
Narwhal and Tusk: A DAG-based Mempool and
Efficient BFT Consensus

George Danezis, Eleftherios Kokoris Kogias, Alberto Sonnino, Alexander Spiegelman
Facebook Novi

Abstract
We propose separating the task of transaction dissemina-
tion from transaction ordering, to enable high-performance
Byzantine fault-tolerant consensus in a permissioned setting.
To this end, we design and evaluate a mempool protocol,
Narwhal, specializing in high-throughput reliable dissemina-
tion and storage of causal histories of transactions. Narwhal
tolerates an asynchronous network and maintains its per-
formance despite failures. We demonstrate that composing
Narwhal with a partially synchronous consensus protocol
(HotStuff) yields significantly better throughput even in the
presence of faults. However, loss of liveness during view-
changes can result in high latency. To achieve overall good
performance when faults occur we propose Tusk, a zero-
message overhead asynchronous consensus protocol embed-
ded within Narwhal. We demonstrate its high performance
under a variety of configurations and faults. Further, Nar-
whal is designed to easily scale-out using multiple workers
at each validator, and we demonstrate that there is no fore-
seeable limit to the throughput we can achieve for consensus,
with a few seconds latency.

As a summary of results, on a Wide Area Network (WAN),
Hotstuff over Narwhal achieves 170,000 tx/sec with a 2.5-sec
latency instead of 1,800 tx/sec with 1-sec latency of Hotstuff.
Additional workers increase throughput linearly to 600,000
tx/sec without any latency increase. Tusk achieves 140,000
tx/sec with 4 seconds latency or 20x better than the state-of-
the-art asynchronous protocol. Under faults, both Narwhal
based protocols maintain high throughput, but the HotStuff
variant suffers from slightly higher latency.

1 Introduction
Increasing blockchain performance has is studied widely,
to improve on Bitcoin’s [31] throughput of only 4 tx/sec.
Bitcoin-NG [19] splits the consensus protocol from block
proposal, achieving a 20x throughput increase, with a la-
tency of 10 minutes (same as Bitcoin). Byzcoin [26] was the
first to propose using quorum-based consensus to break the
barrier of 1,000 tx/sec with a 1-minute latency. For higher
throughput and lower latency quorum-based protocols are
required, and Narwhal is such a protocol.

Existing approaches to increasing the performance of dis-
tributed ledgers focus on creating lower-cost consensus al-
gorithms with the crown jewel being Hotstuff [35], which
achieves linear overhead in the partially synchronous set-
ting. To achieve this, Hotstuff leverages a leader who collects,

aggregates, and broadcasts the messages of other validators
during their rounds. However, theoretical message complex-
ity can be a misleading optimization target. More specifically:

• Any (partially-synchronous) protocol that minimizes
overall message number, but relies on a leader to pro-
duce proposals and coordinate consensus, fails to cap-
ture the high load this imposes on the leader who
inevitably becomes a bottleneck.

• Message complexity counts the number of metadata
messages (e.g., votes, signatures, hashes) which take
minimal bandwidth compared to the dissemination of
bulk transaction data (blocks). Since blocks are orders
of magnitude larger (10MB) than a typical consensus
message (100B), the overall message complexity is ir-
relevant in practice.

Besides minimizing misleading cost metrics, consensus
protocols have conflated many functions into a monolithic
protocol. In a typical distributed ledger, such as LibraBFT1 [10],
clients send transactions to a validator that shares them us-
ing a Mempool protocol. Then a subset of these transactions
are periodically re-shared and committed as part of the con-
sensus protocol. Most research so far aims to increase the
throughput of the consensus layer.

This paper formulates the following hypothesis: a better
Mempool, that reliably distributes transactions, is the
key enabler of a high-performance ledger. It should
be separated from the consensus protocol altogether,
leaving consensus only the job of ordering small fixed-
size references. This leads to an overall system through-
put being largely unaffected by consensus.

This work confirms the hypothesis; monolithic protocols
place transaction dissemination in the critical path of consen-
sus, impacting performance more severely than consensus
itself. With Narwhal, we show that we can off-load reliable
transaction dissemination to the Mempool protocol, and only
rely on consensus to sequence a very small amount of meta-
data, increasing performance significantly. Therefore, there
is a clear gap between what in theory is optimal for an iso-
lated consensus protocol and what offers good performance
in a real distributed ledger.
We adapt Hotstuff to separate block dissemination into

a separate Mempool layer and call the resulting system
batched-HotStuff (Batched-HS). In Batched-HS, validators
broadcast blocks of transactions in a Mempool and the leader

1LibraBFT recently rebranded to DiemBFT.
1



0k 100k 200k 300k 400k 500k
Throughput (tx/s)

0.0

1.0

2.0

3.0

4.0

La
te

nc
y 

(s
)

Narwhal-HotStuff-20

Tusk-20

Batched-HotStuff-20
Baseline-HotStuff-20

Narwhal-HotStuff-4W10
Tusk-4W10

Figure 1. Summary of WAN performance results, for consensus systems
with traditional mempool (circle), Narwhal mempool (star), and many work-
ers (cross). Transactions are 512B.

proposes block hashes during consensus, instead of broad-
casting transactions in the critical path. This design, however,
only performs well under ideal network conditions where
the proposal of the leader is available to the majority of the
validators promptly.

To make a robust Mempool we design Narwhal, a DAG-
based, structured Mempool which implements causal or-
der reliable broadcast of transaction blocks, exploiting the
available resources of validators in full. Combining the Nar-
whal Mempool with HotStuff (Narwhal-HS) provides good
throughput even under faults or asynchronous network con-
ditions (but at an inevitable high latency). To reduce latency
under faults and asynchrony, we note that Narwhal is close
to an asynchronous consensus protocol. We, therefore, en-
hance Narwhal with the capability of producing common
randomness, and design Tusk, a fully-asynchronous, wait-
free consensus where each party decides the agreed values
by examining its local DAG without sending any messages.
Tusk removes the need to rely on an external consensus layer
in deployments where slightly higher latency is acceptable.

Contributions. We make the following contributions:
• We design Batched-Hotstuff with a simple Mempool
that produces significant (x50) improvement under
good network conditions and demonstrate HotStuff’s
lack of performance under even a few failures.

• We build Narwhal, an advanced Mempool protocol
that guarantees optimal throughput (based on net-
work speed) even under asynchrony and combines
it with our Hotstuff implementation to see increased
throughput at a modest expense of latency.

• We leverage the structure of Narwhal and enhance
it with randomness to get Tusk, a high-throughput,
DDoS resilient, and zero overhead consensus protocol.
We demonstrate experimentally its high performance
in a WAN, even when failures occur.

Figure 1 summarizes the relative WAN performance of
the Narwhal-based systems (star markers), compared with

HotStuff (circle marker), when no faults occur, for different
numbers of validators and workers (cross marker, number of
workers after ‘W’). Throughput (x-axis) is increased with a
single Narwhal worker and vastly increased when leveraging
the parallelizable nature of Narwhal to a throughput of over
500,000 tx/sec, for a latency (y-axis) lower than 3.5 seconds.

2 Overview
This paper presents the design and implementation of Nar-
whal, a DAG-based Mempool abstraction. Narwhal ensures
efficient wide availability and integrity of user-submitted
transactions under a fully asynchronous network. In Sec-
tion 3.2, we show how to leverage Narwhal to significantly
improve the throughput of existing consensus protocols such
as HotStuff [35]. Additionally, when augmented with a sim-
ple shared-randomness mechanism, Narwhal can be used
to implement Tusk, a zero-message-overhead asynchronous
consensus algorithm. In this section we define the problem it
addresses, the system and security model in which Narwhal
operates, as well as a high-level overview of the system and
the main engineering challenges.

2.1 System model, goals and assumptions

We assume a message-passing system with a set of 𝑛 par-
ties and a computationally bounded adversary that controls
the network and can corrupt up to 𝑓 < 𝑛/3 parties. We
say that parties corrupted by the adversary are Byzantine or
faulty and the rest are honest or correct. To capture real-world
networks we assume asynchronous eventually reliable com-
munication links among honest parties. That is, there is no
bound on message delays and there is a finite but unknown
number of messages that can be lost.
Informally the Narwhal Mempool exposes to all partici-

pants, a key-value block store abstraction that can be used
to read and write blocks of transactions and extract partial
orders on these blocks. Nodes maintaining the Mempool
are able to use the short key to refer to values stored in the
shared store and convince others that these values will be
available upon request by anyone. The Narwhal Mempool
uses a round-based DAG structure that we describe in detail
in the next sections. We first provide a formal definition of
the Narwhal Mempool.

A block 𝑏 contains a list of transactions and a list of refer-
ences to previous blocks. The unique (cryptographic) digest
of its contents, 𝑑 , is used as its identifier to reference the
block. Including in a block, a reference to a previous block
encodes a ‘happened-before’ [29] relation between the blocks
(which we denote 𝑏 → 𝑏 ′). The ordering of transactions and
references within the block also explicitly encodes their or-
der, and by convention, we consider all referenced blocks
happened before all transactions in the block.
A Mempool abstraction needs to support a number of

operations: A write(d,b) operation stores a block 𝑏 associated
with its digest (key) 𝑑 . The returned value c(d) represents an

2



unforgeable certificate of availability on the digest 𝑑 and we
say that the write succeeds when c(d) is formed. A valid(d,
c(d)) operation returns true if the certificate is valid, and false
if it is not. A read(d) operation returns a block 𝑏 if a write(d,b)
has succeeded. A read_causal(d) returns a set of blocks 𝐵 such
that ∀𝑏 ′ ∈ 𝐵 𝑏 ′ → . . . → read(𝑑), i.e., for every 𝑏 ′ ∈ 𝐵,
there is a transitive happened before relationship with 𝑏.

The Narwhal Mempool abstraction satisfies the following:
• Integrity: For any certified digest 𝑑 every two invoca-
tions of read(d) by honest parties that return a value,
return the same value.

• Block-Availability: If a read operation read(d) is in-
voked by an honest party after write(𝑑,𝑏) succeeds for
an honest party, the read(d) eventually completes and
returns 𝑏.

• Containment: Let𝐵 be the set returned by a read_cau-
sal(d) operation, then for every 𝑏 ′ ∈ 𝐵, the set 𝐵′ re-
turned by read_causal(d’), 𝐵′ ⊆ 𝐵.

• 2/3-Causality: A successful read_causal(d) returns a
set 𝐵 that contains at least 2/3 of the blocks written
successfully before write(𝑑,𝑏) was invokes.

• 1/2-Chain Quality At least 1/2 of the blocks in the
returned set𝐵 of a successful read_causal(d) invocation
were written by honest parties.

The Integrity and Block-Availability properties of Narwhal
allow us to clearly separate data dissemination from consen-
sus. That is, with Narwhal, the consensus layer only needs to
order block digests, which requires low communication cost.
Moreover, the Causality and Containment properties guar-
antee that any consensus protocol that leverages Narwhal
will be able to achieve perfect throughput. This is because
once we agree on a block digest, we can safely totally or-
der all its causally ordered blocks. Therefore, with Narwhal,
different Byzantine consensus protocols differ only in the
latency they achieve under different network conditions. We
provide supporting evaluation and discuss trade-offs in detail
in Section 6. The Chain-Quality [22] property allows Nar-
whal to be used for Blockchain systems that care not only
about committing operation but also providing censorship
resistance to the clients.

Last but not least, our main goal in this paper is to provide
a mempool abstraction that can scale out and support the
increasing demand in consensus services. Therefore, our
goal in this paper is how to achieve the above theoretical
properties and at the time satisfy the following:

• Scale out: Narwhal’s peak throughput increases lin-
early with the number of resources each validator has
while the latency does not suffer.

2.2 Intuitions behind the Narwhal design

Established cryptocurrencies and permissioned systems [10,
31] implement a best-effort gossip Mempool. A transaction
submitted to one validator is disseminated to all others and
included in the consensus before the originating node acts

as a leader. This leads to fine-grained double transmissions:
most transactions are shared first by the Mempool, and then
theminer/leader creates a block that re-shares them. This sec-
tion describes how this basic Mempool design is augmented
to provide the properties defined above, toward Narwhal
to (1) reduce the need for double transmission when lead-
ers propose blocks, and (2) enable scaling out when more
resources are available.
A first step to removing the double transmission is to

broadcast blocks instead of transactions and let the leader
propose a hash of a block, relying on the Mempool layer to
provide its integrity-protected content. However, integrity
without availability is difficult to ensure, and timeliness re-
quired by partially synchronous protocols is not guaranteed,
leading to poor performance at the slightest instability.

To ensure availability, as a second step, we consistently
broadcast [14] the block, yielding a certificate that the block
is persisted and available for download. Now a leader may
propose such a certificate, to prove that the block will be
available on time. Since block size can be arbitrarily large
compared to the certificate this reduces the throughput re-
quired from consensus. However, it requires a leader to in-
clude one certificate per Mempool block and if the consensus
temporarily loses liveness then the number of certificates to
be committed may grow infinitely.
In a third step, we introduce the causality property to

enable a leader to propose a single availability certificate for
multiple Mempool blocks: Mempool blocks are extended to
contain certificates of past Mempool blocks, including from
other validators. As a result, a certificate refers, in addition
to the block, to its full causal history and enables perfect
throughput even at the presence of an unstable network,
effectively decoupling the throughput (which is a Mempool
property now) from the latency (which remains a consensus.
property). A leader proposing such a fixed-size certificate,
therefore, proposes an extension to the sequence containing
blocks from the full history of the block. This design is ex-
tremely economical of the leader’s bandwidth, and ensures
that delays in reaching consensus impact latency but not
average throughput–as mempool blocks continue to be pro-
duced and are eventually committed. Nevertheless, it suffers
from two issues: (i) A very fast validator may force others
to perform large downloads by generating blocks at a high
speed; (ii) it may be the case that honest validators do not
get enough bandwidth to share their blocks with others –
leading to potential censorship.
To alleviate these issues, a fourth step provides Chain

Quality by imposing restrictions on when blocks may be
created by validators and at what rate. Validators annotate
Mempool blocks with rounds and require a new block to
contain at least a quorum of unique certificates from the
preceding round. As a result, a fraction of honest validators’
blocks is included in the causal history of all proposals. Ad-
ditionally, this means that validators are not permitted to

3



advance a Mempool round before at least some honest valida-
tors have finished the previous round, preventing flooding.
The final fifth design step is that of enabling scale-out

through scale-out within a single trust domain. Instead of
having a single machine creating Mempool blocks, multi-
ple worker machines per validator can share Mempool sub-
blocks, called batches. One primary integrates references to
them in Mempool primary blocks. This enables validators to
commit a mass of computational, storage, and networking
resources to the task of sharing transactions–allowing for
quasi-linear scaling.

Narwhal is the culmination of the above five design steps,
evolving the basic Mempool design to a robust and perfor-
mant data dissemination and availability layer. Narwhal can
be used to off-load the critical path of traditional consen-
sus protocols such as HotStuff or leverage the containment
property to perform fully asynchronous consensus.We next
study the Narwhal in more detail.

2.3 Engineering challenges

Narwhal builds a causal history of transaction blocks (a DAG)
provided by validators over time using fully asynchronous
reliable broadcast primitives. The first engineering challenge
for Narwhal comes once again from the mismatch of theo-
retical models versus practical systems and is that of perfect-
point-to-point links. The theoretical assumption is that mes-
sages are eventually delivered. That is, the source will keep
sending the message (even if the TCP connection drops!)
until the receiver acknowledges reception. This requires in-
finite memory buffers, something we want to avoid in our
implementation. To resolve this issue we leverage the fault-
tolerance of the quorum-based system to design a different
theoretical abstraction of Quorum-based reliable broadcast
over imperfect links that relies on both push and pull of
messages and works with bounded memory (Section 4.1).
The second engineering challenge relates to the goal of

providing extremely high transaction throughput (>200,000
TPS) at an acceptably low latency. To increase throughput
we clearly require the use of more than one machine per
validator. Existing blockchain systems focus on sharding
in the permissionless setting [4, 27] where the adversary
controls every machine with equal probability. We however
assume that a validator can use multiple machines in a single
trust domain (e.g., a data center). This enables us to split the
validator logic into a single primary that handles the Nar-
whal protocol and multiple workers that share transactions
with remote validators, which enables a simpler “scale-out”
property. Additionally, this allows the reduction of latency
by letting the workers asynchronously stream transactions
instead of respecting the round-by-round structure.

3 Narwhal Core Design
In Section 3.1 we present the core protocol for a mempool
and then in Section 3.2 we show how to use it to get both

Block (r,i)

Certificate List

Transaction List

Signature of i

Certificate (r,i)

Block Hash

2f+1 
signatures

Round r-1 Round r Round r+1

Blocks BlocksCertificatesCertificates

V
al

id
at

or
s

B
lo

ck
 S

tr
uc

tu
re

C
er

tif
ic

at
e

S
tr

uc
tu

re

Figure 2. Three rounds of building the mempool DAG. In round 𝑟 − 1 there
are enough (N-f) certified Blocks, hence validators start building pending
Blocks for round 𝑟 . To do so they include a batch of transactions as well as
𝑁 − 𝑓 references to the certified blocks at round 𝑟 − 1. Notice that there
can be pending blocks from any round, however, the DAG only points to
certified blocks from exactly one round before. This enables looking at the
DAG as a pacemaker [35] and using it to derive properties for consensus.
Once a validator has a ready block it broadcasts it to others to form a
certificate and then shares the certificate with all other validators that use
them to create blocks at round 𝑟 + 1.

a higher-throughput traditional consensus as well as a new
zero overhead asynchronous consensus protocol.

3.1 The Narwhal Mempool

The Narwhal Mempool is based on ideas from reliable broad-
cast [12] and reliable storage [2]. It additionally uses a Byzan-
tine fault-tolerant version of Threshold clocks [21] as a pace-
maker to advance rounds. An illustration of Narwhal opera-
tion, forming a block DAG, can be seen in Figure 2.

Each validatormaintains the current local round 𝑟 , starting
at zero. Validators continuously receive transactions from
clients and accumulate them into a transaction list (see Fig. 2).
They also receive certificates of availability for blocks at 𝑟
and accumulate them into a certificate list.
Once certificates for round 𝑟 − 1 are accumulated from

2𝑓 + 1 distinct validators, a validator moves the local round
to 𝑟 , creates, and broadcasts a block for the new round. Each
block includes the identity of its creator, and local round 𝑟 ,
the current list of transactions and certificates from 𝑟 −1, and
a signature from its creator. Correct validators only create a
single block per round.

4



The validators reliably broadcast [12] each block they cre-
ate to ensure integrity and availability of the block. For prac-
tical reasons we do not implement the standard push strategy
that requires quadratic communication, but instead use a
pull strategy to make sure we do not pay the communica-
tion penalty in the common case (we give more details in
Section 4.1). In a nutshell, the block creator sends the block
to all validators, who check if it is valid and then reply with
their signatures. A valid block must

1. contain a valid signature from its creator,
2. be at the local round 𝑟 of the validator checking it,
3. be at round 0 (genesis), or contain certificates for at

least 2𝑓 + 1 blocks of round 𝑟 − 1,
4. be the first one received from the creator for round 𝑟 .

If a block is valid the other validators store it and acknowl-
edge it by signing its block digest, round number, and cre-
ator’s identity. We note that condition (2) may lead to blocks
with an older logical time being dismissed by some valida-
tors. However, blocks with a future round contain 2𝑓 + 1
certificates that ensure a validator advances its round into
the future and signs the newer block. Once the creator gets
2𝑓 + 1 distinct acknowledgments for a block, it combines
them into a certificate of block availability , that includes the
block digest, current round, and creator identity. Then, the
creator sends the certificate to all other validators so that
they can include it in their next block.
The system is initialized through all validators creating

and certifying empty blocks for round 𝑟 = 0. These blocks do
not contain any transactions and are valid without reference
to certificates for past blocks.

Intuitions behind security argument. The existence of
the certificate of availability for a block, with 2𝑓 +1 signatures,
proves that at least 𝑓 + 1 honest validators have checked and
stored the block. Thus, the block is available for retrieval
when needed by the execution engine. Further, since honest
validators have checked the conditions before signing the
certificate, quorum intersection ensures Block-Availability
and Integrity (i.e., prevent equivocation) of each block. In
addition, since a block contains references to certificates
from the previous round, we get by an inductive argument
that all blocks in the causal history are certified and thus
all history can be later retrieved, satisfying causality. Fuller
security proofs for all properties of a mempool are provided
in Appendix A.1.

3.2 Using Narwhal for consensus

Figure 3 presents how Narwhal can be combined with an
eventually synchronous consensus protocol (top) to enable
high-throughput total ordering of transaction, whichwe elab-
orate on in Section 3.2.1; Narwhal can also be augmented
with a random coin mechanism to yield Tusk (Figure 3, bot-
tom), a high-performance asynchronous consensus protocol

Table 1. A comparison between Hotstuff and our protocols. We measure
lateny in RTTs (or certificates). Unstable Network is a network that allows
for one commit between periods of asynchrony. By optimal we mean the
throughput when all messages are delivered at the worse case schedule
normalized by the longest message delay.

HS Narwhal-HS Tusk

Average-Case
(Latency) 3 4 4

Worse-Case 𝑓
(Crashes Latency) 𝑂 (𝑛) 𝑂 (𝑛) 4

Asynchronous
(Latency) N/A N/A 7

Unstable Network
(Throughput) 1 block 2

3∗ optimal 2
3∗ optimal

Asynchronous
(Throughput) 0 0 2

3∗ optimal

we present in Section 3.2.2. Table 1 summarizes the theo-
retical comparison of vanilla Hotstuff with Narwhal-based
systems, which we validate in our evaluation.

3.2.1 Eventually synchronous consensus Established
consensus algorithms operating under partial synchrony,
such as Hotstuff [35] or LibraBFT [10], can leverage Nar-
whal to improve their performance. Such systems have a
leader who proposes a block of transactions that is certified
by other validators. Instead of proposing a block of trans-
actions, a leader can propose one or more certificates of
availability provided by Narwhal. Upon commit, the full
uncommitted causal history of blocks accessible from the
certificates is deterministically ordered and committed. Nar-
whal guarantees that given a certificate all validators see the
same causal history, which is itself a DAG over blocks. As
a result, any deterministic rule over this DAG leads to the
same total ordering of blocks for all validators, achieving
consensus. Additionally, thanks to the availability properties
of Narwhal all committed blocks can be later retrieved for
execution.

There are many advantages to leaders using Narwhal over
sending a block of transactions directly. Even in the absence
of failures, the leader broadcasting transactions leads to un-
even use of resources: the round leader has to use an enor-
mous amount of bandwidth, while bandwidth at every other
validator is underused. In contrast, Narwhal ensures bulk
transaction information is efficiently and evenly shared at all
times, leading to better network utilization and throughput.

A further advantage of using Narwhal is that the average
throughput remains theoretically perfect even when con-
sensus is not live for some period. Eventually-synchronous
consensus protocols cannot provide liveness during asyn-
chronous periods or when leaders are Byzantine. Therefore,
with a naive mempool implementation, overall consensus
throughput goes to zero during such periods. Narwhal, in

5



Narwhal
DAG 

mempool

C
lie

nt
 

Tr
an

sa
ct

io
ns

Partial 
Synchronous 
Consensus

State 
Machine 

Replication 
Execution

Random Shared 
Coin

Eventually 
Synchronous

Case 

Asynchronous
Case

Certificates

Garbage
Collection

Zero-message 
coin flips

Ordered
Transactions

Ordered
Transactions

Consensus

Bulk data download

Figure 3. Any consensus protocol can execute over the mempool by occa-
sionally ordering certificates to Narwhal blocks. Narwhal guarantees their
availability for the SMR execution. Alternatively, Narwhal structure can be
interpreted as an asynchronous consensus protocol with the (zero-message
cost) addition of a random-coin.

contrast, continues to share blocks and form certificates of
availability even under worst-case asynchronous networks,
so blocks are always certified with optimal throughput. Once
the consensus protocol manages to commit a digest, val-
idators also commit its causal history, leading to optimal
throughput even within periods of asynchrony. Neverthe-
less, an eventually synchronous protocol still forfeits liveness
during periods of asynchrony, leading to increased latency.
We show how to overcome this problem with Tusk.

3.2.2 Tusk: Narwhal for asynchronous consensus. In
this section, we present the design of Tusk, an asynchronous
consensus algorithm for Narwhal that remains live under
asynchrony and a large fraction of Byzantine validators.
It is well known that deterministic consensus is impos-

sible under full asynchrony [20]. Hence, our design uses a
common secure random coin to achieve consensus. A shared
random coin can be constructed from an adaptively secure
threshold signature scheme [11] for which key setup can also
be performed under full asynchrony [28]. Within Narwhal,
each party uses a key-share to compute a partial signature
on the round number and includes it into its block for that
round. To compute the shared randomness for a round 𝑟 ,
validators collect 2𝑓 + 1 shares from the blocks of round 𝑟
(which are required to advance to round 𝑟 +1), and aggregate
them to produce the deterministic threshold signature.

In a nutshell, Narwhal can be interpreted as a round-based
DAG of blocks of transactions. Due to the reliable broadcast
of each block, all honest validators eventually interpret the
same DAG (even in the presence of Byzantine validators).
We use the idea from VABA [3] to let the asynchronous
adversary commit to a communication schedule and then
leverage a perfect shared coin to get a constant probability
to agree on a useful work produced therein.
In Tusk, validators interpret every three rounds of the

Narwhal DAG as a consensus instance. The links in the blocks
of the first two rounds are interpreted as all-to-all message

exchanges and the third round2 produces a shared perfect
coin that is used to elect a unique block from the first round
to be the leader of the instance. The goal is to interpret the
DAG in away that, with a constant probability, safely commit
the leader of each instance. Once a leader is committed, its
entire causal history in the DAG can be safely totally ordered
by any deterministic rule.

The commit rule for Tusk is simple. A validator commits
a block leader 𝑏 of an instance 𝑖 if its local view of the DAG
includes at least 𝑓 + 1 nodes in the second round of instance
𝑖 with links to 𝑏. Figure 4 illustrates two rounds of Tusk (five
rounds of Narwhal): in round 3 an insufficient number of
blocks support the leader at round 1 (L1); in round 5 sufficient
blocks support the leader block at round 3 (L2) and as a result
both L1 and L2 are sequenced. A deterministic algorithm on
the sub-DAG causally defendant to L1 and then L2 is then
applied to sequence all blocks and transactions.

Note that since validators may have different local DAGs
at the time they interpret instance 𝑖 , some may commit 𝑏
while others do not. However, since any quorum of 2𝑓 + 1
nodes intersect with any quorum of 𝑓 + 1 nodes, we prove
in Appendix A.2 that:

Lemma 1. If an honest validator commits a leader block 𝑏
in an instance 𝑖 , then any leader block 𝑏 ′ committed by any
honest validator 𝑣 in future instances have a path to 𝑏 in 𝑣 ’s
local DAG.

To guarantee that honest validators commit the same block
leaders in the same order, we leverage the above lemma:
when the commit rule is satisfied for the leader of some
instance, we recursively go back to the last instance in which
we committed a leader, and for every instance 𝑖 in between
we check whether there is a path between the leader of the
current instance and the leader of 𝑖 . In case there is such a
path we commit the leader of instance 𝑖 before the leader of
the current instance. We use Lemma 1 to prove the following:

Lemma 2. Any two honest validators commit the same se-
quence of block leaders.

Once a validator commits a block leader it determinis-
tically commits all its causal history. By the Containment
property of the DAG and the fact the eventually all validators
have the same DAG (due to reliable broadcast), it is guaran-
teed that all honest validators agree on the total order.
As for termination, we use a combinatorial argument to

prove in Appendix A.2 that:

Lemma 3. For every instance 𝑖 there are at least 𝑓 + 1 blocks
in the first round of instance 𝑖 that satisfy the commit rule.

Therefore, since the adversary learns who is the leader
of an instance only after its first two rounds are fixed and
thus only after the 𝑓 + 1 blocks that satisfy the commit rule
2To improve latency we combine the third round with the first round of the
next instance.

6



r = 1 r = 2 r = 3 r = 4
r = 5

L1

L2

c = 1 c = 4
c = 3

Rounds

V
al

id
at

or
 B

lo
ck

s

Coin to determine the leader at r-2

Figure 4. Example of commit rule in Tusk. Every odd round has a coin
value that selects a leader of round 𝑟 − 2. If the leader has less than 𝑓 + 1
support (red) they are ignored, otherwise (blue) the algorithm searches
the causal DAG to commit all preceding leaders (including red) and totally
orders the rest of the DAG afterward.

are determined, there is a probability of at least 𝑓 +1
3𝑓 +1 > 1/3

to commit a leader in every instance even if the adversary
fully controls the network. In Appendix A.2 we prove the
following lemma:

Lemma 4. In expectation, Tusk commits a block leader every
7 rounds in the DAG under worst-case asynchronous adversary.

However, if we consider more realistic networks and ad-
versaries we get that Tusk has a much better latency. That is,
if the message delays are distributed uniformly at random
we prove that

Lemma 5. In expectation, Tusk commits a block leader every
4 rounds in the DAG in networks with random message delays.

It is important to note here that neither the generation
of a random shared coin in every instance, nor the consen-
sus logic above introduce any additional messages over the
Mempool-only Narwhal. Therefore, the asynchronous con-
sensus protocol has zero message overhead, and the same
theoretical throughput as the Mempool protocol – but an
increased latency.
3.3 Garbage Collection

The final theoretical contribution of Narwhal paired with
any consensus algorithm is lifting one of themain roadblocks
to the adoption of DAG-based consensus algorithms (e.g.,
Hashgraph [9]), garbage collection3. This challenge stems
from the fact that a DAG is a local structure and although
it will eventually converge to the same version in all valida-
tors there is no guarantee on when this will happen. As a
result, validators may have to keep all messages (blocks and
certificates) readily accessible to (1) help their peers catch
up and (2) be able to process arbitrary old messages.
3A bug in our garbage collection led to exhausting 120GB of RAM inminutes
compared to 700MB memory footprint of Tusk

This is not a problem in Narwhal, where we impose a strict
round-based structure on messages. This restriction allows
validators to decide on the validity of a block only from
information about the current round (to ensure uniqueness
of signed blocks). Any other message, such as certified blocks,
carries enough information for validity to be established
only with reference to cryptographic verification keys. As
a result, validators in Narwhal are not required to store the
entire history to verify new blocks. However, note that if
two validators garbage collect different rounds then when a
new block 𝑏 is committed, validators might disagree on 𝑏’s
causal history and thus totally order different histories. To
this end, Narwhal leverages the properties of a consensus
protocol (such as the one we discuss in the previous section)
to agree on the garbage collection round. All blocks from
earlier rounds can be safely pushed to cold storage and all
later messages from previous rounds can be safely ignored.
All in all, validators in Narwhal can operate with a fixed

size memory. That is, 𝑂 (𝑛) in-memory usage on a validator,
containing blocks and certificates for the current round, is
enough to operate correctly. Since certificates ensure block
availability and integrity, storing and servicing requests for
blocks from previous rounds can be offloaded to a passive
and scalable distributed store or an external provider operat-
ing a Content Distribution Network (CDN) such as Cloud-
flare or S3. Protocols using the DAG content as a mempool
for consensus can directly access data from the CDN after
sequencing to enable execution of transactions using tech-
niques from deterministic databases [1].

4 Building a Practical System
In this section, we discuss two key practical challenges we
had to address in order to enable Narwhal to reach its full
theoretical potential.

4.1 Quorum-based reliable broadcast

In real-world reliable channels, like TCP, all state is lost and
re-transmission ends if a connection drops. Theoretical reli-
able broadcast protocols, such as double-echo [14], rely on
perfect point-to-point channels that re-transmit the same
message forever, or at least until an acknowledgment, requir-
ing unbounded memory to store messages at the application
level. Since some validators may be Byzantine, acknowledg-
ments cannot mitigate the denial-of-service risk.

To avoid the need for perfect point-to-point channels we
take advantage of the fault tolerance and the replication
provided by the quorums we rely on to construct the DAG.
As briefly described above, in the Narwhal implementation
each validator broadcasts a block for each round 𝑟 : Subject to
conditions specified, if 2𝑓 + 1 validators receive a block, they
acknowledge it with a signature. 2𝑓 +1 such signatures form a
certificate of availability, that is then shared, and potentially
included in blocks at round 𝑟 + 1. Once a validator advances

7



Round r

Primary
Blocks

Primary
Certificates

Worker 
Batches

C
lients

Figure 5. Scale-Out Architecture in Narwhal. Inside a single Trust domain,
there is one primary machine that handles the meta-data of building the
DAG and multiple worker machines (3 shown in the example) each one
streaming Transactions batches to other Trust domains. The hashes of the
batches are sent to the primary who adds them in a block as if they are the
actual transaction load of the DAG. Clients send transactions to worker
machines at all validators.

to round 𝑟 + 1 it stops re-transmission and drops all pending
undelivered messages for rounds smaller than 𝑟 + 1.
A certificate-of-availability does not guarantee the total-

ity property4 needed for reliable broadcast: it may be that
some honest nodes receive a block but others do not. How-
ever, if a block at round 𝑟 + 1 has a certificate-of-availability,
the totality property can be ensured for all 2𝑓 + 1 blocks
with certificates it contains for round 𝑟 . Upon, receiving a
certificate for a block at round 𝑟 + 1 validators can request
all blocks in its causal history from validators that signed
the certificates: since at least 𝑓 + 1 honest validators store
each block, the probability of receiving a correct response
grows exponentially after asking a handful of validators.
This pull mechanism is DoS resistant and efficient: At any
time only 𝑂 (1) requests for each block are active, and all
pending requests can be dropped after receiving a correct
response with the sought block. This happens within 𝑂 (1)
requests on average, unless the adversary actively attacks
the network links, requiring 𝑂 (𝑛) requests at most, which
match the worst-case theoretical lower bound [17].

The combination of block availability certifications, their
inclusion in subsequent blocks, and a ‘pull mechanism’ to
request missing certified blocks leads to a reliable broadcast
protocol. Storage for re-transmissions is bounded by the time
it takes to advance a round and the time it takes to retrieve
a certified block – taking space bounded by 𝑂 (𝑛) in the size
of the quorum (with small constants).

4.2 Scale-Out Validators

In a consensus system all correct validators eventually need
to receive all sequenced transactions. Narwhal, like any other
4The properties of reliable broadcast are Validity, No duplication, Integrity,
Consistency, and Totality (see page 112 and 117 of [14]).

mempool, is therefore ultimately limited by the bandwidth,
storage, and processing capabilities of a single validator.
However, a validator is a unit of authority and trust, and
does not have to be limited to employing the resources of a
single computer. We, therefore, adapt Narwhal to efficiently
utilize resources of many computers per validator, to achieve
a scale-out architecture.

Core Scale-Out Design.We adapt Narwhal to follow a sim-
ple primary-worker architecture as seen in Figure 5. We
split the protocol messages into transaction data and meta-
data. Transferring and storing transaction data is an ‘embar-
rassingly parallel’ process: A load balancer ensures trans-
actions data are received by all workers at a similar rate; a
worker then creates a batch of transactions, and sends it to
the worker node of each of the other validators; once an ac-
knowledgment has been received by a quorum of these, the
cryptographic hash of the batch is shared with the primary
of the validator for inclusion in a block.
The primary runs the Narwhal protocol as specified, but

instead of including transactions into a block, it includes
cryptographic hashes of its own worker batches. The valida-
tion conditions for the reliable broadcast at other validators
are also adapted to ensure availability: a primary only signs
a block if the batches included have been stored by its own
workers. This ensures all data referred to by a certificate of
availability can be retrieved.

A pull mechanism has to be implemented by the primary
to seek missing batches: upon receiving a block that contains
such a batch, the primary instructs its worker to pull the
batch directly from the associated worker of the creator of
the block. This requires minimal bandwidth at the primary.
The pull command only needs to be re-transmitted during the
duration of the round of the block that triggered it, ensuring
only bounded memory is required.

Streaming. Primary blocks are much smaller when hashes
of batches instead of transactions are included. Workers
constantly create and share batches in the background. Small
batches, in the order of a few hundred to a few thousand
transactions (approximately 500KB), ensure transactions do
not suffer more than some maximum latency. As a result,
most of the batches are available to other validators before
primary blocks arrive. This reduces latency since (1) there
is less wait time from receiving a primary block to signing
it and (2) while waiting to advance the round (since we still
need 2𝑓 + 1 primary blocks) workers continue to stream new
batches to be included in the next round’s block.

Future Bottlenecks. At high transaction rates, a validator
may increase capacity through adding more workers, or
increasing batch sizes. Yet, eventually, the size of the primary
blocks will become the bottleneck, requiring a more efficient
accumulator such as a Merkle Tree root batch hashes. This
is a largely theoretical bottleneck, and in our evaluation we

8



never managed to observe the primary being a bottleneck.
As an illustration: a sample batch size of 1,000 transactions
of 512B each, is 512KB. The batch hash within the primary
block is a minuscule 32B and 8B for meta-data (worker ID), i.e.
40B. This is a volume reduction ratio of 1:12, and we would
need about 12,000 workers before the primary handles data
volumes similar to a worker. So we leave the details of more
scalable architectures as distant future work.

5 Implementation
We implement a networked multi-core Narwhal validator in
Rust, using Tokio5 for asynchronous networking, ed25519-
dalek6 for elliptic curve based signatures. Data-structures are
persisted using RocksDB7. We use TCP to achieve reliable
point-to-point channels, necessary to correctly implement
the distributed system abstractions. We keep a list of mes-
sages to be sent between peers in memory and attempt to
send them through persistent TCP channels to other peers.
In case TCP channels are drooped we attempt to re-establish
them and attempt again to send stored messages. Eventually,
the primary or worker logic establishes that a message is
no more needed to make progress, and it is removed from
memory and not re-sent – this ensures that the number of
messages to unavailable peers does not become unbounded
and a vector for Denial-of-Service. The implementation is
around 4,000 LOC and a further 2,000 LOC of unit tests. We
are open sourcing the Rust implementation, Amazon web
services orchestration scripts, benchmarking scripts, and
measurements data to enable reproducible results8.

We evaluate both Tusk (Section 3.2.2) andHS-over-Narwhal
(Section 3.2.1). Additionally, to have a fair comparison we
implement Hotstuff, but unlike the original paper we (i) add
persistent storage in the nodes (since we are building a fault-
tolerant system), (ii) evaluate it in aWAN, and (iii) implement
the pacemaker module that is abstracted away following the
LibraBFT specification [10]. We specify two versions of Hot-
Stuff (HS). First ‘baseline-HS’ implements the standard way
blockchains (Bitcoin or Libra) disseminate single transac-
tions on the gossip/broadcast network. Second Batched-HS
implements the first step of Section 2.2 meaning that val-
idators broadcast blocks instead of transactions out of the
critical path and the leader proposes hashes of batches to
amortize the cost of the initial broadcast. The goal of this
version is to show that a straightforward solution already
gives benefits in a stable network but is not robust enough
for a real deployment.

5https://tokio.rs
6https://github.com/dalek-cryptography/ed25519-dalek
7https://rocksdb.org
8https://github.com/novifinancial/mempool-research

6 Evaluation
We evaluate the throughput and latency of our implemen-
tation of Narwhal through experiments on AWS. We partic-
ularly aim to demonstrate that (i) Narwhal as a Mempool
has advantages over the existing simple Mempool as well as
straightforward extensions of it and (ii) that the scale-out is
effective, in that it increases throughput linearly as expected.
Additionally, we want to show that (iii) Tusk is a highly
performing consensus protocol that leverages Narwhal to
maintain high throughput when increasing the number of
validators (proving our claim that message complexity is
not that important), as well as that Narwhal, provides (iv)
robustness when some part of the system inevitably fail or
suffer attacks. For an accompanying theoretical analysis of
these claims see Table 1.
We deploy a testbed on Amazon Web Services, using

m5.8xlarge instances across 5 different AWS regions: N.
Virginia (us-east-1), N. California (us-west-1), Sydney (ap-
southeast-2), Stockholm (eu-north-1), and Tokyo (ap-northeast-
1). They provide 10Gbps of bandwidth, 32 virtual CPUs (16
physical core) on a 2.5GHz, Intel Xeon Platinum 8175, and
128GB memory and run Linux Ubuntu server 20.04.

In the following sections, each measurement in the graphs
is the average of 2 runs, and the error bars represent one
standard deviation. Our baseline experiment parameters are:
4 validators each running with a single worker, a block size
of 1,000 transactions, a transaction size of 512B, and one
benchmark client per worker submitting transactions at a
fixed rate for a duration of 5 minutes. We then vary these
baseline parameters through our experiments to illustrate
their impact on performance. When referring to latency, we
mean the time elapsed from when the client submits the
transaction to when the transaction is committed by the
leader that proposed it as part of a block. We measure it by
tracking sample transactions throughout the system.

6.1 Narwhal as a Mempool

The results of our first set of experiments can be seen in
Figure 6. First, we analyze the baseline and batched HS:

Baseline HS: The performance of the baseline HS proto-
col (see Figure 6, Baseline-HS lines, in the left bottom corner),
with a naive mempool as originally proposed, is quite low.
With either 10 or 20 validators throughput never exceeds
1,800 tx/s, although latency at such low throughput is very
good at around 1 second. Such surprisingly low numbers are
comparable to other works [5], who find HS performance
to be 3,500 tx/s on LAN without modifications such as only
transmitting hashes [34]. Performance evaluations [37] of
LibraBFT [10] that uses Baseline HS, report throughput of
around 500 tx/s.

Batched HS: We summarize in Figure 6 the performance
of Batched HS without faults (see Batched HS lines): maxi-
mum throughput we observe is 80,000 tx/s for a committee of

9

https://tokio.rs
https://github.com/dalek-cryptography/ed25519-dalek
https://rocksdb.org
https://github.com/novifinancial/mempool-research


0k 20k 40k 60k 80k 100k 120k 140k 160k
Throughput (tx/s)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

La
te

nc
y 

(s
)

Tusk (4) 
Tusk (10) 
Tusk (20) 

Narwhal-HS (4) 
Narwhal-HS (10) 
Narwhal-HS (20) 

Batched-HS (4) 
Batched-HS (10) 
Batched-HS (20) 

Baseline-HS (10) 
Baseline-HS (20) 

Figure 6.Comparative throughput-latency performance for the novel Narwhal-HotStuff, Tusk, batched-HotStuff and the baseline HotStuff.WANmeasurements
with 10 or 20 validators, using 1 worker collocated with the primary. No validator faults, 500KB max. block size and 512B transaction size.

10 nodes, and lower (up to 50,000 tx/s) for a larger committee
of 20. Latency before saturation is consistently below or at
2 seconds. This almost 20x performance increase compared
to baseline HS is the first proof that decoupling transaction
dissemination from the critical path of consensus is the key
to blockchain scalability.

Narwhal HS: The advantage of Narwhal and causality is
illustrated by the Narwhal-HS lines. They show the through-
put-latency characteristics of using the Narwhal mempool
with HS, for different committee sizes, and 1 worker col-
located with each validator. We observe that it achieves
170,000 tx/sec at a latency of around 2.5 seconds similar
to the Batched HS latency. This validates the benefit of sep-
arating mempool from consensus, with mempool largely
affecting the throughput and consensus affecting latency.
The counter-intuitive fact that throughput increases with
the committee size is due to the worker’s implementation not
using all resources (network, disk, CPU) optimally. Therefore,
more validators and workers lead to increased multiplexing
of resource use and higher performance for Narwhal.

Tusk: Finally, the Tusk lines illustrate the latency-through-
put relation of Tusk for various committee sizes, and 1worker
collocated with the primary per validator. We observe a sta-
ble latency at around 3.5 secs for all committee sizes as well
as a peak throughput at 140,000 tx/sec for 20 validators. This
is by far the most performant fully asynchronous consensus
protocol (see Section 7) and only slightly worse thanNarwhal
HS. The difference in reported latency compared to theory
is that (i) we not only put transactions in the blocks of the
first round of a consensus instance but in all rounds, which
increases the expected latency by 0.5 rounds and (ii) syn-
chronization is conservative, to not flood validators, hence it
takes slightly longer for a validator to collect the full causal
graph and start the total ordering.

6.2 Scale-Out using many workers.

To fully evaluate the scalability of Narwhal, we implement
each worker and primary on a dedicated instance. For ex-
ample, a validator running with 4 workers is implemented
on 5 machines (4 workers + the primary). The workers are
in the same data center as their primary, and validators are
distributed over the 5 data centers over a WAN.

100k 200k 300k 400k 500k 600k 700k
Throughput (tx/s)

0

2

4

6

8

Cl
ie

nt
 la

te
nc

y 
(s

)

Narwhal-HS - 4 workers
Narwhal-HS - 7 workers
Narwhal-HS - 10 workers

Tusk - 4 workers
Tusk - 7 workers
Tusk - 10 workers

0

100

200

300
Th

ro
ug

hp
ut

 (M
B/

s)

0

100

200

300
Th

ro
ug

hp
ut

 (M
B/

s)

2 4 6 8 10
Workers per validator

0k

200k

400k

600k

Th
ro

ug
hp

ut
 (t

x/
s)

Narwhal-HS - Max: 4.0 s 
Narwhal-HS - Max: 10.0 s 

Tusk - Max: 4.0 s 
Tusk - Max: 10.0 s 

Figure 7. Tusk and HS with Narwhal latency-throughput graph for 4 val-
idators and different number of workers. The transaction and batch sizes
are respectively set to 512B and 1,000 transactions.

The top figure at Figure 7 illustrates the latency-throughput
graph of Narwhal HS and Tusk for a various number of
workers per authority whereas the bottom figure shows the
maximum achievable throughput under various service level

10



objectives. As expected, the deployments with a large num-
ber of workers saturate later while they all maintain the
same latency, proving our claim that the primary is far from
being saturated even with 10 workers concurrently serving
hashes of batches. Additionally, on the SLO graph, we can
see the linear scaling as the throughput is close to:

(#workers) ∗ (throughput for one worker)

6.3 Performance under Faults.

Figure 8 depicts the performance of all systems when a com-
mittee of 10 validators suffers 1 or 3 crash-faults (the maxi-
mum that can be tolerated). Both baseline and batched Hot-
Stuff suffer a massive degradation in throughput as well as a
dramatic increase in latency. For three faults, baseline Hot-
Stuff throughput drops 5x (from a very low throughput of
800 tx/s to start with) and latency increases 40x compared
to no faults; batched Hotstuff throughput drops 30x (from
80k tx/sec to 2.5k tx/sec) and latency increases 15x.

0k 20k 40k 60k 80k 100k 120k 140k
Throughput (tx/s)

0.0

10.0

20.0

30.0

40.0

La
te

nc
y 

(s
)

Tusk (1 faulty)
Tusk (3 faulty)
Narwhal-HS (1 faulty)
Narwhal-HS (3 faulty)

Batched-HS (1 faulty)
Batched-HS (3 faulty)
Baseline-HS (1 faulty)
Baseline-HS (3 faulty)

Figure 8. Comparative throughput-latency under faults. WAN measure-
ments with 10 validators, using 1 worker collocated with the primary. One
and three faults, 500KB max. block size and 512B transaction size.

In contrast, Tusk and Narwhal-HotStuff maintain a good
level of throughput: the underlying Mempool design con-
tinues collecting and disseminating transactions despite the
faults, and is not overly affected by the faulty validators. The
reduction in throughput is in great part due to losing the
capacity of faulty validators. As predicted by theory, Tusk’s
latency is the least affected by faulty nodes, committing in
less than 5 sec under 1 fault, and less than 8 sec under 3 faults.
The increase in latency is due to the elected block being ab-
sent more often. Narwhal-HotStuff exhibits a higher latency,
but surprisingly lower than the baseline or batched variants,
at less than 10 sec for 1 fault, and around 15 sec for 3 faults
(compared to 35-40 sec for baseline or batched). We con-
jecture this is due to the very low throughput requirements
placed on the protocol when combined with Narwhal, as well
as the fact that the first successful commit commits a large
fraction of recent transactions thanks to the 2/3-Causality.

7 Related work & Limitations

7.1 Performance

Widely-used blockchain systems such as Tendermint, pro-
vide 5k tx/sec [13]. However, performance under attack is
much contested. Early work suggests that specially crafted
attacks can degrade the performance of PBFT consensus
systems massively [6], to such a lower performance point
that liveness guarantees are meaningless. Recent work tar-
geting PBFT in Hyperledger Fabric [7] corroborates these
results [32] and shows latency grows from a few seconds to a
few hundred seconds, just through blocks being delayed. Han
et al. [24] report similar dramatic performance degradation
in cases of simple node crash failure for a number of quorum
based systems namely Hyperledger Fabric, Ripple and Corda.
In contrast, we demonstrate that Narwhal combined with
a traditional consensus mechanism, such as HotStuff main-
tains its throughput under attack, with increased latency.
Mir-BFT [34], is the most performant variant of PBFT

available. For transaction sizes of about 500B (similar to our
benchmarks), the peak performance achieved on a WAN
for 20 validators is around 80,000 tx/sec under 2 seconds –
a performance comparable to our baseline HotStuff with a
batched mempool. Impressively, this throughput decreases
only slowly for large committees up to 100 nodes (at 60,000
tx/sec). Faults lead to throughput dropping to zero for up to
50 seconds, and then operation resuming after a reconfigura-
tion to exclude faulty nodes. Tusk’s single worker configura-
tion for larger committees offers slightly higher performance
(a bit less than 2x), but at double the latency. However, Tusk
with multiple workers allows 9x better throughput, and is
much less sensitive to faults.
We note that careful engineering of the mempool, and

efficient transaction dissemination, seems crucial to achiev-
ing high-throughput consensus protocols. Recent work [5],
benchmarks crash-fault and Byzantine protocols on a LAN,
yet observes orders of magnitude lower throughput than this
work or Mir-BFT on WAN: 3,500 tx/sec for HotStuff and 500
tx/sec for PBFT. These results are comparable with the poor
baseline we achieved when operating HotStuff with a naive
best-effort broadcast mempool (see fig. 6).
In the blockchain world, scale-out has come to mean

sharding, but this only focuses in the case that every ma-
chine distrusts every other machine. However, in classic
data-center setting there is a simpler scale-out solution be-
fore sharding, that of specializing machines, which we also
use. In this paper we do not deal with sharding since our con-
sensus algorithm can obviously interface with any sharded
blockchain [4, 8, 27, 36].

7.2 Asynchronous Consensus & Tusk

In the last 5 years the search of practical asynchronous con-
sensus has captured the community [18, 23, 30, 33], because

11



of the high robustness guarantees it promises. The most per-
formant one was Dumbo2 [23] , which achieves a throughput
of 5,000 tx/sec for an SLO of 5 seconds in a setting of 8 nodes
in WAN with transaction size of 250B. However, despite the
significant improvement, the reported numbers do not realize
the hope for a system that can support hundreds thousands
of tx/sec We believe that by showing a speedup of 20X over
Dumbo2, Tusk finally proves that asynchronous Byzantine
consensus can be highly efficient and thus a strong candidate
for future scalable deployed Blockchains.

The most closely related work to Tusk is DAG-Rider [25],
which is a theoretical concurrent work on the Byzantine
Atomic Broadcast problem. They use a DAG structure that
resembles ours and have the same asymptotic worse-case
analysis. Moreover, their theoretical security argument sup-
ports our safety claims. As for liveness, Tusk has a lower
number of rounds in the common case due to an optimistic
commit rule, but DAG-Rider has better worse-case round
complexity (if counted in block of the DAG). In addition,
DAG-Rider uses the notion of weak-links to achieve the even-
tual fairness property required by atomic broadcast, i.e., that
any block broadcast by an honest party will be eventually
committed. In contrast, we do not guarantee eventual fair-
ness since in practice it requires supporting infinite buffers
(caused by asynchrony and faults), which can lead to serious
memory issues. All in all, we believe that DAG-Rider further
validates the design of Narwhal, since it would take less than
200 LOC to implement DAG-Rider over Narwhal.

7.3 DAG-based Communication & Narwhal

The directed acyclic graph (DAG) data-structure as a sub-
strate for capturing the communication of secure distributed
systems in the context of Blockchains has been proposed
multiple times. The layered structure of our DAG has also
been proposed in the crash fault setting by Ford [21], it is
however, embedded in the consensus protocol and does not
leverage it for batching and pipelining. Hashgraph [9] em-
beds an asynchronous consensus mechanism onto a DAG of
degree two, without a layered Threshold Clock structure. As
a result the logic for when older blocks are no more needed
is complex and unclear, and garbage collecting them difficult
– leading to potentially unbounded state to decide future
blocks. In addition, they use local coins for randomness,
which can potentially lead to exponential latency. Blockma-
nia [16] embeds a single-decision variant of PBFT [15] into a
non layered DAG leading to a partially synchronous system,
with challenges when it comes to garbage collection – as any
past blocks may be required for long range decisions in the
future. Neither of these protocols use a clear decomposition
between lower level sharded availability, and a higher level
consensus protocol as Narwhal offers, and thus do not scale
out or offer clear ways to garbage collect old blocks.

7.4 Limitations

A limitation of any reactive asynchronous protocol, includ-
ing Narwhal and Tusk, is that slow authorities are indis-
tinguishable from faulty ones, and as a result the protocol
proceeds without them. This creates issues around fairness
and incentives, since perfectly correct, but geographically
distant authorities may never be able to commit transactions
submitted to them. This is a generic limitation of such pro-
tocols, and we leave the definition and implementation of
fairness mechanisms to future work. Nevertheless, we note
that we get 1/2-Chain Quality or at least 50% of all blocks are
made by honest parties, which to the best of our knowledge
the highest number any existing proposal achieves.
Further, Narwhal relies on clients to re-submit a transac-

tion if it is not sequenced in time, due to the leader being
faulty. An expensive alternative is to require clients to sub-
mit a transaction to 𝑓 + 1 authorities, but this would divide
the bandwidth of authorities by𝑂 (𝑛). This is too high a price
to pay, since a client submitting a transaction to a fixed 𝑘

number of authorities has a probability of including a cor-
rect one that grows very quickly in 𝑘 , at the cost of only
𝑂 (1) overhead. Notably, Mir-BFT uses an interesting trans-
action de-duplication technique based on hashing which we
believe is directly applicable to Narwhal in case such a fea-
ture is needed. Ultimately, we relegate this choice to system
designers using Narwhal.

8 Conclusion
We experimentally demonstrated the power of Narwhal and
Tusk. Narwhal is an advanced mempool enabling Hotstuff to
achieve throughput of 170, 000 tx/sec with under 2.5 seconds
latency, in a deployment of 20 geographically distributed
single-machine validators. Additionally, Narwhal enables
any quorum-based blockchain protocol to maintain perfect
throughput under periods of asynchrony or faults, as long
as the consensus layer is eventually live. Tusk leverages the
structure of Narwhal to achieve a throughput of 140, 000 TPS
with under 4 seconds latency. The scale-out design allows
this throughput to increase to hundreds of thousands TPS
without impact on latency.

In one sentence, Narwhal and Tusk irrefutably prove that
the main cost of large-scale blockchain protocols is not con-
sensus but the reliable transaction dissemination. Yet, dissem-
ination alone, without global sequencing, is an embarrass-
ingly parallelizable function, as we show with the scale-out
design of Narwhal.

Our work supports a rethinking in how distributed ledgers
and SMR systems are architected, towards pairing a mem-
pool, like Narwhal, to ensure high-throughput even un-
der faults and asynchrony, with a consensus mechanism
to achieve low-latency for fixed-size messages. Tusk demon-
strates that there exists a zero-message overhead consen-
sus for Narwhal, secure under full asynchrony. As a result,

12



quorum-based blockchains can scale to potentially millions
of transactions per second through scale-out for payments
or to build generic reliable systems through state machine
replication and smart contracts.

Acknowledgments
This work is funded by Novi, a Facebook subsidiary. We
also thank the Novi Research and Engineering teams for
valuable feedback, and in particular Mathieu Baudet, Dahlia
Malkhi, Andrey Chursin and Zekun Li for early discussions
that shaped this work.

References
[1] Daniel J Abadi and Jose M Faleiro. An overview of deterministic

database systems. Communications of the ACM, 61(9):78–88, 2018.
[2] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson,

Michael K. Reiter, and Jay J. Wylie. Fault-scalable byzantine fault-
tolerant services. In Andrew Herbert and Kenneth P. Birman, editors,
Proceedings of the 20th ACM Symposium on Operating Systems Princi-
ples 2005, SOSP 2005, Brighton, UK, October 23-26, 2005, pages 59–74.
ACM, 2005.

[3] Ittai Abraham, Dahlia Malkhi, and Alexander Spiegelman. Asymp-
totically optimal validated asynchronous byzantine agreement. In
Peter Robinson and Faith Ellen, editors, Proceedings of the 2019 ACM
Symposium on Principles of Distributed Computing, PODC 2019, Toronto,
ON, Canada, July 29 - August 2, 2019, pages 337–346. ACM, 2019.

[4] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn,
and George Danezis. Chainspace: A sharded smart contracts platform.
In 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The Inter-
net Society, 2018.

[5] Salem Alqahtani and Murat Demirbas. Bottlenecks in blockchain
consensus protocols. CoRR, abs/2103.04234, 2021.

[6] Yair Amir, Brian Coan, Jonathan Kirsch, and John Lane. Prime: Byzan-
tine replication under attack. IEEE transactions on dependable and
secure computing, 8(4):564–577, 2010.

[7] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin,
Konstantinos Christidis, Angelo De Caro, David Enyeart, Christo-
pher Ferris, Gennady Laventman, Yacov Manevich, Srinivasan Mu-
ralidharan, Chet Murthy, Binh Nguyen, Manish Sethi, Gari Singh,
Keith Smith, Alessandro Sorniotti, Chrysoula Stathakopoulou, Marko
Vukolic, Sharon Weed Cocco, and Jason Yellick. Hyperledger fab-
ric: a distributed operating system for permissioned blockchains. In
Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings of
the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April
23-26, 2018, pages 30:1–30:15. ACM, 2018.

[8] Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Watten-
hofer. Divide and scale: Formalization of distributed ledger sharding
protocols, 2021.

[9] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-01,
Tech. Rep, 2016.

[10] Mathieu Baudet, Avery Ching, Andrey Chursin, George Danezis,
François Garillot, Zekun Li, Dahlia Malkhi, Oded Naor, Dmitri Perel-
man, and Alberto Sonnino. State machine replication in the libra
blockchain. The Libra Assn., Tech. Rep, 2019.

[11] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. J. Cryptol., 17(4):297–319, 2004.

[12] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broad-
cast protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[13] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of
blockchains, 2016.

[14] Christian Cachin, Rachid Guerraoui, and Luís Rodrigues. Introduction
to reliable and secure distributed programming. Springer Science &
Business Media, 2011.

[15] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance
and proactive recovery. ACM Trans. Comput. Syst., 20(4):398–461, 2002.

[16] George Danezis and David Hrycyszyn. Blockmania: from block dags
to consensus. arXiv preprint arXiv:1809.01620, 2018.

[17] Danny Dolev and Rudiger Reischuk. Bounds on information exchange
for byzantine agreement. JACM, 1985.

[18] Sisi Duan, Michael K. Reiter, and Haibin Zhang. BEAT: asynchronous
BFT made practical. In David Lie, Mohammad Mannan, Michael
Backes, and XiaoFeng Wang, editors, Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages 2028–2041. ACM,
2018.

[19] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert van Renesse.
Bitcoin-ng: A scalable blockchain protocol. In Katerina J. Argyraki
and Rebecca Isaacs, editors, 13th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA,
March 16-18, 2016, pages 45–59. USENIX Association, 2016.

[20] Michael J. Fischer, Nancy A. Lynch, andMike Paterson. Impossibility of
distributed consensus with one faulty process. J. ACM, 32(2):374–382,
1985.

[21] Bryan Ford. Threshold logical clocks for asynchronous distributed
coordination and consensus. arXiv preprint arXiv:1907.07010, 2019.

[22] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings,
Part II, volume 9057 of Lecture Notes in Computer Science, pages 281–
310. Springer, 2015.

[23] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo: Faster asynchronous BFT protocols. In Jay Ligatti,
Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, pages 803–818. ACM, 2020.

[24] Runchao Han, Gary Shapiro, Vincent Gramoli, and Xiwei Xu. On the
performance of distributed ledgers for internet of things. Internet of
Things, 10:100087, 2020.

[25] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All you need is DAG. In Proceedings of the 40th Symposium
on Principles of Distributed Computing, PODC ’21, New York, NY, USA,
2021. Association for Computing Machinery.

[26] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail
Khoffi, Linus Gasser, and Bryan Ford. Enhancing bitcoin security
and performance with strong consistency via collective signing. In
25th USENIX Security Symposium (USENIX Security 16), pages 279–296,
Austin, TX, August 2016. USENIX Association.

[27] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas
Gailly, Ewa Syta, and Bryan Ford. Omniledger: A secure, scale-out,
decentralized ledger via sharding. In 2018 IEEE Symposium on Secu-
rity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco,
California, USA, pages 583–598. IEEE Computer Society, 2018.

[28] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman.
Asynchronous distributed key generation for computationally-secure
randomness, consensus, and threshold signatures. In Jay Ligatti, Xin-
ming Ou, Jonathan Katz, and Giovanni Vigna, editors, CCS ’20: 2020
ACM SIGSAC Conference on Computer and Communications Security,
Virtual Event, USA, November 9-13, 2020, pages 1751–1767. ACM, 2020.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[30] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The
honey badger of bft protocols. In Proceedings of the 2016 ACM SIGSAC

13



Conference on Computer and Communications Security, pages 31–42,
2016.

[31] Satoshi Nakamoto. Bitcoin whitepaper, 2008.
[32] Thanh Son Lam Nguyen, Guillaume Jourjon, Maria Potop-Butucaru,

and Kim Loan Thai. Impact of network delays on hyperledger fabric.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 222–227. IEEE, 2019.

[33] Alexander Spiegelman, Arik Rinberg, and Dahlia Malkhi. Ace: Ab-
stract consensus encapsulation for liveness boosting of state machine
replication. In OPODIS, 2020.

[34] Chrysoula Stathakopoulou, Tudor David, and Marko Vukolic. Mir-bft:
High-throughput BFT for blockchains. CoRR, abs/1906.05552, 2019.

[35] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and
Ittai Abraham. Hotstuff: BFT consensus with linearity and responsive-
ness. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019,
Toronto, ON, Canada, July 29 - August 2, 2019, pages 347–356. ACM,
2019.

[36] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapid-
chain: Scaling blockchain via full sharding. In David Lie, Mohammad
Mannan, Michael Backes, and XiaoFeng Wang, editors, Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages
931–948. ACM, 2018.

[37] Jiashuo Zhang, Jianbo Gao, Zhenhao Wu, Wentian Yan, Qize Wu,
Qingshan Li, and Zhong Chen. Performance analysis of the libra
blockchain: An experimental study. CoRR, abs/1912.05241, 2019.

A Security Analysis
A.1 DAG

Lemma A.1. The DAG protocol satisfies Integrity.

Proof. The lemma follows from the assumption on no hash
collusion. That is, it is impossible to find two blocks that are
associated with the same digest.

□

Lemma A.2. The DAG protocol satisfies Block-Availability.

Proof. Validators locally store every block they sign. A𝑤𝑟𝑖𝑡𝑒 (𝑑, 𝑏)
operation completer 𝑏 is certified. Since 2𝑓 + 1 signatures are
required for a block to be certified, we get that at least 𝑓 + 1
honest validators store the block 𝑏 associated with the digest
𝑑 . A 𝑟𝑒𝑎𝑑 (𝑑) operation query all validators and whit for 𝑛− 𝑓

to reply. Therefore, any𝑤𝑟𝑖𝑡𝑒 (𝑏, 𝑑) operation invoked after
𝑤𝑟𝑖𝑡𝑒 (𝑑,𝑏) completes will get a reply from at least 1 honest
party that stores 𝑏 and the lemma follows.

□

LemmaA.3. The DAG protocol satisfies 1/2-Censorship-Resistance.

Proof. Since block refers to at least 2𝑓 + 1 from the previous
round, 𝐵 contains at least 2𝑓 + 1 blocks in each round. The
lemma follows since at most 𝑓 of them were written by
byzantine validators.

□

Lemma A.4. The DAG protocol satisfies 1/3-Causality.

Proof. There are at most 3𝑓 + 1 written blocks associated
with each round. Let 𝑟 be the round in which 𝑏 was certified,

the lemma follows immediately from the fact that 𝐵 contains
at most 2𝑓 + 1 blocks from rounds smaller than 𝑟 .

□

Lemma A.5. The DAG protocol satisfies Containment.

Proof. Every block contains its author and round number
and honest validators do not sign two different blocks in the
same round from the same author. Therefore, since 2𝑓 + 1
signatures are required to certify a block, two blocks in the
same round from the same author can never be certified.
Thus, for every certified block that honest validators locally
store, they always agree on the set of digest in the block
(references to blocks from the previous round). The lemma
follows by recursively applying the above argument starting
from the block 𝑏 ′.

□

A.2 Asynchronous consensus

Safety.

Lemma 1. If an honest validator commits a leader block 𝑏
in an instance 𝑖 , then any leader block 𝑏 ′ committed by any
honest validator 𝑣 in future instances have a path to 𝑏 in 𝑣 ’s
local DAG.

Proof. An honest validator commits a block 𝑏 in a instance
𝑖 only if there are at least 𝑓 + 1 nodes in the second round
of the instance with links to 𝑏. Since every block has at
least 2𝑓 + 1 links to blocks in the previous round, we get
by quorum intersection that every block in the first round
of instance 𝑖 + 1 has a path to 𝑏. Therefore, with a simple
inductive argument we can show that that every block in
every round in instances higher than 𝑖 have paths to 𝑏. The
lemma follows.

□

Lemma A.6. Let 𝑏 and 𝑏 ′ be the block leaders of instances 𝑖
and 𝑖 ′, respectively. If an honest validator 𝑣 commits𝑏 before𝑏 ′,
then no honest validator commits 𝑏 ′ without first committing
𝑏.

Proof. Since 𝑣 commits 𝑏 before 𝑏 ′, then there is no path
between 𝑏 to 𝑏 ′ in the DAG. Assume by a way of contradic-
tion that some honest validator 𝑣 ′ commits 𝑏 ′ before 𝑏. Thus,
there is no path between 𝑏 to 𝑏 ′ in the DAG. However, by
Lemma 1, one of the paths must exists. A contradiction.

□

Lemma A.6 immediately implies the following:

Lemma 2. Any two honest validators commit the same se-
quence of block leaders.

Liveness.

Lemma 3. For every instance 𝑖 there are at least 𝑓 + 1 blocks
in the first round of instance 𝑖 that satisfy the commit rule.

14



Proof. Consider any set 𝑆 of 2𝑓 +1 blocks in the second round
of instance 𝑖 . The total number of links they have to the first
round is (2𝑓 +1) (2𝑓 +1) = 4𝑓 2+4𝑓 +1. The number of possible
blocks in the first round of the instance is 3𝑓 + 1. Therefore,
even if every block in the first round has 𝑓 links from blocks
in 𝑆 , there are still 4𝑓 2 + 4𝑓 + 1 − 𝑓 (3𝑓 + 1) = 𝑓 2 + 3𝑓 + 1
links. The maximum number of links from blocks in 𝑆 to
each block in the first round is 2𝑓 + 1. Thus, there are at least
𝑓 2+3𝑓 +1
2𝑓 +1−𝑓 ≥ 𝑓 + 1 blocks in the first round such that each one
of them has at least 𝑓 + 1 links from block in 𝐵.

□

Lemma 4. In expectation, Tusk commits a block leader every
7 rounds in the DAG under worst-case asynchronous adversary.

Proof. Consider any instance 𝑖 . By Lemma 3, there are at
least 𝑓 + 1 block in instance 𝑖 that satisfy the commit rule.
Since the adversary do not know the outcome of the coin
before these leaders are determined and since the coin is
uniformly distributed, we get that the probability to elect a
leader that satisfies the commit rule in instance 𝑖 is at least
1/3. Therefore, in expectation, a block leader is committed
every 3 instances. Every instance consists of 3 rounds, but
since we combine the last round of an instance with the first

of the next one, we get that, in expectation, Tusk commits a
block leader every 7 rounds in the DAG.

□

Lemma 5. In expectation, Tusk commits a block leader every
4 rounds in the DAG in networks with random message delays.

Proof. Consider an instance 𝑖 , let 𝑏𝑖 be the leader of instance
𝑖 and let 𝑆 be a set of 2𝑓 + 1 blocks in the second round
of instance 𝑖 . Messages delays are distributed uniformly at
random, and each block in 𝑆 includes references to blocks in
the first round of instance 𝑖 independently of other blocks in
𝑆 . Therefore, each block in 𝑆 includes a reference to 𝑏𝑖 with
probability of at least 2𝑓 +1

3𝑓 +1 ≥ 2/3. We next show that the
probability that at least 𝑓 + 1 nodes in 𝑆 include 𝑏𝑖 is 0.74. To
this end, we compute the probability for 𝑓 = 1 as for larger
𝑓 the probability is higher. The probability that at least 2
nodes out of the 3 nodes in 𝑆 include 𝑏𝑖 is 8

27 + 12
27 = 0.74.

Thus, for every instance, the probability to elect a leader that
satisfies the commit rule is at least 0.74. Thus, Tusk commits,
in expectation, a block leader every 4 rounds (or less for
𝑓 > 1) in the DAG.

□

15


	Abstract
	1 Introduction
	2 Overview
	2.1 System model, goals and assumptions
	2.2 Intuitions behind the Narwhal design 
	2.3 Engineering challenges

	3 Narwhal Core Design
	3.1 The Narwhal Mempool
	3.2 Using Narwhal for consensus
	3.3 Garbage Collection

	4 Building a Practical System
	4.1 Quorum-based reliable broadcast
	4.2 Scale-Out Validators

	5 Implementation
	6 Evaluation
	6.1 Narwhal as a Mempool
	6.2 Scale-Out using many workers.
	6.3 Performance under Faults.

	7 Related work & Limitations
	7.1 Performance
	7.2 Asynchronous Consensus & Tusk
	7.3 DAG-based Communication & Narwhal
	7.4 Limitations

	8 Conclusion
	References
	A Security Analysis
	A.1 DAG
	A.2 Asynchronous consensus


