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Abstract—In the early design phase of a Deep Neural Network
(DNN) acceleration system, fast energy and latency estimation are
important to evaluate the optimality of different design candidates
on algorithm, hardware, and algorithm-to-hardware mapping,
given the gigantic design space. This work proposes a uniform
intra-layer analytical latency model for DNN accelerators that
can be used to evaluate diverse architectures and dataflows. It
employs a 3-step approach to systematically estimate the latency
breakdown of different system components, capture the operation
state of each memory component, and identify stall-induced
performance bottlenecks. To achieve high accuracy, different
memory attributes, operands’ memory sharing scenarios, as well
as dataflow implications have been taken into account. Validation
against an in-house taped-out accelerator across various DNN
layers has shown an average latency model accuracy of 94.3%. To
showcase the capability of the proposed model, we carry out 3 case
studies to assess respectively the impact of mapping, workloads,
and diverse hardware architectures on latency, driving design
insights for algorithm-hardware-mapping co-optimization.

Index Terms—DNN accelerator, latency, cycle count, cost model,
analytical model, dataflow, mapping

I. INTRODUCTION

The success of DNNs in various machine learning tasks has
given rise to wide adoption of specialized DNN accelerators
in embedded systems for edge intelligence [1]. For real-time
and resource-constrained applications, achieving performant
and efficient DNN acceleration is challenging, as it requires a
close co-optimization of hardware architectures with algorithms
and algorithm-to-hardware mapping, a.k.a. dataflow [2]. Since
exhaustive physical simulations/implementations lack intuition
and are impractical to explore the large number of design
choices in terms of algorithm, hardware and mappings (AHM),
fast and accurate energy and latency estimation are required for
early-phase Design Space Exploration (DSE).

Many prior arts have proposed uniform energy models for
DNN accelerator design [3]–[9]. The common basis is an
analytical model which counts the operations of each hardware
component (e.g., memory read and write at each level, multiply-
accumulate (MAC), data transfer in NoCs, etc.), and multiply
these with the corresponding unit energy to obtain the total
system energy. Machine-learning (ML) and regression based
energy models trained with simulation or testing data have also
been introduced [10]. All of the above methods have reported
good energy estimation accuracy with fast evaluation speed.

Unlike the well-explored energy models, analytical latency
models are, however, less systematically developed or explained
for DNN accelerators. In the paper, we refer to “latency”
as the clock cycle count (CC) for completing a workload.
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From the physical level to system abstraction, the existing
SotA latency estimation methods can be categorized as: 1)
measurement on physical device, 2) FPGA emulation [11],
3) RTL simulation [12], 3) cycle-accurate simulation [13],
[14], 4) regression or ML-based methods [15], [16], and 5)
analytical modeling [4], [6], [17]. Among these, analytical
models are preferred for early-phase DSE, thanks to their
fast run-time (orders of magnitude faster than others) and
transparency for analyzing the operation of each hardware
component (compared to black-box regression or ML based
methods). Moreover, since most of the DNNs are deterministic
with pre-known hardware architectures and mappings, high
accuracy in latency is analytically achievable.

However, most existing analytical latency models rely on
ideal assumptions, such as: 1) all memories at different levels
are double-buffered, assuming that double-buffering can avoid
all temporal stall; 2) memories that are shared by multiple
operands always have multiple read/write ports to avoid in-
terference among different operands’ data accesses. Although
these assumptions simplify the modeling, two issues are intro-
duced: 1) for fixed architectures, modeling accuracy degrades
if not meeting these assumptions; 2) for architecture search,
memory system overhead is introduced by default that excludes
a large part of design space, leading to sub-optimality. Some
other latency models were delicately built for a specific design
case or for a small group of design variants with a hardware
template [16]. Although accuracy is preserved, the limitation
in generality prevents its usage for novel architecture search.

This work aims to bridge this gap by a uniform analytical
latency modeling approach for AHM co-optimization, tageting
on dense intra-layer cases. The paper’s key contributions are:

• Provide a comprehensive overview of the latency impact
factors and introduce our modeling philosophy for solving
the modeling challenges (Section II).

• Present the proposed novel analytical latency model in
detail; Highlight the 3-step approach that can uniformly
address the multi-level memory system induced different
stall scenarios (Section III).

• Demonstrate high model accuracy with testchip valida-
tion (Section IV); Assess AHM-latency co-optimization
through 3 case studies (Section V) to drive design insights.

II. AHM AND LATENCY

A. Latency Impact Factors

1) Algorithm (A): This includes DNN layer parameters, such
as layer type (e.g., Conv2D, Dense, Depthwise and Pointwise),
layer loop dimensions, data attributes of the layer operands
(e.g., total data size and data precision), etc.



2) Hardware Architecture (H): A DNN accelerator is usu-
ally equipped with a MAC array and a multi-level memory sys-
tem, connected via an on-chip network. Its performance roofline
is determined by hardware parameters, such as MAC array size,
interconnectivity, and memory hierarchy (e.g., memory levels,
capacity / bandwidth (BW) / number of read/write ports, and
memory allocation for different operands).

3) Mapping (M): Dataflow (a.k.a. mapping) determines how
the algorithm is spatially and temporally mapped on the hard-
ware. Spatial mapping defines how to parallelize DNN loops
across the MAC array, while temporal mapping defines in what
order the MAC array processes the non-spatially-unrolled DNN
loops. Ideal spatial mapping fully utilizes the MAC array, while
ideal temporal mapping maximize operands’ data reuse at lower
memory levels. Mapping optimization can help to minimize
compute cycle count and communication stalls.

These three factors are strongly interrelated and form a gi-
gantic AHM design space, in which each point corresponds to a
specific algorithm-hardware-mapping scenario with a resulting
deterministic latency value.

B. Challenges in Uniform Latency Modeling

The challenges for building an analytical latency model that
can be applied to the vast AHM design space are twofold:

First, the concurrency and interference of data transfer
between different memory levels for different operands, i.e.,
weight (W) / input (I) / output (O), needs to be captured.
Such interference comes from hardware constraints (e.g., insuf-
ficient memory BW / ports, lack of double buffering, system
interrupts), and mapping choices (i.e., optimized mappings can
alleviate the interference while non-optimized mappings may
aggravate such effect). Note that this is specific for analytical
latency estimation, but usually less impactful on analytical
energy modeling. This is because analytical energy model
(dynamic energy) only relies on total operation count of each
hardware component, while latency also depends on when these
operations happen and how they interfere with each other.

The second challenge stems from the generality requirement,
since the latency model needs to be applicable for not only few
pre-defined hardware architectures with a fixed dataflow, but
also for every valid AHM point in the design space.

C. Proposed Modeling Philosophy

Our proposed latency modeling approach aims to solve
these challenges: 1) To capture the concurrency and inter-
dependencies of data transfers, we start from dividing this
complex intertwining problem into multiple single-component
data movement events, analyze each event separately, and then
combine them based on actual hardware design constraints;
2) To ensure generality, we adopt a uniform AHM representa-
tion, and implement a standard 3-step memory-type / bandwidth
/ sharing-aware latency modeling methodology which can cover
all valid design points, as detailed in Section III.

III. A UNIFORM INTRA-LAYER LATENCY MODELING
METHODOLOGY

The processing of each DNN layer consists of 3 phases:
data pre-loading, computation, and data offloading, as shown
in Fig. 1(a). We define the data pre-loading as the data initial-
ization step before computation starts, and the data offloading
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Fig. 1. (a) A timeline illustration of DNN layer operation phases. (b) Four
scenarios of latency and utilization modeling in the computation phase.

as the final round of outputs writing back to memory after
computation finishes. We can derive their latency based on the
required data transfer amount and the related memories’ BW.

The computation phase usually dominates the overall pro-
cessing time, of which the latency is strongly impacted by
AHM. Fig. 1(b) shows the 4 computation scenarios based
on the spatial and temporal mapping rate of the MAC array.
The latency modeling’s challenges mainly come from the ones
with temporally under-utilized MAC array ( 3⃝ 4⃝), due to the
complexity to model the stall induced by the non-ideal data
movement, i.e., temporal stall (SSoverall).

In the remaining section, we first introduce prerequisite
concepts, then describe in detail the 3-step latency modeling
methodology to address SSoverall modeling challenge. The key
terminologies and the model steps are illustrated in Fig. 2.
Please refer to it for all the abbreviations used in this section.

A. Prerequisite Concepts and Terminology

To simplify the explanation, we adopt the data representation
and loop characterization from ZigZag [8]: 1) a DNN layer is
presented as a 7-dimentional nested for-loop format, namely,
batch (B), output channel (K), input channel (C), output x-
y dimension size (OX/OY), and filter x-y dimension size
(FX/FY); 2) three major operands (W/I/O) each have their
relevant (r) and irrelevant (ir) for-loops, where r / ir loops
contribute to that operand’s data size / data reuse respectively.
For example, W’s r loops are {K, C, FX, FY}, and its ir loops
are {B, OY, OX}. In addition, we introduce the following terms
described in the table of Fig. 2(a) and refer to them in modeling:
Unit Mem, DTL, MemDATA, MemCC , and RealBW .

B. Step 1: Divide memory system into multiple Unit Memories
by operand and compute each DTL’s attributes

In the first step, we divide the problem of extracting the
total temporal stall cycles SSoverall of the entire memory
system into deriving the stall/slack cycles (SSu) induced by
a single operand (W/I/O) accessing a Unit Mem (e.g., Mem1-9
in Fig. 2(b)). To analyze these Unit Mem levels, we decouple
read and write operations on the interface between two Unit
Mem levels, each as a DTL (e.g., from 1⃝ to 18⃝ in Fig. 2(b)).

1) Compute ReqBWu: For each DTL, ReqBWu is defined
as the minimum memory BW to allow computation to proceed
without stall. Based on the memory type (single- or double-
buffered) and the top temporal loop type allocated to that
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RealBW Actual read/write BW of a memory module. Obtained from actual hardware design parameters.
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MUWcomb
Total allowed memory updating window of a 
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SScomb SS of a physical memory read/write port. Equation (1) and (2).
Step 3 SSoverall Overall temporal stalling cycle. Integrate all SScomb based on different memory’s coherency.

(a)

Fig. 2. (a) Descriptions of the terminologies used by each step in the proposed latency model and (b) a flow illustration of 3-step latency modeling methodology.

memory level, this parameter can be derived as shown in
Table I. It is worth noting that for non-double-buffered memory
levels, if an ir loop is scheduled as the upper for-loop of that
level, the required data cannot be overwritten during processing
that top ir loop due to data reuse (an example to visualize this
is given later in Fig. 4). Thus, to avoid stall, this minimum
BW requirement needs to be scaled up by all top ir loop sizes.
Accordingly, ReqBWu can be obtained for each DTL.

TABLE I
ReqBW DETERMINED BY BOTH MEMORY TYPE AND MAPPING.
Memory type DB* mem. Non-DB dual-port mem.

Top temporal loop type r or ir r ir
Physical mem capacity A A A
Mapper-seen capacity ½ × A A A

ReqBW BW0** BW0 BW0 × top-ir loop size
** BW0 = MemDATA/MemCC* DB = Double-Buffered

2) Derive the Unit Mem’s operation pattern and memory
updating window (MUWu): When no interference occurs, the
periodic pattern of memory operation can be modeled by a pe-
riodic function with 4 parameters as shown in Fig. 2(a): period
(Memcc), active cycle count in one period (X), active cycle
starting point in one period (S), and total number of periods
(Z). Here XREQ is the maximum allowed memory updating
window for no-stall scenario within one Memcc, which equals
to MemDATA/ReqBW . Accordingly, MUWu = XREQ×Z.
On the other hand, the actual memory BW (RealBW ) is
hardware design specific (Fig. 2(b)), hence we use XREAL

to represent the actual memory updating window within one
Memcc, which equals to MemDATA/RealBW .

3) Extract SSu: For each DTL, SSu measures the relative
cycle difference between “memory operation” and “computa-
tion”, and is computed by SSu = (XREAL−XREQ)×Z. Fig. 3
shows SSu visualization with six cases of computation and
memory operation timelines. E.g., Fig. 3(a)(d) have SSu = 0
since XREAL = XREQ, despite their different memory types;

*M and C stand for 
memory updating 
and computation, 
respectively. 

**Number n in Mn 
and Cn indicate 
the data producer 
and consumer pair, 
e.g., M1 serves C1

• (a),(b),(c) assume double-buffered (db) mem or non-double-buffered (non-db) mem with r loop 
scheduled on top (memory updating and computation can fully overlap). XREQ = MemCC.

• (d),(e),(f) assume non-db mem with ir loop scheduled on top (Mn+1 is after certain data block 
is fully (re)used by Cn), hence “Mem Update Keep-Out Zone” is inserted. XREQ < MemCC.
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Fig. 3. Six different timeline cases of computation (C) and memory update
(M) showing memory induced stall/slack for a single DTL.

same principle can be applied to obtain (b)(e)’s negative SSu

and (c)(f)’s positive SSu.

C. Step 2: Combine the attributes on DTLs that share same
physical memory port and serve same memory module

With the basic attributes ReqBWu, MUWu and SSu ob-
tained for each DTL in Step 1, we can derive ReqBWcomb,
MUWcomb and SScomb for DTLs that share the same physical
memory port and for DTLs that serve the same memory.

1) Derive ReqBWcomb: For DTLs that share one physical
memory port, the ReqBWcomb is the sum of all the DTL’s
ReqBWu on that port, but with read and write distinguished.

2) Derive SScomb: We first compute the union of all
MUWu for shared-port DTLs as MUWcomb, then calculate
SScomb based on the polarity (+/-) of SSu:

• Case 1: all SSu ≤ 0 (assume n DTLs sharing one port):
SScomb =

∑n
i=1(MUWu(i) + SSu(i))−MUWcomb (1)

• Case 2: at least one SSu > 0 (assume SSu(i) >
0, when 1 ≤ i < m; SSu(i) ≤ 0, when m ≤ i ≤ n):

SScomb =
∑m−1

i=1 SSu(i) +max(0,
∑n

i=m(MUWu(i) + SSu(i))−MUWcomb)

(2)
where SSu(i) is the SSu of the ith DTL; MUWu(i) is the
MUWu of the ith DTL. Eq. (1) indicates that if all the shared-
port DTLs do not introduce stall individually, the combined stall
is the sum of each DTL’s active cycles minus the maximal
allowed memory updating window (MUWcomb). This value
can be positive (generate stall) or non-positive (no stall). Eq. (2)
indicates that if some of the DTLs by themselves already
introduce stall (positive SSu), we firstly combine the rest non-
positive stalls using Eq. (1). If this combined result is positive, it
is then added to the sum of the positive SSu to obtain SScomb;
otherwise, only the sum of the positive SSu is used as SScomb.
This ensures the stall(+) induced by individual DTL is not
cancelled by other DTL’s slack(-) during combination.

The next step is to further combine the SS of the DTLs
serving the same memory. This final SScomb is the maximal
value either out of their SSu (e.g., max(SSu12⃝, SSu11⃝)
in Fig. 2(b)) or out of the already combined SScomb (e.g.,
max(SScomb 1⃝ 6⃝, SScomb 2⃝ 7⃝) in Fig. 2(b)).

3) A detailed example: To visualize Step 1 and 2, an
example is given in Fig. 4. It puts 5 design factors together:
1) hardware architecture, 2) mapping, 3) loop iteration, 4) data
access pattern, and 5) memory-compute timeline, and illustrate
how these factors interact with each other and impact latency.
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Fig. 4. An example demonstration of (a)-(b) Step 1 (Divide) and (b)-(c) Step 2 (Combine) for deriving the intermittent modeling parameters.

The goal in this example is to derive the SScomb of the local
buffer’s read port, shared by W/I/O-Reg (non-double-buffered).
Fig. 4(a) to (b) shows Step 1 ”Divide” that divides the shared
memory port by operand and analyzes each operand’s DTL
without interference; Fig. 4(b) to (c) shows Step 2 ”Combine”
that combines unit DTLs to deduce the SScomb of the shared
memory port, considering interference. Based on the mapping
and RealBW (assume 1 data per cycle between LB and Reg
in this example), the periodic data movement of each DTL is
visualized in (b), from which the attributes for each DTL are
derived in (c). Finally, SScomb is calculated based on Eq. (1).

D. Step 3: Integrate SScomb across all memory levels to derive
total temporal stall SSoverall

SSoverall accounts for the parallel memory operation as well
as multiple stall sources across all memory levels. For the
memory operations that can be overlapped, SSoverall takes the
maximum of SScomb, i.e., the shorter stall of one memory
can be hidden under the longer stall of the other; otherwise,
SSoverall is the sum of all stalls, indicating one memory stall
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Fig. 5. (a) Block diagram of the in-house DNN accelerator. (b) Temporal
mapping and spatial unrolling schemes after Im2Col. (c) Model validation
against the hardware RTL simulation running NN layers of different sizes.

blocks the operation of other memories, regardless of whether
the data in other memories are ready. Users can customize this
memory parallel operation constraint based on the design.

If calculated SSoverall ≤ 0, we take zero as its final value
since no temporal stall; otherwise, SSoverall > 0 indicates
temporal stall exist during computation.

E. System’s Overall Latency and MAC Array Utilization

Based on the 3 Steps and data loading analysis, the system’s
overall latency (CC) can be derived by summing up the ideal
computation cycles (CCideal), data loading cycles, spatial stall
and temporal stall (SSoverall) (refer to Fig. 1). The overall
MAC array utilization (U ) can be deduced by CCideal/CC.

This uniform latency modeling enables DSE for various
memory systems and mappings. It can also provide insights
on identifying performance bottlenecks and optimization op-
portunities, as demonstrated in Section V.

IV. VALIDATION

We validate the proposed latency model using an in-house
DNN accelerator implemented in TSMC 7nm technology [18],
designed for INT8-based inference tasks. For convolution
layers, Im2Col operation (unrolling convolution into matrix-
matrix-multiplication) is performed by a RISC-V core before
processing on the accelerator. As shown in Fig. 5(a), this
accelerator employs a systolic array-based design with 1K
MAC units in a 16×32 PE array (2 MACs per PE) and one 24b
Output register per PE. Each MAC connects to one 8b Weight
and one 8b Input register. A total of 32KB and 64KB local
buffer (LB) with 256b and 512b bus connection to PE array are
used for temporal storage of Weight and Input, respectively. 1
MB global buffer (GB) tiled with 16 64KB SRAM macros is
used. The mapping schemes are shown in Fig. 5(b).

We feed the latency model with the above hardware con-
figuration. Fig. 5(c) shows the comparison of the modeled
results with the hardware simulation, running NN layers (with
different parameter sizes) of a hand-tracking workload [19]. For
all evaluated NN layers, an average of 94.3% latency estimation
accuracy is achieved.



V. CASE STUDIES

In this section, we present 3 case studies to demonstrate
how the enhanced latency model can be used to optimize the
AHM design space. We integrate our model with ZigZag [8], a
DNN accelerator architecture-and-mapping DSE framework, to
generate various design points. For Case 1 and 2, the hardware
architecture is fixed to a scale-down version of the in-house
accelerator with 8×16 PE (2 MACs per PE, i.e. 16x16 MAC),
16KB Weight local buffer (W-LB), 8KB Input local buffer (I-
LB), 1MB global buffer (GB) with 128 bit/cycle read/write BW,
and a loop spatial unrolling of K 16 | B 8 | C 2. For Case 3, we
perform architecture DSE by varying the hardware parameters.
Im2Col layer transfer is applied to all the case studies.

A. Case 1: Mapping v.s. Latency

Different mappings lead to distinct latencies for the same
DNN layer processed on the same hardware. Fig. 6 com-
pares two different temporal mapping schemes: Mapping A
and Mapping B, out of 30240 valid mappings obtained by
ZigZag mapper. As shown in Fig. 6(c)(d), both mappings result
identical ideal latency (CCideal) of 38400 clock cycles (cc),
where Mapping A has 5% energy savings over Mapping B.
Hence without considering temporal stall (SSoverall), Mapping
A would be preferred. However, our latency model indicates
that Mapping B actually has a 30% lower latency and 26%
better MAC utilization (both spatial and temporal utilization
included) over Mapping A, owning to its lower SSoverall.

The main difference between Mapping A and B is whether
the C loop is split, highlighted by the blue boxes in Fig. 6(a)(b).
This leads to different data reuse tradeoff between I and O at
I-LB and GB levels: Mapping B adopts a full output stationary
dataflow at O-Reg level (i.e., only final outputs write to GB) by
scheduling all O’s data reuse loops (C loops) at O-Reg level.
On contrast, Mapping A has all I’s data reuse loops (K loops) at
I-LB level to reduce Input’s data movement from GB to I-LB,
at the cost of pushing part of O’s data reuse loops (C loops)
to the GB level (i.e., besides final Outputs, Partial Sums also
need to be transferred between O-Reg and GB), as shown in
Fig. 6(e). Note that W’s data reuse distribution across memory
levels in these two mappings are the same.

These differences in I and O data transfer cause different
temporal stalls due to the insufficient GB BW compared to the
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Fig. 6. Case study 1: Mapping difference analysis and its impact on latency.

required ones, shown in Fig. 6(f). Although Mapping A and B
both exceed hardware’s RealBW for GB write (e.g., 3072 vs.
128 bit/cycle), the stall is less for Mapping B since its GB write
is less frequent (Fig. 6(e)). In addition, the Partial Sum transfer
in Mapping A requires much higher GB read BW that cannot be
met by the hardware’s RealBW . Thus, our memory-BW-aware
latency model reveals the high SSoverall in Mapping A that
deteriorates MAC array utilization and system performance.

This analysis clearly shows that a good latency model is
instrumental to help DNN accelerator DSE mapper minimize
SSoverall by 1) matching ReqBW (mapping-dependent) with
RealBW (HW-dependent), or 2) if RealBW is too low to
match, reducing the frequent access of the low-BW link (e.g.,
reducing partial sum transfer in this case study).

B. Case 2: Workload Size v.s. Latency

DNN layer parameters largely impact execution time. In this
case study, we use the same hardware parameters as in Case 1
and analyze the latency impact of the layer attributes (e.g., # of
total MAC operation, operand size). Fig. 7(a) shows operand’s
percentage (W/I/O) and total MAC operation count by varying
DNN layer dimensions from 8 to 512 for B/K/C. Fig. 7(b)
shows the corresponding modeled Real latency and latency
breakdown in terms of data pre-loading, ideal compute cycle,
spatial stall, and temporal stall (SSoverall) as defined in Fig. 1.

Comparing Fig. 7(a) and (b), the Ideal latency matches with
Total MAC Ops, where the Real latency follows the Total
data size. The former is intuitive since it assumes 100% MAC
array utilization with zero stall, where latter reveals the data
movement bottleneck. Since the existing hardware has limited
BW for GB (Fig. 6(f)), a fully output stationary dataflow at
O-Reg level was always selected to minimize stall by reducing
the GB access. When the layer is Output-dominant (large B
and K, fewer C), its total data size increases compared to other
layers under the same total MAC Ops due to the 24-bit O
precision (v.s. 8-bit I and W), while at the same time the lower
input channel count C, results in less output stationarity. This
causes increased pressure on the GB write BW, causing the
Real latency to deviate much more from the Ideal latency. For
larger layer sizes (large C), Ideal computation cycle (green bars)
dominate, and the deviation between Ideal latency and Real
latency reduces.

Note that without including temporal stalls (i.e., the cyan dot-
ted line), large discrepancies in latency estimation (e.g., 7.4×
for layer (128,128,8) and 9.2× for layer (512,512,8)) occur
(Fig. 7(b)), especially for layers with fewer input channels C.

x 7.4
x 9.2

(a)

(b)

Fig. 7. Case study 2: Workload’s impact on latency and latency breakdown.



C. Case 3: Hardware Architecture Design Space v.s. Latency

Previous case studies have shown the importance of the
proposed latency model for evaluating the mapping and al-
gorithm impact on a fixed hardware architecture. In this case
study, we further take advantage of the model’s generality and
memory-BW-awareness to assess the impact of different HW
architecture parameters (e.g., MAC array size, memory capacity
and memory BW), and showcase how the design space changes
with the presence of temporal stalls (SSoverall). We choose the
following the MAC array sizes and scale the spatial mapping
accordingly: 16×16 (spatial mapping as K 16 | B 8 | C 2),
32×32 (K 32 | B 16 | C 2), 64×64 (K 64 | B 32 | C 2). We
construct a memory pool containing tens of register/memory
candidates with different capacities to replace the W-/I-/O-Reg,
W-/I-LB in the design space search. The GB size is 1MB for
all the cases, where GB BW varies from 128 to 1024 bit/cycle.
The area of GB is not included in the comparison.

Fig. 8 illustrates the latency-area design space for 4,176 hard-
ware designs. Different MAC array sizes are shown in different
colors, while dots that share the same color vary in memory
hierarchy. For each design point, mapping optimization for
lowest latency is performed.

Fig. 8(a) first shows the results using a memory-BW-unaware
latency model. Since memory BW impact induced SSoverall is
ignored, all the architectures with the same array size achieve
similar latency. Hence the minimum area design (i.e., with less
memory) could be considered as optimal (close to the preferred
corner), since larger memory capacity does not offer latency
benefits but add area cost.

However, the conclusion changes once the memory BW
impact is included. Fig. 8(b) and (c) show the design spaces
obtained with our proposed model for GB BW of 128 bit/cycle
(low BW) and 1024 bit/cycle (high BW), respectively, with the
optimal design points highlighted. For both high and low GB
BWs, different memory size combinations at Register and Local
Buffer levels can impact the area-latency trade-off for a fixed
MAC array size (i.e., same theoretical peak performance). For
example, the 16×16, 32×32 and 64×64 array achieve their own
lowest latency with moderate memory area cost at 128 bit/cycle
GB BW. Only when the GB BW is high, the design points of
the same array size cluster around the similar latency, indicating
less latency impact from improving local memory storage and
data reuse. This reveals the impact of SSoverall in BW-limited
systems, where the memory hierarchy needs to be optimized to
maximize data reuse below that bottleneck memory level for
stall reduction.

Another observation from the memory-BW-aware latency
modeling is that the MAC array size preference can change
for different memory BWs (Fig. 8 (b)(c)). At low GB BW,
the optimal latency of 32×32 array can outperform that of the
64×64 array. Only at high GB BW, the 64×64 array can further
improve the latency Pareto front.

In summary, BW-awareness is important for hardware design
parameter optimization on latency. Recent technology advance-
ment such as 3D IC technology with fine-pitch SRAM-on-
logic stacking can offer energy-efficient high BW interconnects
(e.g., >1024 bit/cycle) over the conventional 2D design. The
proposed BW-aware latency model can aid in evaluating the
impact of this new technology on the design space.

Preferred 
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(a) (b) (c)

Optimal Design Points

Optimal Design Points

Optimal Design Points

Fig. 8. Case study 3: Hardware architecture’s impact on latency-area tradeoff.

VI. CONCLUSION

A unified analytical intra-layer latency model for DNN ac-
celerators is proposed to support diverse architectures and map-
pings. Following a 3-step approach, our model overcomes prior
challenges by systematically estimating the system’s temporal
stalls, capture the periodic operation of hardware components,
and identify performance bottlenecks. This model is verified
with an in-house DNN accelerator on various DNN layers with
different mappings, achieving >94.3% accuracy on average.
Three case studies from a mapping, workload and hardware
perspective reveal the advantages of using the proposed model
for DSE, as well as the importance of temporal stall modeling
in exploring co-design opportunities for latency optimization.
This intra-layer latency model builds a solid foundation for
future work of modeling and optimizing latency in cross-layer
multi-core DNN mapping scenarios.
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