1 to H do
Sort the weight magnitudes of row wh,: in

descending order;
for k ← 1 to K do

Set the mask value of mk,h,: as 1 for
Top-Nnz

k indices;

the cosine schedule for learning rate decay. The initial learn-
ing rate is set as 0.5; the momentum is set as 0.9; the weight
decay is set as 0.0001; the number of training epochs is set
as 150.

C. Additional Experiments
C.1. Iterative Training vs. Parallel Training

In this part, we compare DRESS (parallel training) with
iterative training multiple subnets. We implement two itera-
tive training methods mentioned in Sec. 3.2, namely iterative
training with progressively increased/decreased sparsity (see
Alg. 2 and Alg. 3 in Appendix A.2 respectively). The loss
of each subnet is optimized separately in iterative training.
Thus for a fair comparison, we do not re-weight loss in
DRESS, i.e. γ = 0. Also in all experiments, we conduct
unstructured sampling in the entire tensor, and allow BN
layers to be fine-tuned individually for each subnet to avoid
other side effects.

The comparison results are plotted in Fig. 4 Left. Parallel
training substantially outperforms iterative training. Iterat-
ing over increased sparsity does not provide any space to
optimize subnets with higher sparsity. Therefore, the accu-
racy drops quickly along iterations. Although iterating over
decreased sparsity may yield a well-performed high sparsity
network, the accuracy does not improve significantly after-
wards. We argue this is due to the fact that iterative training
causes the optimizer to end in a hard to escape region around
the previous subnet in the loss landscape. On the contrary,
parallel training allows multiple subnets to be sampled and
optimized jointly, which may especially benefit highly sparse
networks, see Fig. 4 Left.

C.2. Correction factor γ

The loss weights πk used in the parallel training may
influence the final accuracy of different subnets. In
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Figure 4. Left: Comparing parallel training with iterative training.
Right: Ablation studies on the correction factor γ.

Sec. 3.2, we introduce a correction factor γ to control
πk. We thus conduct a set of experiments with differ-
ent γ. γ = 0 means all loss items are weighted equally;
γ > 0 means the loss of the lower sparsity subnets is
weighted larger, and vice versa. For example, for ResNet20
with s1:5 = 0.8, 0.9, 0.95, 0.98, 0.99, when γ = 0.5,
π1:5 ≈ 0.36, 0.26, 0.18, 0.12, 0.08; γ = −1.0, π1:5 ≈
0.03, 0.05, 0.11, 0.27, 0.54.

The results in Fig. 4 Right show that the high sparsity
subnets generally yield a higher final accuracy with a smaller
γ. This is intuitive since a smaller γ assigns a larger weight
on the high sparsity subnets. However, the downside is that
the most powerful subnet (with the lowest sparsity) can not
reach its top accuracy. Note that the most powerful subnet
is often adopted either under the critical case requiring high
accuracy or in the commonly used scenario with standard
resource constraints, see in Sec. 1. Also as discussed in
Sec. 3.2, low sparsity subnets should be weighted more,
since they are implicitly optimized with a smaller step size.
Experimentally, we find that γ ∈ [0.5, 1] in parallel training
allows us to train a group of subnets where the most powerful
subnet can reach a similar accuracy as training in separately.
We set γ = 0.5 in the experiments.

C.3. Cosine Similarity Analysis

In Fig. 1b of Sec. 3.2 in the main text, we choose two
typical layers in ResNet20 and plot their cosine similarity be-
tween the loss gradients of different subnets along with train-
ing iterations. Here, we show the cosine similarity between
the loss gradients of all layers in ResNet20, see in Fig. 5.
Recall that we parallelly train 5 subnets of ResNet20 [11]
with the overall sparsity s1:5 = 0.8, 0.9, 0.95, 0.98, 0.99 on
CIFAR10, and let the 5 loss items weighted equally, i.e.
π1:5 = 0.2. We plot the cosine similarity between the
loss gradients of 5 subnets (i.e. (∂L(wk)/∂wk)⊙mk with
k = 1, ..., 5) and that of the lowest sparsity subnet (i.e.
(∂L(w1)/∂w1) ⊙m1) along with the training iterations.
It shows that the loss gradients of different subnets are al-
ways positively correlated with each other. The results also
verify that multiple subnets are jointly trained towards the
optimal point in the loss landscape.
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Figure 5. The cosine similarity between the loss gradients of 5 subnets (with sparsity 0.8, 0.9, 0.95, 0.98, 0.99) and that of the lowest
sparsity subnet (with sparsity 0.8) along with the parallel training iterations. We show all conv layers and the fc layer in ResNet20.
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