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Abstract

Pre-training models on vast quantities of un-
labeled data has emerged as an effective ap-
proach to improving accuracy on many NLP
tasks. On the other hand, traditional machine
translation has a long history of leveraging
unlabeled data through noisy channel model-
ing. The same idea has recently been shown
to achieve strong improvements for neural ma-
chine translation. Unfortunately, naı̈ve noisy
channel modeling with modern sequence to
sequence models is up to an order of magni-
tude slower than alternatives. We address this
issue by introducing efficient approximations
to make inference with the noisy channel ap-
proach as fast as strong ensembles while in-
creasing accuracy. We also show that the noisy
channel approach can outperform strong pre-
training results by achieving a new state of the
art on WMT Romanian-English translation.

1 Introduction

Unlabeled data has been leveraged in many ways
in natural language processing including back-
translation (Bojar and Tamchyna, 2011; Sennrich
et al., 2016b; Edunov et al., 2018), self-training (He
et al., 2020), or language model pre-training which
led to improvements in many natural language
tasks (Devlin et al., 2019). While pre-training has
achieved impressive results on tasks where labeled
data is limited, improvements in settings with abun-
dant labeled data are modest (Raffel et al., 2019)
with controlled studies showing a clear trend of
diminishing returns as the amount of training data
increases (Edunov et al., 2019).

In this paper, we focus on noisy channel mod-
eling for text generation tasks, a classical tech-
nique from the statistical machine translation lit-
erature which had been the workhorse of text gen-
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eration tasks for decades before the arrival of neu-
ral sequence to sequence models (Brown et al.,
1993; Koehn et al., 2003). Unlike pre-training ap-
proaches, this approach is very effective irrespec-
tive of the amount of labeled data: since a recent
revival (Yu et al., 2017; Yee et al., 2019), it has been
an important part in the winning entries of several
high resource language pairs at WMT 2019 (Ng
et al., 2019), improving over strong ensembles that
used 500M back-translated sentences. At the low
resource WAT 2019 machine translation competi-
tion, noisy channel modeling was also a key factor
for the winning entry (Chen et al., 2019).

Noisy channel modeling turns text generation on
the head: instead of modeling an output sequence
given an input, Bayes’ rule is applied to model the
input given the output, via a backward sequence
to sequence model which is combined with the
prior probability of the output, typically a language
model. This enables the effective use of strong
language models trained on large amounts of unla-
beled data. The role of the backward model, or the
channel model, is to validate outputs preferred by
the language model with respect to the input.

A straightforward way to use language models
is to pair them with standard sequence to sequence
models (Gülçehre et al., 2015; Stahlberg et al.,
2018). However, this does not address explaining
away effects under which modern neural sequence
models still suffer (Klein and Manning, 2001; Li
et al., 2019). As a consequence, models are suscep-
tible to producing fluent outputs that are unrelated
to the input (Li et al., 2019). The noisy channel
approach explicitly addresses this via the channel
model.

However, a major obstacle to efficient noisy
channel modeling is that generating outputs is
much slower than decoding from a standard se-
quence to sequence model. We address this is-
sue by introducing several simple yet highly ef-



fective approximations which increase the speed
of noisy channel modeling by an order of magni-
tude to make it practical. This includes smaller
channel models as well as scoring only a subset
of the channel model vocabulary. Experiments
on WMT English-Romanian translation show that
noisy channel modeling can outperform recent pre-
training results. Moreover, we show that noisy
channel modeling benefits much more from larger
beam sizes than strong pre-training methods.

2 The Noisy Channel Approach

We assume a sequence to sequence task that takes
the input x to predict the output y. A stan-
dard sequence to sequence model directly esti-
mates the probability p(y|x), referred to as a di-
rect model. On the other hand, the noisy channel
approach applies Bayes’ rule to model p(y|x) =
p(x|y)p(y)/p(x) where p(x|y) predicts the source
x given the target y and is referred to as the chan-
nel model, p(y) is a language model over the target
y, and p(x) is generally not modeled since it is
constant for all y.

Yee et al. (2019) use Transformer models to pa-
rameterize the direct model, the channel model and
the language model. Similar to Yu et al. (2017),
they use the following linear combination of the
channel model, the language model as well as the
direct model for decoding:

1

t
log p(y|x) + λ1

s
log p(x|y) + λ2

s
log p(y) (1)

where t is the length of the output prefix y, s is
the length of the input sequence, and λ1, λ2 are
hyperparameters.

Exact noisy channel model scoring with neural
networks during decoding is prohibitively expen-
sive since it requires a separate forward computa-
tion with the channel model for every token in the
target vocabulary. To side step this issue, Yu et al.
(2017) propose the following approximations to
beam search with beam width k1: determine the
k2 highest scoring extensions of each beam accord-
ing to the direct model, then score the resulting
k1 × k2 partial candidates by the direct model, the
channel model and the language model using the
linear combination in Equation 1. Finally, this set
is pruned to beam size k1.

Despite this approximation, noisy channel de-
coding is still significantly slower than decoding
with the direct model alone as shown in Figure 1.
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Figure 1: Speed of decoding with a direct model (dir),
direct model with language model (dir + lm) and
a naı̈ve noisy channel approach without fast approxi-
mations or optimizations. The latter is very slow com-
pared to the direct model. Results are based on gener-
ation with the fastest batch size for each setting with
beam 5 on newstest2016 De-En (cf. §4.1).

The reason for this is that the channel model re-
peatedly scores the entire input sequence at each
time-step and this is done k2 times for each beam.
Specifically, both the direct model and the language
model compute k1 × V scores at each time-step in
order to make a decoding decision for each target
token during beam search, where V denotes the
vocabulary size which we assume to be similar be-
tween the input and output. In contrast, the channel
model computes k1 × k2 × S × V scores for each
target token, where S is the maximum source se-
quence length. This adds substantial compute and
memory overhead, to the extent that the batch size
at decoding often needs to be substantially reduced.
This leads to slower inference on GPUs since less
computation can be parallelized.

3 Fast Noisy Channel Modeling

Naı̈ve online noisy channel modeling is signifi-
cantly slower than standard direct models. In this
section, we present approximations to make noisy
channel modeling substantially faster.

3.1 Reducing Channel Model Size

Prior work on neural noisy channel used channel
models which were of the same size as the direct
model (Yu et al., 2017; Yee et al., 2019). The
most recent work uses standard Transformer mod-
els (Yee et al., 2019; Ng et al., 2019; Yu et al., 2020).
In this study, we hypothesize that the primary role



of the channel model is to avoid explaining away ef-
fects by the language model. This primarily entails
assigning low scores to unrelated outputs, which
may not require a very powerful model. In this
case, we may be able to substantially decrease the
size of the channel model at only a small loss in
accuracy.

Recent work demonstrates that direct models
with shallow decoders can give comparable accu-
racy, while being faster at inference time, compared
to models with deep decoders (Wu et al., 2019; El-
bayad et al., 2020; Kasai et al., 2020; Fan et al.,
2020). This is particularly attractive for direct
models for which the decoder network accounts
for most of the wall time during inference but the
dynamics for channel models are different: the
channel model repeatedly scores the entire input
sequence given progressively larger target prefixes.
Unlike for direct models, there is no straightfor-
ward way to reuse the encoder output between
time-steps, and we opt to recompute the entire en-
coder and decoder of the channel model at every
target time-step. Since the input sequence is given,
channel model computation can be batched over all
tokens in the target prefix and the input sequence.
This implies that we are free to adjust both the
encoder and decoder depth.

We pursue two strategies to reduce model size:
first, we progressively reduce the model dimen-
sion of the base Transformer architecture, by first
halving the model dimension from 512 to 256, as
well as the feed forward dimension from 2048 to
1024 for the half model. The smallest config-
uration uses a model dimension of just 32 and a
feed forward dimension of 128 (denoted as 16th
model). Second, we consider models with only a
single encoder block and a single decoder block.
These models have a postfix 1 1, e.g., 16th 1 1.
Table 1 shows the various model sizes as well as
accuracy on the development set, newstest2016.

3.2 Reducing the Output Vocabulary

During online noisy channel decoding, we need
to allocate memory for a large number of output
probabilites (k1× k2×S×V , as explained in § 2).
This substantially reduces the maximum possible
batch size in order to prevent running out of mem-
ory while decoding on GPUs. A small batch size
prevents the full utilization of parallel computation
on GPUs, particularly, when the channel model is
relatively small: some of our channel models have

Parameters (M) BLEU

big 282.7 38.0
big 1 1 93.8 34.1
base 72.1 36.7
base 1 1 23.6 31.2
half 25.1 33.6
half 1 1 15.8 27.4
quarter 9.8 28.4
quarter 1 1 7.5 22.0
16th 2.8 15.9
16th 1 1 2.7 10.0

Table 1: Smaller channel models in terms of number of
total parameters as well as BLEU (avg. over 3 seeds)
on the development set. All models have six blocks
each in the encoder and the decoder, except for models
ending in ” 1 1” which have only a single block in the
encoder and the decoder.

an embedding dimension of just 32.
To address this issue we make use of the fact

that we know exactly which input tokens need to be
scored (since the input sequence is given) instead
of computing probabilities for the entire vocabulary.
This is similar to vocabulary reduction techniques
used for early neural sequence to sequence models,
and it is particularly convenient since we know
exactly which tokens are in the input sequence (Mi
et al., 2016; L’Hostis et al., 2016).

Similar to prior work on vocabulary reduction,
we found it useful to not just score the input words
but also a subset of the most frequent words in
the vocabulary. Specifically, for each batch, we
enumerate all input word types, add the 500 most
frequent types and then compute output probabil-
ities for this subset with the channel model. The
number of output probabilities calculated is typi-
cally at least one order of magnitude smaller than
the full vocabulary, as shown in § 5.4.1.

This approach substantially reduces the memory
footprint of small channel models and enables the
use of much larger batch sizes which leads to faster
inference as we will see in § 5.

3.3 Reducing the Number of Candidates

We also study the effect of reducing the number of
next token candidates k2 scored for each beam at
each step of beam search. This reduces the com-
putation as well as memory overhead of channel
model scoring.



4 Experimental Setup

4.1 Datasets
We consider two datasets for our experiments: For
German-English (De-En), we train on WMT’19
training data. Following (Ng et al., 2019), we apply
language identification filtering (Lui and Baldwin,
2012) and remove sentences longer than 250 tokens
as well as sentence pairs with a source/target length
ratio exceeding 1.5. This results in 26.8M sentence
pairs. We validate on newstest2016 and test on
newstest2014, newstest2015, newstest2017, and
newstest2018. For all models, the source vocabu-
lary is a 24K byte pair encoding (BPE; Sennrich
et al., 2016) learned on the source portion of the
bitext. For the target side, we use the vocabulary
of the language model (§4.2) so both models score
the exact same units during beam search.

For Romanian-English (Ro-En), we train on
WMT’16 training data, comprising 612K sentence
pairs, validate on newsdev2016 and test on new-
stest2016. We learn a joint BPE vocabulary of 18K
types on the bitext training data which is used for
both the source and target. Different to German-
English, we learn a joint BPE vocabulary to enable
sharing the source and target embeddings which
we found to perform better for Romanian-English
in early experiments.

4.2 Language Models
For German-English, we train a sentence-level En-
glish Transformer language model with 16 layers
and Transformer-Big architecture (Vaswani et al.,
2017; Radford et al., 2018). The model is trained
on de-duplicated English Newscrawl data from
2007-2018 comprising 186 million sentences or
4.5B words after normalization and tokenization.
We use a BPE vocabulary of 24K types learned on
this data. For Romanian-English translation, we
train a similar English Transformer language model
that uses the joint BPE vocabulary learned on the
Romanian-English bitext. The latter enables the
LM to score the exact same units as the sequence
to sequence model during beam search.

We train a sentence-level Romanian Transformer
language model with 16 layers and Transformer-
Big architecture. The model is trained on de-
duplicated Romanian CommonCrawl data consist-
ing of 623M sentences or 21.7B words after nor-
malization and tokenization (Conneau et al., 2019;
Wenzek et al., 2019).

The German-English bitext training data as well

as the language model training data are prepro-
cessed with the Moses tokenizer (Koehn et al.,
2007). We normalize punctuation and remove non-
printing characters. Romanian-English data is pre-
processed following Sennrich et al. (2016a) by ap-
plying Moses tokenization and special normaliza-
tion for Romanian text.1

4.3 Translation Models

For De-En, we use the Transformer-Big architec-
ture for the direct model. We do not share encoder
and decoder embeddings since the source and tar-
get vocabularies are different. For channel models,
operating from English to German, we consider
different variants (§3.1, Table 1) to better under-
stand the speed-accuracy trade-off of decreasing
the capacity of channel models.

For Ro-En and En-Ro with bitext only, the di-
rect and channel models use a Transformer-Base
architecture. For Ro-En with backtranslation, the
direct and channel models use a Transformer-Big
architecture. We share the encoder and decoder em-
beddings since the source and target vocabularies
are the same and because this improved accuracy.

4.4 Online Noisy Channel Decoding Setup

In order to set weights for the linear combination
of model scores (Equation 1), we randomly sample
a set of hyperparameters and evaluate each configu-
ration on the development set (Yee et al., 2019; Ng
et al., 2019). Hyperparameters are sampled within
the interval [0, 2], For direct models (dir), we
sample ten random weights for the length penalty.
For direct models combined with language models
(dir + lm), we evaluate 100 randomly sampled
configurations for the length penalty and the lan-
guage model weight (λ2). For direct models com-
bined with language models and channel models
(dir + lm + ch), we evaluate 1000 configu-
rations of the length penalty, the language model
weight (λ2) and the channel model weight (λ1).
We use 16-bit floating point precision for decoding
with the online noisy channel setup (Ott et al., 2018,
2019).

Accuracy is measured via sacreBLEU (Post,
2018) for WMT German-English. We report
the average BLEU of the newstest2014-2015 and
newstest2017-2018 test sets, averaged over 3 ran-
dom seeds for model weight initialization. Speed

1https://github.com/rsennrich/
wmt16-scripts/tree/master/preprocess
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Total
Params

(M)
BLEU Time (s)

Ensembles
dir 283 38.8 20
2 dir 565 39.3 40
3 dir 848 39.5 59

Ensembles + LMs
dir + lm 539 39.7 44
2 dir + lm 822 40.2 65
3 dir + lm 1104 40.3 84

Noisy Channel Modeling (Yee et al., 2019)
dir + lm + big 822 40.5 550

Fast Noisy Channel Modeling (This work)
dir + lm + 16th 1 1 542 40.2 56
dir + lm + base 1 1 574 40.5 92
2 dir + lm + 16th 1 1 824 40.5 76
2 dir + lm + base 1 1 857 40.8 111
3 dir + lm + 16th 1 1 1107 40.6 93
3 dir + lm + base 1 1 1140 41.0 131

Table 2: Fast noisy channel modeling is more accurate
than ensembles at comparable speed and the two meth-
ods are additive. All results use beam size 5, batch
sizes for each configuration are optimized and BLEU
is averaged over news2014, news2015, news2017 and
news2018 of WMT German to English.

is measured by the generation time (averaged over
3 trials) in seconds on the German-English new-
stest2016 test set on a 32GB Volta V100 GPU
using 16-bit floating point precision (Ott et al.,
2018, 2019). Unless otherwise specified, the
beam size is 5, and the number of candidates for
noisy channel model scoring per beam is k2 =
10, unless otherwise specified. Generation times
are based on a tuned batch size for each model
configuration by selecting the batch size within
(1, 10, 25, 50, 75, 100, 125, 150, 200, 300) that still
fits into memory and which results in the fastest
generation time.

5 Results

5.1 Fast Noisy Channel Modeling

In the first experiment, we evaluate the speed and
accuracy of fast noisy channel decoding (§ 3) and
compare to the naı̈ve version without approxima-
tions. As additional baselines, we consider a single
direct model (dir), ensembling two direct mod-
els (2 dir) and three direct models (3 dir), as
well as adding a language model to each (lm). As

Channel
Model
Params

(M)

BLEU Time (s)

dir + lm + big 283 40.3 472
dir + lm + base 72 40.4 202
dir + lm + half 25 40.5 132
dir + lm + quarter 10 40.4 102
dir + lm + 8th 6 40.3 89
dir + lm + 16th 3 40.2 70

dir + lm + big 1 1 94 40.5 160
dir + lm + base 1 1 24 40.5 92
dir + lm + half 1 1 16 40.4 72
dir + lm + quarter 1 1 8 40.2 63
dir + lm + 8th 1 1 5 40.3 60
dir + lm + 16th 1 1 3 40.2 56

Table 3: Smaller channel models perform similarly for
the standard beam size of 5. We exploit this fact to
speed up noisy channel decoding.

channel models, we consider a big Transformer, a
base Transformer, as well as a variant with model
dimension of only 32 which is 1/16th of the model
dimension of a base Transformer with a single
layer in the encoder and decoder each (16th 1 1),
totaling just 2.7M parameters. For noisy channel
decoding, we reduce the channel model output vo-
cabulary (§3.2) and set k2 = 3; we ablate these
choices in § 5.4.

Table 2 shows that the approximations we in-
troduce to make noisy channel decoding fast also
achieve similar accuracy (40.5 BLEU) to the much
slower noisy channel approach of (Yee et al., 2019),
while being about ten times faster at inference time.

Table 2 also shows that dir + lm +
16th 1 1 is 0.7 BLEU score better than 3 dir
at a similar decoding speed. Thus, using a small
channel model and a language model with online
noisy channel decoding is a better strategy than
ensembling 3 direct models. Noisy channel
decoding is also complementary to ensembling
direct models: 3 dir + lm + base 1 1
improves by 0.7 BLEU compared to 3 dir +
lm.

Table 3 compares fast noisy channel decoding
with different channel model sizes. Generally,
smaller channel models are only slightly less ac-
curate than larger models while being significantly
faster than their larger counterparts. For example,
16th 1 1 is over eight times faster than big and
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Figure 2: BLEU of fast online noisy channel decod-
ing with different channel models when beam size is
increased (compared to ensemble baselines). BLEU
is averaged over news2014, news2015, news2017 and
news2018 of WMT De-En.

achieves nearly the same accuracy.
This observation is in line with the hypothesis

that the primary role of the channel model is to tie
back the language model generations to the input.
We exploit the fact that small channel models work
well to make noisy channel decoding very fast.

5.2 Noisy Channel Decoding with Larger
Beam Sizes

So far we used a standard beam size of five to en-
able fast decoding. However, previous work found
that noisy channel modeling benefits more from
larger beam sizes than other methods (Yee et al.,
2019). Next, we evaluate whether our efficiency
improvements still enable good performance with
larger beam sizes.

Figure 2 shows that for beam size 5, most chan-
nel models perform comparably. Larger models
are slightly better but overall they are in a similar
ball park. As the beam size increases, larger chan-
nel models do achieve better accuracy. However,
there is no difference between a single layer big
model (big 1 1) and a six layer version (big).
As observed in previous work (Yee et al., 2019),
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Figure 3: BLEU of fast and naı̈ve online noisy chan-
nel decoding with different channel models sizes when
beam size is increased. BLEU is averaged over
news2014, news2015, news2017 and news2018 of
WMT De-En.

the direct model and the direct ensembles (dir,
2 dir, 3 dir) do not benefit from larger beam
sizes.

Next, we compare fast noisy channel decoding
and naı̈ve noisy channel decoding at larger beam
sizes. As shown in Figure 4, the naı̈ve approach is
much slower. Fast approximations to noisy channel
decoding scale much better in terms of speed as
the beam size increases. Figure 3 compares the
accuracy of fast noisy channel decoding at larger
beam sizes with that of naı̈ve noisy channel decod-
ing. Using the big and big 1 1 channel models
gives the best performance across all beam sizes
for naı̈ve noisy channel decoding. With fast noisy
channel decoding, we see an average drop of 0.3
BLEU and 0.2 BLEU for big and big 1 1 re-
spectively. On the other hand, for smaller channel
models, the difference between naı̈ve and fast noisy
channel decoding is generally smaller.
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Figure 4: With larger beam sizes, the speed of fast ap-
proximations for noisy channel decoding scales much
better than that of naı̈ve noisy channel decoding. Re-
sults are based on generation using the big 1 1 chan-
nel model with the fastest batch size for each setting
with beam 5 on newstest2016 De-En.

We conclude that very small channel models
(e.g., 16th 1 1) are adequate for most practical
beam size setups of fast noisy channel decoding.

5.3 Results on WMT Romanian-English

Next, we evaluate noisy channel modeling on
WMT Romanian-English translation (Ro-En and
En-Ro) which is a low resource setup compared
to WMT German-English. We also compare to a
recently introduced pre-training approach, mBART.
The mBART model is pre-trained to denoise input
sentences in multiple languages, followed by fine-
tuning on the bitext (Liu et al., 2020). Following
their setup for En-Ro evaluation, we apply Moses
tokenization and normalize diacritics for Romanian
(Sennrich et al., 2016a), and use tokenized BLEU.
For Ro-En, we use SacreBLEU (Post, 2018).

Table 4 shows that noisy channel decoding with
a wide beam can outperform multilingual pre-
training (mBART) across the board. Large beams
are not helpful for generation with mBART. Com-
pared to the direct model, noisy channel decoding
improves by 2.7/3.1 BLEU on En-Ro and Ro-En
respectively, and increasing the beam size gives
gains of 4.5/4.5 BLEU.

We also study the performance of noisy chan-
nel decoding on Romanian-English with back-
translated data generated using unrestricted sam-

pling (Edunov et al., 2018).2 As compared to
mBART02 (Liu et al., 2020), the previous state-
of-the-art result on Romanian-English with back-
translation, we achieve a 0.5 BLEU improvement.
We use a similar number of total model parame-
ters, but much less monolingual English data. Our
English language model is trained on 4.5B tokens,
while mBART02 uses 66B tokens of English and
Romanian monolingual data.

Finally, Table 5 shows that fast approximations
and smaller channel models achieve similar per-
formance but much higher speed compared to
naı̈ve noisy channel decoding on WMT Romanian-
English with back-translation. Fast noisy channel
decoding with base 1 1 achieves comparable ac-
curacy as mBART02 at slightly faster generation
time with beam size 5.

5.4 Ablations

In this section we focus on some of the design
choices we made to speed up noisy channel decod-
ing. We measure the impact on speed and accuracy
when reducing the output vocabulary size of the
channel model, and reducing the number of beam
candidates scored by the channel model.

5.4.1 Reducing the Output Vocabulary
In the next experiment, we compare the speed of
using the full output vocabulary for the channel
model to a reduced version. Specifically, we re-
duce the vocabulary by selecting all source to-
kens in the batch as well as the most frequent
500 tokens in the training data (see § 3.2). We
tune each setup by selecting the fastest batch
size based on a sweep over different batch sizes
(1, 10, 25, 50, 75, 100, 125, 150, 200, 300).

Table 6 shows that generating channel model
scores for a small subset of the source vocabulary
results in a small accuracy of up to 0.3 BLEU, but
often less, while substantially increasing speed by
40-65% for single layer channel models and by
20-55% for other channel models. base 1 1 with
a small vocabulary is nearly ten times faster than
the original channel model (size big) approach
proposed in Yee et al. (2019) at a modest decline
in accuracy.

The average vocabulary size used for scoring
the channel model is around 1050, as compared to

2The monolingual English data used for backtrans-
lation comes from http://data.statmt.org/
rsennrich/wmt16_backtranslations/ (Sennrich
et al., 2015).

http://data.statmt.org/rsennrich/wmt16_backtranslations/
http://data.statmt.org/rsennrich/wmt16_backtranslations/


mono
tokens
Ro-En
(B)

mono
tokens
En-Ro
(B)

En-Ro Ro-En
Ro-En
+BT

mBART02 66 66 38.5 38.5 39.9
mBART02 (beam=50) 66 66 - - 39.9

dir - - 34.6 34.6 38.4
dir + lm 4.5 22 35.4 35.9 38.7
dir + lm + big 4.5 22 37.3 37.7 39.6
dir + lm + big (beam=50) 4.5 22 39.1 39.1 40.4

Table 4: BLEU of noisy channel decoding on the Romanian-English newstest2016 test set with bitext-only as well
as with backtranslation (BT) compared to mBART (Liu et al., 2020). We also show the total amount of monolingual
data used by each method in billions of tokens.

BLEU Time (s)

mBART02 39.9 93
mBART02 (beam=50) 39.9 754

dir 38.4 19

Noisy Channel Modeling (Yee et al., 2019)
dir + lm + big 39.6 1178
dir + lm + big (beam=50) 40.4 12554

Fast Noisy Channel Modeling
dir + lm + base 1 1 39.8 82
dir + lm + base 1 1 (beam=50) 40.3 631

Table 5: Speed and accuracy on Romanian-English
(Ro-En) with backtranslation. Fast noisy channel de-
coding using base 1 1 achieves similar accuracy to
mBART02 while being faster (beam=5). BLEU is mea-
sured on newstest2016 and generation time is measured
on newsdev2016.

full source vocabulary size of 28,048. This leads
to a large reduction in memory consumption and
enables fitting larger batches into memory.

5.4.2 Reducing the Number of Candidates

For each beam in each step of beam search, we
need to make a choice about how many candidates
k2 we re-score with noisy channel modeling. Yee
et al. (2019) re-scored k2 = 10 candidates for each
beam at each step. We sweep over different values
of k2 to understand the speed-accuracy trade-off
associated with the choice of k2. Table 7 shows
that smaller values for k2 are as accurate and much
faster for beam size 5.

dir+ch+lm
(beam=5)

Full Source
Vocab

Small Source
Vocab

BLEU Time (s) BLEU Time (s)

big 40.6 1656 40.3 1355
base 40.7 854 40.4 516
half 40.6 450 40.5 299
quarter 40.5 359 40.4 212
8th 40.3 324 40.3 178
16th 40.1 264 40.2 118

big 1 1 40.7 543 40.5 339
base 1 1 40.5 336 40.5 169
half 1 1 40.3 264 40.4 117
quarter 1 1 40.4 238 40.2 95
8th 1 1 40.1 223 40.3 87
16th 1 1 40.2 209 40.2 74

Table 6: Comparison of accuracy (BLEU) and speed
of online noisy channel decoding with and without the
small output vocabulary approximation for different
channel model sizes. Note we use k2 = 10 for this ab-
lation. BLEU is averaged over news2014, news2015,
news2017 and news2018 of WMT De-En and genera-
tion time is on news2016.

6 Conclusion

We introduced a number of approximations which
greatly speed up noisy channel modeling for neural
sequence to sequence models. This includes using
channel models which are a fraction of the size
of commonly used sequence to sequence models,
pruning most of the channel model output vocabu-
lary, and reducing the number of beam candidates
scored by the channel model.

Our approximations are simple, yet, highly ef-
fective and enable comparable inference speed to
ensembles of direct models while delivering higher



k2 BLEU Time (s)

2 40.4 76
3 40.5 88
5 40.4 124

10 40.5 168

Table 7: Smaller number of rescoring candidates k2 per
beam are as accurate and much faster than larger values
of k2 for fast noisy channel decoding using base 1 1
with beam 5. BLEU is averaged over news2014,
news2015, news2017 and news2018 of WMT De-En
and generation time is on news2016.

accuracy. Our experiments show that noisy channel
modeling can outperform pre-training approaches
by being able to better exploit wider beams. More-
over, this is achieved while using a smaller amount
of monolingual data.
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