
The Parity Ray Regularizer for Pacing in Auction Markets
Andrea Celli

∗

Bocconi University

Milan, Italy

andrea.celli2@unibocconi.it

Riccardo Colini-Baldeschi

Core Data Science, Meta

London, UK

rickuz@fb.com

Christian Kroer

Columbia University

New York, USA

christian.kroer@columbia.edu

Eric Sodomka

Core Data Science, Meta

London, UK

sodomka@fb.com

ABSTRACT

Budget-management systems are one of the key components of mod-

ern auction markets. Internet advertising platforms typically offer

advertisers the possibility to pace the rate at which their budget is

depleted, through budget-pacing mechanisms. We focus on multi-

plicative pacing mechanisms in an online setting in which a bidder

is repeatedly confronted with a series of advertising opportunities.

After collecting bids, each item is then allocated through a single-

item, second-price auction. If there were no budgetary constraints,

bidding truthfully would be an optimal choice for the advertiser.

However, since their budget is limited, the advertiser may want

to shade their bid downwards in order to preserve their budget

for future opportunities, and to spread expenditures evenly over

time. The literature on online pacing problems mostly focuses on

the setting in which the bidder optimizes an additive separable

objective, such as the total click-through rate or the revenue of the

allocation. In many settings, however, bidders may also care about

other objectives which oftentimes are non-separable. We study the

frequent case in which the utility of a (proxy) bidder depends on the

rewards obtained from items they are allocated, and on the distance

of the realized distribution of impressions from a target distribution.

We introduce a novel regularizer which can describe those distribu-

tional preferences, while keeping the problem tractable. We show

that this regularizer can be integrated into an existing online mirror

descent scheme with minor modifications, attaining the optimal

order of sub-linear regret compared to the optimal allocation in

hindsight when inputs are drawn independently, from an unknown

distribution. Moreover, we show that our approach can easily be in-

corporated in standard existing pacing systems that are not usually

built for this objective. The effectiveness of our algorithm in inter-

net advertising applications is confirmed by numerical experiments

on real-world data.
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1 INTRODUCTION

In the last decade, the spending on Internet advertising has grown

dramatically, reaching more than $130 billion in the United States

in 2019 [23]. One of the drivers of this rapid growth has been

the success of auction markets as a practical mechanism to match

bidders (i.e., advertisers) to their target audience at an appropriate

price [22, 40]. In this type ofmechanisms, advertisers usually specify

a targeting rule to target a certain population of users, and they

are asked to bid on events of interest such as an impression, a

click, a conversion or a video view. For each ad slot, the mechanism

determines a winning advertiser, which is subsequently given the

chance to show an impression and potentially generate the event

of interest.

Auction markets are typically operationalized through simple

mechanisms that can be effectively implemented at scale, and that

simplify the interaction between advertisers and the platform. A

common paradigm tomanage large amounts of repeated ad auctions

is for the platform to operate a proxy bidder on behalf of each

advertiser. The advertisers communicate the maximum bid for the

event of interest, their targeting criteria, and their overall budget

for their campaigns to the proxy bidder. In real time, the proxy

bidder then constructs bids for each individual auction via these

parameters, as well as additional information computed by the

platform.

The complexity of the competitive interactions taking place be-

tween advertisers, the frequency of the decisions, and the intrinsic

uncertainties of the environment make budget management par-

ticularly challenging in this setting. An advertiser may lose out

on significant amounts of revenue if their budget is depleted too

early (thereby missing potentially valuable future bidding opportu-

nities), or if their budget it not fully depleted within the planned

https://doi.org/10.1145/3485447.3512061
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duration of the campaign. To solve this problem, platforms offer

advertisers the possibility to pace the rate at which their budget is

depleted, through a budget-pacing mechanism. The most common

pacing mechanisms modify the values of the bids within a series

of repeated auctions either by shading the bid appropriately (i.e.,

multiplicative pacing) [9, 18], or by determining a participation

probability through the toss of an appropriately weighted coin for

each auction (i.e., probabilistic pacing) [1, 9]. In this work, we focus

on the former type of budget-management mechanism. This choice

is motivated by the widespread adoption of this mechanisms in

large online advertising platforms. Specifically, we study an online

setting in which an advertiser is repeatedly confronted with a series

of advertising opportunities, one per iteration, allocated through a

second-price auction. If there were no budgetary constraints, bid-

ding truthfully (i.e., bidding their true valuation for an advertising

opportunity) would be an optimal choice for the advertiser. How-

ever, since their budget is limited, the advertiser may want to shade

their bid downwards in order to preserve their budget for future

opportunities.

The literature on online bidding and online pacing problems

mostly focuses on settings in which the bidder optimizes an ad-

ditively separable objective, such as the total click-through rate or

revenue of the allocation (see, e.g., [10, 14, 15, 18, 26, 31]). In many

settings, however, advertisers may also care about other objectives

which oftentimes are non-separable, and therefore not amenable to

traditional online learning techniques. Two notable exceptions are

the work by Agrawal and Devanur [2], which focuses on solving

general online stochastic convex programs with general concave

objectives and convex constraints, and the recent work by Balseiro

et al. [12], where the authors study online allocation problems with

non-separable objectives in settings such as fairness across advertis-

ers and load balancing.
1
We argue that another frequent objective,

which is oftentimes sought after by advertisers, is reaching a cer-

tain distribution of impressions over a target population of users.

Surprisingly enough, to the best of our knowledge, industry prac-

titioners don’t have at their disposal a practical way to solve this

problem. Consider, for example, the following real-world use cases:

an advertiser may want to enforce uniform sampling on a target

population for conducting unbiased surveys, to promote a business

based on a two-sided market by balancing their reach on users

belonging to “both sides of the market” (this is the case, for exam-

ple, of dating apps, and online marketplaces), or to perform online

outreach to a population of users. In the latter setting, Gelauff et al.

[28] showed that advertisers have to resort to complex segmenta-

tion strategies through subcampaigns to achieve a distribution of

conversions close to that of the overall adult population of a city.

Our contributions. The above application scenarios are captured

by the following utility model: the advertiser’s utility is the sum of

rewards accumulated during the repeated auctions, plus a penalty

term which depends on the distance of the realized distribution of

impressions from a target distribution, according to some given

distance function. We consider distributional preferences over the

advertising opportunities allocated to the advertiser, which are

characterized by a feature vector determining their category. We

consider a finite horizon model in which an advertiser participates

1
We devote Appendix A to a more in depth discussion of relevant previous works.

in a series of auctions. The advertiser has a fixed amount of non-

replenishable resources (i.e., a budget). We consider an incomplete

information model where, at each iteration, an item is drawn i.i.d.

from some unknown distribution and presented to the advertiser,

who has to compute a bid for the current item. Then, a second-price

auction is run and the advertiser observes their reward and budget

consumption. The advertiser does not get to observe the reward

functions and types of future requests until their arrival.We propose

a novel regularizer, which we call the parity ray regularizer, that can

be employed to model the advertiser’s distributional preferences

according to some specific distance function. We show that, if the

desired distance function satisfies some natural properties, the

regularized online pacing problem can be addressed by casting the

online mirror descent scheme by Balseiro et al. [12] to our setting.

The algorithm guarantees regret of order 𝑂 (𝑇 1/2), which optimal

in our stochastic setting. Moreover, we show that our framework

could easily be incorporated into standard existing pacing systems

that are not usually built for handling distributional preferences.

Finally, we empirically demonstrate the efficacy of our mechanism

on real-world data from a large Internet advertising company.

2 MULTIPLICATIVE PACING FOR AUCTION

MARKETS

We study the problem faced by a bidder (i.e., an advertiser) who

wishes to maximize their utility over a sequence of auctions that

occur over 𝑇 time steps. At each time 𝑡 = 1, . . . ,𝑇 an item (i.e., an

advertising opportunity to reach a user) appears, and an auction is

run in order to allocate it. We will assume that the item is allocated

via a single-item second-price auction, meaning that the highest bid

wins, and the winner pays the second-highest bid. At every time 𝑡 ,

the bidder observes their valuation 𝑣𝑡 for the item, submits a bid

𝑏𝑡 , and then observes the variable 𝑥𝑡 ∈ {0, 1} specifying whether
they won, and if they did win then they observe the price 𝑝𝑡 that

they paid for the item.

Without further restrictions, bidding in such a dynamic auction

setting would be straightforward: the bidder can simply bid their

true value, and the second-price auction ensures that this maxi-

mizes their utility. However, in practice, bidders usually have a

total budget 𝐵, and they wish to constrain their expenditure across

the 𝑇 auctions to be at most 𝐵. This complicates bidding even in

second-price auctions, because this budget constraint links all 𝑇

auctions together.
2
If we allow fractional allocations, then an omni-

scient budget-constrained bidder can be thought of as a fractional

knapsack packer: they now wish to order the𝑇 auctions by decreas-

ing bang-per-buck 𝑣𝑡/𝑝𝑡 , and grab items in this order until they

either deplete their budget, or they reach some item 𝑡 such that

𝑣𝑡/𝑝𝑡 ≤ 1 [18]. In practice, the bidder must decide their bids in

an online fashion: at time 𝑡 they only know their first 𝑡 valuations

(𝑣1, . . . , 𝑣𝑡 ), their past allocations up to time 𝑡 − 1, i.e., (𝑥1, . . . 𝑥𝑡−1),
as well as their past expenditures (𝑥1𝑝1, . . . , 𝑥𝑡−1𝑝𝑡−1). Thus, the
only information they have about the auction at time 𝑡 is their

valuation for the item, and they must adaptively smooth out their

2
Here, we assume that the bidder cannot manipulate future prices by bidding higher

when they lose, in order to encourage the depletion of the budget of other bidders.

This assumption is reasonable in large-scale markets, as we will discuss in Section 3.
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spending across the 𝑇 auctions, in order to satisfy their budget

constraint while maximizing utility.

The above problem of how to bid in such a setting has been stud-

ied extensively both from the perspective of an individual bidder, as

well as from a platform perspective. One popular approach in prac-

tice is to use a pacing multiplier 𝛼 ∈ [0, 1], which is then used to con-
struct each bid as 𝑏𝑡 = 𝛼𝑣𝑡 . Given a sequence of prices (𝑝1, . . . , 𝑝𝑇 ),
an optimal allocation can be achieved within the context of second-

price auctions by choosing 𝛼 such that the bidder spends their

budget exactly (assuming that the bidder can choose the fraction

that they wish to win on any items such that 𝛼𝑣𝑡 = 𝑝𝑡 ) [13, 18]. The

pacing multiplier can be adaptively controlled via online-learning

methods in order to guarantee asymptotic optimality in stochastic

environments [10, 14].

In the above, we presented the setting as if the individual bidder

controls their pacing parameter 𝛼 used in smoothing their expen-

diture. However, a second model which arises in practice is the

proxy-bidder setting. The proxy-bidder setting arises in online ad-

vertising, where advertisers often submit only a value per click,

budget, and targeting criteria to the platform. The platform then

performs budget smoothing on behalf of the advertiser. In that set-

ting, the proxy bidder refers to a bidder operated by the platform,

which is effectively a control algorithm that scales the parameter

𝛼 up or down, depending on whether the advertiser is on track to

spend their budget correctly across the given time frame. Equilibria

arising in the proxy-bidder setting have been studied in several

works (see, e.g., [9, 17, 18]).

3 PROBLEM DESCRIPTION

In this paper, we focus on the setting where we wish to smooth out

the expenditure of a single bidder, while the rest of the market be-

haves according to a stochastic model. In particular, we will assume

that valuations, prices, and item categories are generated i.i.d. from

an unknown distribution. In practice, valuations and categories

can be safely described as coming from a stochastic model. The

prices, however, typically come from the paced bids arising from

other bidders whom are also employing some budget-smoothing

technique. In small-scale settings where bidders react to the ex-

penditure of other bidders, these prices could behave adversarially

rather than stochastically. However, for large-scale markets, an

individual bidder has almost no impact on the prices of the overall

market, in which case stochastic behavior of the prices is a reason-

able assumption. This idea can be formalized, for example, via fluid

mean-field models such as the one given by Balseiro et al. [13].

The bidder can spend a budget 𝐵 over a sequence of auctions

within a finite time horizon 𝑇 . Let 𝒙 ∈ [0, 1]𝑇 be the allocation

vector for the bidder, and 𝑥𝑡 ∈ X𝑡 ⊆ [0, 1] be the allocation at time

𝑡 . Let 𝜌 ∈ R>0 be the per-iteration budget, which is a constant such

that 𝐵 = 𝑇𝜌 . Items can be of𝑚 different types or, equivalently, cate-

gories. The vector 𝒄𝑡 ∈ [0, 1]𝑚 specifies the categories of the item

being auctioned at time 𝑡 . At each iteration 𝑡 , the bidder receives

as input the tuple (𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 ) specifying the valuation for the item

𝑣𝑡 ∈ R≥0, its price 𝑝𝑡 ∈ R≥0, and its category vector 𝒄𝑡 . At each
𝑡 , the input tuple is generated i.i.d. from an unknown distribution

P ∈ ΔI
, where I is the set of all possible input tuples that can be

observed.
3
In the remainder of the paper we make the following

assumption on the regularity of inputs, which is easily satisfied in

practice.

Assumption 1. There exists 𝑣 ∈ R≥0 and 𝑝 ∈ R≥0 such that, for

any input tuple (𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 ) ∈ I in the support of P, it holds 𝑣𝑡 ≤ 𝑣

and 𝑝𝑡 ≤ 𝑝 .

Let 𝑓𝑡 : [0, 1] → R be the reward function at time 𝑡 such that,

for each 𝑥 ∈ X𝑡 ,

𝑓𝑡 (𝑥) := (𝑣𝑡 − 𝑝𝑡 )𝑥 . (1)

In the standard model of bidder’s utility (i.e., when distributional

preferences on categories are disregarded), the bidder is interested

in finding an online algorithm guaranteeing performance close to

that of the optimal solution in hindsight. In particular, this baseline

is the expected reward that the bidder would achieve by computing

the optimal allocation 𝒙 when the input sequence from 𝑡 = 1 to 𝑇

is known in advance. This amounts to solving the offline optimal

allocation problem for each possible realized input sequence, and

by taking expectations according to the realization probability spec-

ified by P. Formally, the value of the optimal allocation is defined

as follows

EP

[
max

𝒙 :𝑥𝑡 ∈X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) s.t.
𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 ≤ 𝑇𝜌
]
. (2)

4 PARITY RAY REGULARIZER

The question now is whether we can endow Equation (2) with

a practical way of taking bidder’s distributional preferences into

account. For simplicity, we assume that a type specifies a convex

combination over categories, that is, for any 𝑡 , the vector of real-

ized categories 𝒄𝑡 belongs to C := {𝒄 ∈ [0, 1]𝑚 :

∑
𝑖 𝑐𝑖 = 1}. This

assumption can be relaxed to a larger bounded set. Given a target

distribution over categories 𝒙̂ ∈ Δ𝑚 , we consider a setting where

the bidder is interested in steering their realized distribution of im-

pressions towards 𝒙̂ according to some distance function 𝐷 . Given

a time horizon 𝑇 , a sequence of types (𝒄𝑡 )𝑇𝑡=1
, and 𝒙̂ ∈ Δ𝑚 , the

bidder’s goal is to obtain a vector of allocations 𝒙 ∈ [0, 1]𝑇 such

that, for each 𝑖 ∈ [𝑚], ∑𝑇
𝑡=1

𝑐𝑡,𝑖𝑥𝑡/
∑𝑇
𝑡=1

𝑥𝑡 is close to 𝑥𝑖 according

to 𝐷 . However, directly handling such realized distribution of im-

pressions would yield a number of significant technical difficulties,

as shown in the following example.

Example 4.1. Let us focus on the simple case in which the bidder

chooses the ℓ∞ norm as the desired distance function 𝐷 . Then,

the bidder could determine a fixed value 𝛼 ∈ R≥0, according to

their distributional preferences, and add the following additional

constraint to Equation (2)




∑𝑇
𝑡=1

𝒄𝑡𝑥𝑡∑𝑇
𝑡=1

𝑥𝑡
− 𝑥







∞

≤ 𝛼,

3
The set {1, . . . , 𝑛}, where 𝑛 ∈ N≥0 , is compactly denoted as [𝑛]; the empty set as ∅.
Given a set X, we denote its convex hull with the symbol co X. Vectors are marked in

bold. We denote by ⟨·, · ⟩ the scalar product between two vectors. Given a discrete set

X, we denote by ΔX
the |X |-simplex, that is, the set ΔX

:= {𝒗 ∈ R|X|
≥0

:

∑
𝑖 𝑣𝑖 = 1}.

Analogously, we denote the full-dimensional standard simplex over X by ΔX
+ := {𝒗 ∈

R
|X|
≥0

:

∑
𝑖 𝑣𝑖 ≤ 1}. The symbols Δ𝑛

and Δ𝑛
+ , with 𝑛 ∈ N>0 , are used to denote Δ [𝑛]

and Δ [𝑛]
+ , respectively.
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that is, |∑𝑇
𝑡=1

𝑐𝑡,𝑖𝑥𝑡/
∑𝑇
𝑡=1

𝑥𝑡 −𝑥𝑖 | ≤ 𝛼 for each 𝑖 ∈ [𝑚]. Each of the

latter constraints could be suitably linearized. However, this would

yield a set of constraints which are not packing, that is they are not

of the form

∑
𝑡 𝑏𝑡𝑥𝑡 ≤ 𝐾 for some 𝑏𝑡 ≥ 0, and 𝐾 ≥ 0. Indeed, after

linearizing and taking variables to the left-hand side, there would

be several negative coefficients in front of variables. However, the

dual mirror descent framework—which is the standard algorithm

employed for online allocation in this setting—is only set up to

work with packing constraints (see, e.g., [10, 12]).

Another natural option would be embedding an additive penalty

term directly into the objective function of Equation (2). In particu-

lar, one could consider the following objective function

max

𝒙 :𝑥𝑡 ∈X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) − 𝛼𝐷
(
𝒙̂,

∑𝑇
𝑡=1

𝒄𝑡𝑥𝑡

∥𝒙 ∥1

)
,

for some 𝛼 ∈ R≥0. However, we observe that if the distance func-

tion takes directly in input the current distribution of impressions

and the target one, then solving the new version of Equation (2)

would entail solving a non-convex optimization problem due to

normalization.

Then, a natural question is the following: is it possible to incor-

porate such distributional preferences as a concave regularization

term in the bidder’s objective function? We answer in the positive by

proposing the following concave regularization term as a natural

solution for this problem.

Definition 4.2 (Parity ray regularizer). Let 𝐷 : Δ𝑚+ × Δ𝑚+ → R≥0.

Then, given a target distribution 𝒙̂ ∈ Δ𝑚 , the parity ray regularizer

is a function 𝑅 : Δ𝑚+ ×Δ𝑚+ → R≤0 such that, for any vector 𝒙 ∈ Δ𝑚+ ,

it holds

𝑅(𝒙) := − min

𝛾 ∈[0,1]
𝐷 (𝛾 𝒙̂ ; 𝒙) .

Intuitively,𝐷 acts as a pseudo-distance measure on Δ𝑚+ . It is not a

true distance metric because we will not be assuming that it satisfies

all the conditions of a metric. It can be thought of as analogous

to a divergence from statistics, although we measure distances on

the full-dimensional simplex. Given some current distribution 𝒙 , 𝑅
performs a projection onto the line segment generated by [0, 1] × 𝒙̂ ,
where the projection is in terms of 𝐷 (this is analogous to, e.g., a

Bregman projection).

The “parity ray” name comes from the fact that we can think

of 𝑅 as measuring the distance between a given point 𝒙 ∈ Δ𝑚+ to

the ray {𝛾 𝒙̂ : 𝛾 ≥ 0}. In our definition we only consider a segment

of this ray by restricting 𝛾 ∈ [0, 1]. This restriction is mostly for

analytical convenience when deriving Lipschitz constants below.

For a suitable 𝐷 that extends to the positive orthant, one could

remove the restriction and measure distances on the whole positive

orthant.

We will assume that 𝐷 satisfies a number of properties that will

allow us to optimize it as part of an online optimization procedure.

Assumption 2. We assume that 𝐷 (𝒙, 𝒙) satisfies the following
conditions:

• 𝐷 is jointly convex on Δ𝑚+ × Δ𝑚+ , and 𝐷 (𝒙; 𝒙) ∈ [0, 𝑟 ] for all
𝒙, 𝒙 ∈ Δ𝑚+ .

• For a fixed 𝛾 , the function 𝐷 (𝛾 𝒙̂ ; ·) is 𝐿-Lipschitz with respect

to the second argument under some ℓ𝑝 norm.

Proposition 4.3. Given Assumption 2, the regularizer 𝑅 is con-

cave, closed, and for each 𝒙 ∈ Δ𝑚+ , 𝑅(𝒙) ∈ [𝑟, 0] with 𝑟 = −𝑟 .
Furthermore, 𝑅 is 𝐿-Lipschitz continuous under the ℓ𝑝 norm.

Proof. Concavity follows from the facts that𝐷 is jointly convex

and convexity is preserved by taking the infimum over one argu-

ment, finally taking the negative leads to concavity. The fact that 𝑅

is 𝐿 Lipschitz follows since 𝐷 is 𝐿 Lipschitz in the second argument

for each 𝛾 , and taking the infimum preserves Lipschitz continuity

when all functions in the infimum have the same Lipschitz con-

stant. Closedness is implied by 𝐿 Lipschitzness, since closedness

of a convex function is equal to lower-semicontinuity, a weaker

condition that Lipschitz continuity. □

There are various choices of 𝐷 that comply with Assumption 2,

we mention the following notable examples.

• For any ℓ𝑝 norm, the distance 𝐷𝑝 (𝒙 ; 𝒙) = ∥𝒙 − 𝒙 ∥𝑝 satisfies

Assumption 2. In particular, 𝐷𝑝 is 1 Lipschitz with respect

to ℓ𝑝 , and the remaining properties follow directly from

the definition of a norm and the fact that 𝐷𝑝 is defined on a

bounded setΔ𝑚+ . Moreover, the ℓ2 norm yields a simple closed

form solution for the parity ray regularizer, which is par-

ticularly appealing for practical purposes. In particular, we

have that for any 𝒙 ∈ Δ𝑚+ , 𝑅(𝒙) = −


𝒙 −

(
⟨𝒙, 𝒙̂⟩/∥𝒙̂ ∥2

2

)
𝒙̂




2
,

which is well defined with respect to Definition 4.2 since

0 ≤ ⟨𝒙, 𝒙̂⟩/∥𝒙̂ ∥2

2
≤ 1.

• Another source of suitable choices for 𝐷 are 𝑓 -divergences:

𝐷 𝑓 (𝒙; 𝒙) =
∑𝑚
𝑖=1

𝒙𝑖 𝑓 (𝒙𝑖/𝒙𝑖 ) defined with respect to some

convex function 𝑓 , since 𝑓 -divergences are jointly convex.

However, 𝑓 -divergences are not necessarily 𝐿 Lipschitz for a

fixed 𝐿. In the case where we wish to use a non-Lipschitz 𝑓 ,

we have tomodify 𝑓 such that | 𝑠
𝑡2
𝑓 ′(𝑠/𝑡) | ≤ 𝐿 for 𝑠, 𝑡 ∈ [0, 1].

For example, setting 𝑓 (𝑡) = 𝑡 log 𝑡 yields the Kullback-Leibler

(KL) divergence. However, we need to slightly modify the

KL divergence in order to ensure that Assumption 2 is sat-

isfied: (1) we must shift it by log𝑚 to make it nonnegative,

and (2) we make it Lipschitz in the second argument by set-

ting 𝑓 (𝑡) = 𝑡 log min(𝑡, 1/𝜖); 𝜖 then can be interpreted as a

lower probability threshold at which we stop increasing the

penalty. This lower threshold may actually be useful in prac-

tice, to prevent the algorithm from reacting too aggressively

to allocation imbalances at the first few iterations.

Finally, equipped with Definition 4.2, computing the offline opti-

mal allocation now amounts to the following convex optimization

problem

Opt(P) := EP


max

𝒙 :𝑥𝑡 ∈X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅
(

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
s.t.

𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 ≤ 𝑇𝜌


. (3)

We say that a bidder is optimizing for their parity-regularized utility

if they are solving Problem (3) and 𝑅 is defined as in Definition 4.2.

5 ONLINE ALLOCATION ALGORITHM

First, we show that a suitably defined Lagrangian dual function

provides an upper bound on Opt(P) (omitted proofs are reported
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in Appendix B). Let 𝑓 ∗𝑡 : R≥0 → R be the conjugate function of 𝑓𝑡
as defined in Equation (1) restricted to X𝑡 , that is, for all 𝜇 ∈ R≥0,

𝑓 ∗𝑡 (𝜇) := sup

𝑥 ∈X𝑡

{𝑓𝑡 (𝑥) − 𝜇𝑥}.

Moreover, let 𝑅∗ : R𝑚 → R be the conjugate function of the

regularizer 𝑅 restricted to Δ𝑚+ . Formally, for each 𝝀 ∈ R𝑚 ,

𝑅∗ (−𝝀) := sup

𝒙̄∈Δ𝑚
+

{𝑅(𝒙) + ⟨𝝀, 𝒙⟩}.

Let D be the set of dual variables for which the conjugate of the

regularizer is bounded. Formally,

Lemma 5.1. It holds

D :=
{
(𝜇,𝝀) ∈ R≥0 × R𝑚 : −∞ < 𝑅∗ (−𝝀) < +∞

}
= R≥0 × R𝑚 .

For a given distribution P over the finite set of possible input

tuples I, the Lagrangian dual function 𝐷 (𝜇,𝝀 |P) : D → R is such

that, for each pair of dual variables (𝜇,𝝀) ∈ D,

𝐷 (𝜇,𝝀 |P) := E(𝑣𝑡 ,𝑝𝑡 ,𝒄𝑡 )∼P
[
𝑓 ∗𝑡 (𝜇𝑝𝑡 + ⟨𝝀, 𝒄𝑡 ⟩) + 𝑅∗ (−𝝀)

]
+ 𝜌𝜇. (4)

Then, the following holds.

Theorem 5.2. Given a time horizon 𝑇 ≥ 0, for any (𝜇,𝝀) ∈ D,

Opt(P) ≤ 𝑇𝐷 (𝜇,𝝀 |P).

Given this intermediate result, we describe an online alloca-

tion algorithm (Algorithm 1) based on the online mirror descent

scheme by Balseiro et al. [10], which we adapt to account for parity-

regularized objectives (which are non-separable). We exploit the

specific structure of our problem to recover better constants in the

regret upper bound (see Theorem 5.4). For a specific choice of the

reference function𝜓 , Algorithm 1 gives an instantiation of the dual

subgradient descent algorithm by Balseiro et al. [12] for our setting.

The algorithm proceeds according to the following main steps:

Primal decision At each time step 𝑡 , given input tuple (𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 ),
the algorithm computes the optimal allocation 𝑥∗ which maxi-

mizes an opportunity cost-adjusted reward, based on the current

dual solutions (𝜇𝑡 ,𝝀𝑡 ) (Equation 5). The optimal decision 𝑥∗ is
taken if the remaining budget is enough to cover costs, that is,

𝑝𝑡𝑥
∗ ≤ 𝐵𝑡 . Finally, the target distribution over categories 𝒙𝑡 is

computed by computing the value maximizing the regularizer

𝑅 adjusted by an additive term accounting for the current dual

solution 𝝀𝑡 (Equation 6).

Dual variables update First, the algorithm computes an unbi-

ased stochastic estimator of a subgradient of 𝐷 (𝜇,𝝀 |P) at (𝜇𝑡 ,𝝀𝑡 )
(Equation 7). The algorithm employs this estimator to update

the vector of dual variables by performing an online dual mirror

descent descent step with step size 𝜂 and reference function 𝜓

(Equation 8).

Intuitively, at each time step 𝑡 , the algorithm compares (i) the

actual expenditure from the auction to the expected rate of spend

per iteration 𝜌 , and (ii) the target distribution over categories at 𝑡

to the realized category. If the actual expenditure is higher (resp.,

lower) than this expected rate, then the algorithm surmises that

future opportunities will offer higher (resp., lower) bang for the

buck than current opportunities, and therefore the algorithm lowers

(resp., raises) the bid shading multiplier. At the same time, if the

realized category causes an undesired skew, and moves the realized

distribution of impressions away from the desired 𝒙𝑡 , then the

Algorithm 1 Online algorithm for parity-regularized pacing

1: Input: initial dual solutions (𝜇1,𝝀1), time horizon 𝑇 , initial

budget consumption 𝐵1 = 𝐵, function𝜓 , step-size 𝜂

2: for 𝑡 = 1, . . . ,𝑇 do

3: Observe (𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 ) ∼ P

4: Compute primal decision:

5:

𝑥∗ ∈ arg max

𝑥 ∈X𝑡

{𝑓𝑡 (𝑥) − 𝜇𝑡𝑝𝑡𝑥 − ⟨𝝀𝑡 , 𝒄𝑡 𝑥⟩} (5)

6:

𝑥𝑡 =

{
𝑥∗ if 𝑝𝑡𝑥

∗ ≤ 𝐵𝑡

0 otherwise

7:

𝒙𝑡 ∈ arg max

𝒙̄′∈Δ𝑚
+

{
𝑅(𝒙 ′) + ⟨𝝀𝑡 , 𝒙 ′⟩

}
(6)

8:

9: Update resource consumption: 𝐵𝑡+1 = 𝐵𝑡 − 𝑝𝑡𝑥𝑡
10: Compute subgradient 𝒈 ∈ R𝑚+1

of 𝐷 (𝜇𝑡 ,𝝀𝑡 |P):
11:

𝒈 =
(
𝜌 − 𝑝𝑡𝑥∗, 𝒙𝑡 − 𝒄𝑡𝑥

∗)
(7)

12:

13: Update dual variables:

14:

(𝜇𝑡+1,𝝀𝑡+1) = arg min

(𝜇,𝝀) ∈D

{
⟨𝒈, (𝜇,𝝀)⟩ + 1

𝜂
𝐵𝜓 ((𝜇,𝝀), (𝜇𝑡 ,𝝀𝑡 ))

}
(8)

algorithm will adjust its dual solutions to penalize allocations from

that category, and increase the likelihood of acceptance for items

coming from under-represented categories.

5.1 Regret bound

We focus on the stochastic setting in which, at each 𝑡 , an input

tuple is drawn i.i.d. from P. This setting is particularly relevant for

applications to large Internet advertising platforms in which the

number of bidders interacting makes the environment unlikely to

react adversarially to choices of one specific bidder. We show that

Algorithm 1 attains a sublinear regret of order 𝑂 (𝑇 1/2).
Let 𝜏 be the time at which the budget of the bidder is depleted

when following Algorithm 1. By playing according to Algorithm 1,

the bidder attains the following expected reward:

Rew(P) := EP

[
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅
(

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)]
. (9)

We start with the following intermediate result which provides

a lower bound on the expected reward attained by following Al-

gorithm 1 up to the time 𝜏 in which the budget is fully depleted.

Lemma 5.3. Consider an arbitrary P ∈ ΔI
. For each 𝑡 ∈ [𝑇 ], let

𝑥𝑡 and 𝑥𝑡 be computed according to Equation (5) and Equation (6),

respectively. Moreover, given the time of budget depletion 𝜏 , let 𝜇 =
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1/𝜏 ∑𝜏
𝑡=1

𝜇𝑡 and ¯𝝀 = 1/𝜏 ∑𝜏
𝑡=1

𝝀𝑡 . Then, it holds

EP

[
𝜏∑︁
𝑡=1

(𝑓𝑡 (𝑥𝑡 ) + 𝑅(𝒙𝑡 ))
]
≥

EP

[
𝜏𝐷 (𝜇, ¯𝝀 |P) −

𝜏∑︁
𝑡=1

(𝜇𝑡 (𝜌 − 𝑝𝑡𝑥𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩)
]
.

In order to prove the regret bound of Theorem 5.4 we need the

following additional assumption on the reference function𝜓 of the

Bregman divergence 𝐵𝜓 .

Assumption 3. The reference function𝜓 is 𝜎-strongly convex with

respect to an ℓ𝑝 norm ∥·∥𝑝 .

This assumption is a relaxation of the requirements in Balseiro

et al. [10, Assumption 2] (i.e., strong convexity with respect to ∥ · ∥1).

Indeed, by exploiting the specific structure of our problem, we can

prove the following.

Theorem 5.4. Consider Algorithm 1 with step-size 𝜂 ≥ 0 and

initial solution (𝜇1,𝝀1) ∈ D. Suppose Assumption 1, Proposition 4.3,

and Assumption 3 are satisfied, and the requests are drawn i.i.d. from

an unknown distribution P ∈ ΔI
. Then, for any 𝑇 ≥ 1, it holds

Opt(P) − Rew(P) ≤ 𝐶1 +
𝐺2𝜂

𝜎
𝑇 + 1

𝜂
𝐶2,

where 𝐶1 = (𝑣 − 𝑟 + 2𝐿)𝑝/𝜌 , 𝐺 = max{𝜌 + 𝑝, 2}, and
𝐶2 = 2 sup{𝐵𝜓 ((𝜇,𝝀), 𝒅1) : (𝜇,𝝀) ∈ D, ∥𝝀∥ ≤ 𝐿}.

By setting 𝜂 ∼ 𝑇−1/2
we obtain a regret of order𝑂 (𝑇 1/2), which

is the optimal order of regret that can be attained in this setting as

shown by Arlotto and Gurvich [6, Lemma 1].

Proof. Recall that 𝜏 is the time at which the budget is depleted.

By Theorem 5.2 and since 𝑣𝑡 ≤ 𝑣 and 𝑝𝑡 ≥ 0 we have that, for any

(𝜇,𝝀) ∈ D,

Opt(P) = 𝜏

𝑇
Opt(P) + 𝑇 − 𝜏

𝑇
Opt(P)

≤ 𝜏𝐷 (𝜇,𝝀 |P) + (𝑇 − 𝜏)𝑣 .
Let 𝜉1,𝑡 (𝜇) = 𝜇 (𝜌 − 𝑝𝑡𝑥𝑡 ) and 𝜉2,𝑡 (𝝀) = ⟨𝝀, 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩ be the two
complementary slackness terms at iteration 𝑡 . From Equation (9)

and Lemma 5.3 we have

Rew(P) = E
[
𝜏∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅
(

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)]
≥ E

[
𝜏𝐷 (𝜇, ¯𝝀 |P) −

𝜏∑︁
𝑡=1

(
𝜉1,𝑡 (𝜇𝑡 ) + 𝜉2,𝑡 (𝝀𝑡 ) + 𝑅(𝒙𝑡 )

)
+𝑇𝑅

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)]
.

Then,

Opt(P) − Rew(P) ≤ E
[
(𝑇 − 𝜏)𝑣

+
𝜏∑︁
𝑡=1

(
𝜉1,𝑡 (𝜇𝑡 ) + 𝜉2,𝑡 (𝝀𝑡 ) + 𝑅(𝒙𝑡 )

)
−𝑇𝑅

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)]
. (10)

Complementary slackness term 𝜉1,𝑡 . For each 𝑡 , the gra-

dient of 𝜉1,𝑡 is given by ∇𝜇𝜉1,𝑡 = 𝜌 − 𝑝𝑡𝑥𝑡 and is bounded as

follows |∇𝜇𝜉1,𝑡 | ≤ 𝜌 + 𝑝 . Algorithm 1 applies online mirror de-

scent to the sequence of functions (𝜉1,𝑡 , 𝜉2,𝑡 )𝑇𝑡=1
. Therefore, by hold-

ing the second term fixed, we have that, for any pair (𝜇,𝝀) ∈
D,

∑𝜏
𝑡=1

𝜉1,𝑡 (𝜇𝑡 ) − 𝜉1,𝑡 (𝜇) ≤ U(𝜏, (𝜇,𝝀)) ≤ U(𝑇, (𝜇,𝝀)), where
U(𝜏, (𝜇,𝝀)) is the regret guarantee for online mirror descent after

𝜏 iterations, and the second inequality follows from the fact the

regret upper bound is increasing in 𝑡 .

Complementary slackness term 𝜉2,𝑡 . For each 𝑡 , the gradient

of 𝜉2,𝑡 is given by ∇𝝀𝜉2,𝑡 = 𝒙𝑡 − 𝒄𝑡𝑥𝑡 . Since 𝒙𝑡 , 𝒄𝑡𝑥𝑡 ∈ Δ𝑚+ , the
gradient is bounded by



∇𝝀𝜉2,𝑡




𝑝,∗ ≤ 2. Therefore, analogously

to the previous case, for any (𝜇,𝝀) ∈ D, we have

∑𝜏
𝑡=1

𝜉2,𝑡 (𝝀𝑡 ) −
𝜉2,𝑡 (𝝀) ≤ U(𝑇, (𝜇,𝝀)). Now, we focus on a particular choice of 𝝀.
Let

ˆ𝝀 ∈ arg max

𝝀∈R𝑚

{
𝑅∗ (−𝝀) − ⟨𝝀, 1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡 ⟩
}
. (11)

By definition of 𝑅∗ we have that, for any 𝑡 ,

𝑅∗ (−𝝀) := max

𝒙̄∈Δ𝑚
+
{𝑅(𝒙) + ⟨𝝀, 𝒙⟩} ≥ 𝑅(𝒙𝑡 ) + ⟨𝝀, 𝒙𝑡 ⟩.

Then, by summing over 𝑡 = 1, . . . ,𝑇 we obtain

𝑅∗ (−𝝀) ≥ 1

𝑇

𝑇∑︁
𝑡=1

(𝑅(𝒙𝑡 ) + ⟨𝝀, 𝒙𝑡 ⟩) . (12)

Now, if 𝑅 is concave and closed we have that 𝑅 = 𝑅∗∗ (see, e.g., Bor-
wein and Lewis [16, Theorem 4.2.1]). Then, by using this fact

and Equation (11),

𝑅

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
= 𝑅∗∗

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
= 𝑅∗

(
− ˆ𝝀

)
− ⟨ ˆ𝝀,

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡 ⟩.

Then,

𝑅∗
(
− ˆ𝝀

)
= 𝑅

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
+ ⟨ ˆ𝝀,

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡 ⟩. (13)

By Equation (12) and Equation (13) we obtain

𝑅

(
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
+ ⟨ ˆ𝝀,

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡 ⟩ ≥
1

𝑇

𝑇∑︁
𝑡=1

(
𝑅(𝒙𝑡 ) + ⟨ ˆ𝝀, 𝒙𝑡 ⟩

)
.

The above inequality can be rewritten as

𝑇∑︁
𝑡=1

𝜉2,𝑡 ( ˆ𝝀) =
𝑇∑︁
𝑡=1

⟨ ˆ𝝀, 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩ ≤ 𝑅

(
𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
−

𝑇∑︁
𝑡=1

𝑅(𝒙𝑡 ). (14)

Finally, by setting
ˆ𝝀 as specified in Equation (11), and for any 𝜇 ∈

R≥0, we can bound the complementary slackness term as follows

𝜏∑︁
𝑡=1

𝜉2,𝑡 (𝝀𝑡 ) ≤
𝜏∑︁
𝑡=1

𝜉2,𝑡 ( ˆ𝝀) + U(𝑇, (𝜇, ˆ𝝀))

=

𝑇∑︁
𝑡=1

𝜉2,𝑡 ( ˆ𝝀) −
𝑇∑︁

𝑡=𝜏+1

𝜉2,𝑡 ( ˆ𝝀) + U(𝑇, (𝜇, ˆ𝝀))

≤ 𝑅

(
𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
−

𝑇∑︁
𝑡=1

𝑅(𝒙𝑡 ) −
𝑇∑︁

𝑡=𝜏+1

𝜉2,𝑡 ( ˆ𝝀) + U(𝑇, (𝜇, ˆ𝝀)),

where the last inequality follows from Equation (14).
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Final step. By substituting in Equation (10) the above upper

bounds to the complementary slackness terms we obtain that, for

any 𝜇 ∈ R+ and for
ˆ𝝀 as in Equation (11),

Opt(P) − Rew(P) ≤ E
[
(𝑇 − 𝜏)𝑣 +

𝜏∑︁
𝑡=1

𝜉1,𝑡 (𝜇)

−
𝑇∑︁

𝑡=𝜏+1

(
𝑅(𝒙𝑡 ) + 𝜉2,𝑡 ( ˆ𝝀)

)]
+ 2U(𝑇, (𝜇, ˆ𝝀))

≤ E
[
(𝑇 − 𝜏)

(
𝑣 − 𝑟 + 2∥ ˆ𝝀∥∞

)
+

𝜏∑︁
𝑡=1

𝜉1,𝑡 (𝜇)
]
+ 2U(𝑇, (𝜇, ˆ𝝀)).

By definition of the stopping time 𝜏 ,
∑𝜏
𝑡=1

𝑝𝑡𝑥𝑡 +𝑝 ≥ 𝑇𝜌 . By letting
𝐶 =

(
𝑣 − 𝑟 + 2∥ ˆ𝝀∥∞

)
, and 𝜇 = 𝐶/𝜌 , which is well defined as 𝜇 ≥ 0,

we obtain

𝜏∑︁
𝑡=1

𝜉1,𝑡 (𝜇) =
𝜏∑︁
𝑡=1

𝜇 (𝜌 − 𝑝𝑡𝑥𝑡 ) ≤ 𝜇 (𝜏𝜌 −𝑇𝜌 + 𝑝) = 𝐶

𝜌
𝑝 − (𝑇 − 𝜏)𝐶.

Then, Opt(P)−Rew(P) ≤ 𝐶𝑝/𝜌+2U(𝑇, (𝜇,𝝀)) . Finally, we observe
that ∥ ˆ𝝀∥∞ ≤ 𝐿 because 𝑅 is 𝐿-Lipschitz continuous with respect to

∥ · ∥1 and
ˆ𝝀 ∈ 𝜕𝑅(𝑥𝑡 ) by Equation (11). Therefore, by substituting

the standard regret guarantees for OMD (see, e.g., Orabona [39,

Section 6]), we have

Opt(P) − Rew(P) ≤ 𝐶1 +
𝐺2𝜂

𝜎
𝑇 + 1

𝜂
𝐶3,

where 𝐶1 = (𝑣 − 𝑟 + 2𝐿)𝑝/𝜌 , 𝐺 = max{𝜌 + 𝑝, 2}, and

𝐶3 = 2 sup

{
𝐵𝜓 ((𝜇,𝝀), (𝜇1,𝝀1)) : (𝜇,𝝀) ∈ D, ∥𝝀∥ ≤ 𝐿

}
.

This concludes the proof. □

6 REGULARIZED PACINGWITHIN A

PACED-AUCTION FRAMEWORK

One of the major selling points of our approach to enforcing dis-

tributional preferences via regularization is that Algorithm 1 can

easily be incorporated in existing pacing systems that are not nec-

essarily built around this objective. In Section 2 we described how

pacing systems with proxy bidders work for large-scale Internet

advertising. In that setup, the platform controls a proxy bidder on

behalf of every advertiser 𝑖 , where the proxy bidder uses a control

algorithm on the pacing parameter 𝛼𝑖 used to construct bids, in

order to ensure that the advertiser satisfies their budget constraint.

An important feature of this setup is that each proxy bidder can

control their own pacing parameter 𝛼𝑖 purely through their ob-

served spending. This leads to a highly decentralized framework,

where communication between proxy bidders is only necessary via

the second-price auctions that sell items whenever they show up,

and bidders only need to submit their paced bids to these auctions.

This decentralization is important, because centralized optimization

problems may not be realistic to solve every time a user shows up

on the site. In the remainder of the section we explain how a bidder

may implement our Algorithm 1 via a form of decentralized double-

pacing. We do this to explain it in generality, but we emphasize

that the proxy-bidder setting is one of our main motivations.

Consider a bidder who attempts to maximize parity-regularized

utility. By using Algorithm 1, the bidder will have two parameters

at time 𝑡 : 𝜇𝑡 and 𝝀𝑡 , with some item of value 𝑣𝑡 having appeared

(the price 𝑝𝑡 would not be known yet since the auction has not been

run). Algorithm 1 requires that the bidder achieve an allocation

that solves Equation (5), which we can rewrite as follows:

arg max

𝑥 ∈{0,1}
{𝑓𝑡 (𝑥) − 𝜇𝑡𝑝𝑡𝑥 − ⟨𝝀𝑡 , 𝒄𝑡𝑥⟩}

= arg max

𝑥 ∈{0,1}
{𝑣𝑡𝑥 − (1 + 𝜇𝑡 )𝑝𝑡𝑥 − ⟨𝝀𝑡 , 𝒄𝑡 ⟩𝑥}

= arg max

𝑥 ∈{0,1}
{(𝑣𝑡 − ⟨𝝀𝑡 , 𝒄𝑡 ⟩)𝑥 − (1 + 𝜇𝑡 )𝑝𝑡𝑥}

= arg max

𝑥 ∈{0,1}

{
𝑣𝑡 − ⟨𝝀𝑡 , 𝒄𝑡 ⟩

1 + 𝜇𝑡
𝑥 − 𝑝𝑡𝑥

}
.

From the above derivations, we observe at each 𝑡 that there are

three possible cases: (i) the bidder needs to win the item at time

𝑡 if
𝑣𝑡−⟨𝝀𝑡 ,𝒄𝑡 ⟩

1+𝜇𝑡 > 𝑝𝑡 ; (ii) the bidder has to pass on the item if the

strict inequality is reversed; (iii) the bidder is indifferent if equality

holds. Even though the bidder does not know 𝑝𝑡 , this is exactly

achieved within a second-price auction framework by bidding the

value
𝑣𝑡−⟨𝝀𝑡 ,𝒄𝑡 ⟩

1+𝜇𝑡 at time 𝑡 . Here, 1/(1 + 𝜇𝑡 ) plays the role of the

standard multiplicative pacing parameter, but before multiplicative

pacing, the bidder first applies an additive pacing term ⟨𝝀𝑡 , 𝒄𝑡 ⟩.
Thus, we see that our approach can easily be adopted by individ-

ual bidders that wish to incorporate distributional regularization as

part of their bidding procedure in a repeated-auction setting. For

the same reason, proxy bidders can easily incorporate this in the

case where an advertising platform wishes to enforce some amount

of distributional parity while performing budget-pacing on behalf

of the advertisers.

7 EXPERIMENTAL EVALUATION

In this section, we present numerical experiments on data from a

large Internet advertising company.

Experimental setup. We construct a real-world dataset through

logs of a large Internet advertising company. In this dataset, we have

one advertiser (more specifically, we consider data at individual

campaign level) participating in a sequence of auctions.We consider

only ad requests coming from mobile devices. For each ad request

we retrieve the advertiser’s bid, the price computed via the auction

mechanism, and the relevant categories for the request. We observe

that, due to the nature of the bidding system, the bids provide a good

approximation to the true advertiser’s valuations. Bids and prices

are suitably normalized for privacy reasons. Then, we generate a

dataset consisting of 10
6
entries (i.e., one entry per ad requests)

and, at each run of the algorithm, we sample from this dataset

𝑇 requests without replacement. We consider two different ad-

request breakdowns. The first one, denoted as breakdown B2, is a

binary breakdown (i.e.,𝑚 = 2) where the category is the type of

mobile device originating the request (we consider the two most

frequent such types). The second one, which we denote by B3, is

a breakdown into three categories (i.e.,𝑚 = 3) determined by the

manufacturer of the mobile device. In all of the experiments we

set 𝜌 to be approximately equal to the 0.5 quantile of the empirical

distribution of normalized prices from our dataset. In this way, the

advertiser is set to win at most half of the ad requests which they

are presented.
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Figure 1: (Top-Left): Empirical upper bound on the regret (i.e., Reg
u
as defined in Equation (15)) for breakdown B2. (Bottom-Left): Total variation distance from

the target distribution 𝒙̂ for B2. (Top-Center): Empirical upper bound on the regret for breakdown B3. (Bottom-Center): Total variation distance from the target

distribution 𝒙̂ for B3. (Top-Right): Empirical upper bound on the regret for breakdown B2 with artificial prices unbalance. (Bottom-Right): Total variation distance

from the target distribution 𝒙̂ for B2 with artificial prices unbalance. Input denotes the total variation distance between 𝒙̂ and the underlying empirical category

distribution computed on the dataset.

Algorithms. We employ parity ray regularizers with 𝐷2 (𝒙 ; 𝒙) =
∥𝒙 − 𝒙 ∥2 as the pseudo-distance measure. Moreover, given a se-

quence of input tuples (𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 )𝑇𝑡=1
, let

Opt
u

(
(𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 )𝑇𝑡=1

)
:= max

𝒙 :𝑥𝑡 ∈X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) s.t.
𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 ≤ 𝑇𝜌

be the value of an optimal allocation in absence of regularization

penalties. Then, we evaluate the regret guarantees of our algorithm

by computing an upper bound to the parity-regularized regret

Opt(P) − Rew(P). By letting 𝑠𝑇 := (𝑥𝑡 , 𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 )𝑇𝑡=1
we compute

Reg
u (𝑠𝑇 ) := Opt

u

(
(𝑣𝑡 , 𝑝𝑡 , 𝒄𝑡 )𝑇𝑡=1

)
− Rew(𝑠𝑇 ), (15)

where Rew(𝑠𝑇 ) is the realized reward for the sequence of online

decisions 𝒙 . The baseline algorithmwhichwe employ is the adaptive

pacing algorithm (AP) by Balseiro and Gur [14], which guarantees

optimal regret in the stochastic setting without regularization. The

step size is 𝜂 = 0.1/
√
𝑇 . This choice guarantees the optimal order

of regret both for our algorithm, and for adaptive pacing (in the

non-reqularized setting). Dual variables are initialized to 0. Convex

programs are solved using the Xpress Optimization Suite 8.10 [27].

All experiments are run on a 24-core machine with 57 GB of RAM.

Results. We run 20 independent trials for each time horizon

𝑇 ∈ {10
3, 2 · 10

3, . . . , 5 · 10
3}. The first row of Figure 1 reports the

empirical upper bounds on the regret computed as in Equation (15).

The second row of Figure 1 reports the total variation distance be-

tween the realized distributions of impressions 𝒙 and the target dis-

tribution 𝒙̂ . We compute this distance as tvd(𝒙 ; 𝒙̂) = sup𝑗 |𝑥 𝑗 −𝑥 𝑗 |.
The first column of Figure 1 reports result for the B2 breakdown.

In this setting, we set 𝒙̂ = (.5, .5), that is, the advertiser seeks to
reach a uniform realized distribution of impressions over the two

mobile device types. Algorithm 1 achieves small regret over all time

horizons, and guarantees a realized distribution of impression close

to the target. On the other hand, the adaptive pacing algorithm

shows linear regret in 𝑇 , which is due to the penalty for not being

able to steer the realized distribution of impression towards the

target. The same behavior can be observed in the B3 setting (second

column of Figure 1). Here, the empirical distribution of categories

of the dataset is roughly (.5, .3, .2). To make the problem harder,

we try to skew the realized distribution of impressions towards the

least frequent category by setting 𝒙̂ = (.1, .3, .6). Algorithm 1 man-

ages to keep the resulting distribution close to the target even in

this challenging setting. It is interesting to notice that the distribu-

tion over categories of the input data would be closer to the target

distribution than what achieved by the adaptive pacing algorithm.

The same behavior can be observed when we artificially create

an unbalance between the distribution of prices for the different

categories. In these extreme cases, the adaptive pacing algorithm

forces the advertiser to win only impression of the cheap category.

This can be observed, for example, if we start from the B2 scenario

described in Section 7, where we have two possible categories per

item corresponding to different mobile device types, and then we

artificially create an unbalance in the price distributions for the two

categories, making one category slightly cheaper than the other.

Figure 1 (Right-Column) reports the comparison between Algo-

rithm 1 and AP. The total variation distance between the realized

distribution of impressions 𝒙 and the target distribution 𝒙̂ is close

to 0.5. Since 𝒙̂ = (.5, .5) this means that AP is forcing the bidder

to win only impressions for cheap requests. On the other hand, by

employing Algorithm 1 we can effectively steer the realized distri-

bution of impression towards the target without compromising the

quality of the solution in terms of rewards.
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A RELATEDWORKS

Online allocation problems have been studied from a number of

different perspectives. One stream of works addresses the case

in which inputs are chosen by an adversary (see, e.g., Feldman

et al. [24], Mehta et al. [36]). In our work, motivated by Internet

advertising applications, we study the stochastic case in which

inputs are drawn i.i.d. from an unknown distribution. Stochastic

input models have been studied, among others, by Devanur and

Hayes [19], Devanur et al. [21], Feldman et al. [25], Goel and Mehta

[29], Mahdian et al. [35], Mirrokni et al. [37].

In the setting of stochastic input models with linear reward

functions it is possible to guarantee an optimal order of regret of

𝑂 (𝑇 1/2) [4, 20]. More recent works by Li et al. [33] and Balseiro

et al. [11] propose simple algorithms with 𝑂 (𝑇 1/2) regret guaran-
tees that, in contrast with previous works, do not require period-

ically solving large linear programs. Finally, under some specific

structural assumptions, it is possible to obtain a regret bound of

order 𝑂 (log𝑇 ) [32, 34].
As discussed in Section 1 and Section 4, we study how to optimize

for parity-regularized utilities, which are non-separable in nature.

Two related works addressing similar problems are the following:

• Agrawal et al. [4] focus on how to solve general online

stochastic convex programs that allow general concave ob-

jectives and convex constraints. However, their approach

requires periodically solving convex optimization programs

on historical data, unless the optimal value of the objec-

tive is known. Moreover, their algorithm handles resource

constraints as soft constraints, while we are interested in

enforcing a hard constraint on the budget.

• Balseiro et al. [12] propose a dual subgradient descent al-

gorithm for a general class of non-separable objectives. In

our work, we focus on the specific real-world problem of

modeling advertisers’ distributional preferences within stan-

dard pacing systems. Balseiro et al. [12] focus on a more

general class of problems, without providing a concrete way

to model our objective. In particular, we observe that the

regularizer for max-min fairness which the authors propose

in their Example 2 is not suitable for our setting. In order to

employ their regularizer to model distributional preferences,

an advertisers would have to appropriately pick parameters

𝜆 and 𝜌𝑖 depending on the contingent state of the environ-

ment during the 𝑇 time horizon. Specifically, this choice

would require knowing beforehand the underlying input

distribution of requests, as well as the scale of the number

of ad opportunities that the advertiser will win during the 𝑇

steps. On the other hand, the parity ray regularizer simplifies

the interaction between the advertiser and the pacing mech-

anism, as the advertiser just needs to specify their target

distribution, without requiring any additional knowledge on

the current state of the environment. Moreover, the parity

ray regularizer can be equipped with any pseudo-distance

measure satisfying Assumption 2. Finally, in our paper we

adapt the online mirror descent scheme by Balseiro et al.

[10] to the case of non-separable objectives (which allows

for a more general class of reference functions than the on-

line gradient descent scheme of Balseiro et al. [12]). The

dual-descent scheme by Balseiro et al. [12] can be derived

from our OMD scheme through an appropriate choice of the

reference function. Our analysis draws heavily on the ideas

developed in both Balseiro et al. [10] and Balseiro et al. [12].

By exploiting the specific structure of our problem we show

how to relax some of the assumptions required by Balseiro

et al. [10] (see, .e.g., Assumption 2 of their paper).

There is also a stream of literature studying budget management

problems within the framework of stochastic bandits with knap-

sacks constraints (see, e.g., the work by Avadhanula et al. [7]). The

difference between our setting and the bandits literature is that,

in online allocation problems, the advertiser observes the reward

function and consumption matrix before making a decision, while

in the bandit setting those are revealed after each decision is made.

In order to deal with unknown reward functions and consumption

matrices, the most frequent approach in contextual bandits is to

discretize the context and action space. However, this inevitably

leads to worse performance, and does not fit well with real-world

pacing systems such as those described in Section 2. As an example,

in Internet advertising applications bandits algorithms typically

attain regret on the order of 𝑂 (𝑇 3/4) [3, 8].
Another line of research studies how individual bidders should

optimize their budget spending across a set of auctions. This prob-

lem has been cast, for example, as a knapsack problem [15, 26, 46],

a Markov Decision Process [5, 30, 41], a constrained optimization

problem [44, 45], and an optimal control problem [42, 43].

In a recent work, Nasr and Tschantz [38] study how to compute

bidding strategies for advertisers which aim at satisfying various

types of parity constraints with respect to a binary user breakdown.

Their model is different from ours since (i) we are interested in

letting advertisers reach an arbitrary target distribution over an

arbitrary user breakdown, while their goal is guaranteeing that

specific parity constraints are satisfied for a binary user breakdown;

(ii) we have a hard constraint on the budget, while they assume

advertisers have an unlimited budget; (iii) the techniques which are

adopted are very different since the authors model the problem as

an MDP which is then solved with an ad-hoc method to properly

manage the constraints, while we address distributional preferences

directly within the pacing architecture.

B OMITTED PROOFS

Lemma 5.1. It holds

D :=
{
(𝜇,𝝀) ∈ R≥0 × R𝑚 : −∞ < 𝑅∗ (−𝝀) < +∞

}
= R≥0 × R𝑚 .

Proof. Given 𝝀 ∈ R𝑚 , the following holds

𝑅∗ (−𝝀) = sup

𝒙̄∈Δ𝑚
+

{𝑅(𝒙) + ⟨𝝀, 𝒙⟩}

≤ sup

𝒙̄∈Δ𝑚
+

𝑅(𝒙) + sup

𝒙̄∈Δ𝑚
+

⟨𝝀, 𝒙⟩

≤ ||𝝀 | |1 < +∞,

where the third inequality follows by Assumption 4.3. Analogously,

given 𝜆 ∈ R𝑚 , we have

𝑅∗ (𝝀) ≥ 𝑟 − ||𝝀 | |1 > −∞,

which proves the statement. □
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Theorem 5.2. Given a time horizon 𝑇 ≥ 0, for any (𝜇,𝝀) ∈ D,

Opt(P) ≤ 𝑇𝐷 (𝜇,𝝀 |P).

Proof. Let (𝒗,𝒑, 𝒄) = ((𝑣𝑡 )𝑇𝑡=1
, (𝑝𝑡 )𝑇𝑡=1

, (𝒄𝑡 )𝑇𝑡=1
) be an arbitrary

sequence of input tuples. From the definition of the baseline Opt

we have that:

Opt(P) :=E(𝒗,𝒑,𝒄)∼P


max

𝒙 :𝑥𝑡 ∈X𝑡

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅
(

1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡

)
s.t.

𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 ≤ 𝑇𝜌



=E(𝒗,𝒑,𝒄)∼P



max

𝒙 :𝑥𝑡 ∈X𝑡

𝒙̄∈Δ𝑚
+

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅(𝒙)

s.t.

𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 ≤ 𝑇𝜌

𝒙 =
1

𝑇

𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡


.

Then, by exploiting weak duality and the fact that input tuples

are drawn i.i.d. from P, we have that, for any (𝜇,𝝀) ∈ D,

Opt(P) ≤ E(𝒗,𝒑,𝒄)∼P

[
max

𝒙,𝒙̄

{
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) +𝑇𝑅(𝒙)

− 𝜇

𝑇∑︁
𝑡=1

𝑝𝑡𝑥𝑡 +𝑇 𝜇𝜌 + ⟨𝝀,𝑇𝒙 −
𝑇∑︁
𝑡=1

𝒄𝑡𝑥𝑡 ⟩
}]

≤ E(𝒗,𝒑,𝒄)∼P

[
𝑇∑︁
𝑡=1

𝑓 ∗𝑡 (𝜇𝑝𝑡 + ⟨𝝀, 𝒄𝑡 ⟩) +𝑇𝑅∗ (−𝝀) +𝑇𝜌𝜇
]

= 𝑇 E(𝑣𝑡 ,𝑝𝑡 ,𝒄𝑡 )∼P
[
𝑓 ∗𝑡 (𝜇𝑝𝑡 + ⟨𝝀, 𝒄𝑡 ⟩) + 𝑅∗ (−𝝀)

]
+ 𝜌𝜇

= 𝑇𝐷 (𝜇,𝝀 |P) .

This proves our statement. □

Lemma 5.3. Consider an arbitrary P ∈ ΔI
. For each 𝑡 ∈ [𝑇 ], let

𝑥𝑡 and 𝑥𝑡 be computed according to Equation (5) and Equation (6),

respectively. Moreover, given the time of budget depletion 𝜏 , let 𝜇 =

1/𝜏 ∑𝜏
𝑡=1

𝜇𝑡 and ¯𝝀 = 1/𝜏 ∑𝜏
𝑡=1

𝝀𝑡 . Then, it holds

EP

[
𝜏∑︁
𝑡=1

(𝑓𝑡 (𝑥𝑡 ) + 𝑅(𝒙𝑡 ))
]
≥

EP

[
𝜏𝐷 (𝜇, ¯𝝀 |P) −

𝜏∑︁
𝑡=1

(𝜇𝑡 (𝜌 − 𝑝𝑡𝑥𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩)
]
.

Proof. For each 𝑡 ≤ 𝜏 , by Equation (5) and Equation (6) we have

EP [𝑓𝑡 (𝑥𝑡 ) + 𝑅(𝒙𝑡 )]
= E

[
𝑓 ∗𝑡 (𝜇𝑡𝑝𝑡 + ⟨𝝀𝑡 , 𝒄𝑡 ⟩) + 𝜇𝑡𝑝𝑡𝑥𝑡 + ⟨𝝀𝑡 , 𝒄𝑡𝑥𝑡 ⟩ + 𝑅∗ (𝝀𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 ⟩

]
= E[𝐷 (𝜇𝑡 ,𝝀𝑡 |P) − 𝜌𝜇𝑡 + 𝜇𝑡𝑝𝑡𝑥𝑡 + ⟨𝝀𝑡 , 𝒄𝑡𝑥𝑡 ⟩ − ⟨𝝀𝑡 , 𝒙𝑡 ⟩]
= E[𝐷 (𝜇𝑡 ,𝝀𝑡 |P) − 𝜇𝑡 (𝜌 − 𝑝𝑡𝑥𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩],

where the second equality holds by Equation (4). By summing over

𝑡 = 1, . . . , 𝜏 we obtain

EP

[
𝜏∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) + 𝑅(𝒙𝑡 )
]
=

𝜏∑︁
𝑡=1

E[𝑓𝑡 (𝑥𝑡 ) + 𝑅(𝒙𝑡 )]

= E

[
𝜏∑︁
𝑡=1

(𝐷 (𝜇𝑡 ,𝝀𝑡 |P) − 𝜇𝑡 (𝜌 − 𝜇𝑡𝑝𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩)
]

≥ E
[
𝜏𝐷 (𝜇, ¯𝝀 |P) −

𝜏∑︁
𝑡=1

(𝜇𝑡 (𝜌 − 𝑝𝑡𝑥𝑡 ) − ⟨𝝀𝑡 , 𝒙𝑡 − 𝒄𝑡𝑥𝑡 ⟩)
]
,

where the last inequality holds by convexity of the Lagrangian

dual function. Specifically, 𝑓 ∗𝑡 (𝜇𝑝 + ⟨𝝀, 𝒄⟩) is the composition of

a convex function (by definition of conjugate function) with an

affine mapping, which is convex. Therefore, 𝐷 is convex since it is

the result of a sum of convex functions, and expectation preserves

convexity. □
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