
A Social Search Model for Large Scale Social Networks
Yunzhong He∗

Facebook
Seattle, Washtington
yunzhong@fb.com

Wenyuan Li∗
University of California, Los Angeles

Los Angeles, California
liwenyuan.zju@gmail.com

Liang-Wei Chen
Facebook

Seattle, Washtington
benlwchen@fb.com

Gabriel Forgues
Facebook

Seattle, Washtington
gforgues@fb.com

Xunlong Gui
Facebook

Seattle, Washtington
xunlongg@fb.com

Sui Liang
Facebook

Seattle, Washtington
suiliang@fb.com

Bo Hou
Facebook

Seattle, Washtington
jsjhoubo@fb.com

ABSTRACT
With the rise of social networks, information on the internet is no
longer solely organized by web pages. Rather, content is generated
and shared among users and organized around their social relations
on social networks. This presents new challenges to information
retrieval systems. On a social network search system, the generation
of result sets not only needs to consider keyword matches, like a
traditional web search engine does, but it also needs to take into
account the searcher’s social connections and the content’s visibility
settings. Search ranking should also be able to handle both textual
relevance and the rich social interaction signals from the social
network.

In this paper, we present our solution to these two challenges by
first introducing a social retrieval mechanism, and then investigate
novel deep neural networks for the ranking problem. The retrieval
system treats social connections as indexing terms, and generates
meaningful results sets by biasing towards close social connections
in a constrained optimization fashion. The result set is then ranked
by a deep neural network that handles textual and social relevance
in a two-tower approach, in which personalization and textual
relevance are addressed jointly.

The retrieval mechanism is deployed on Facebook and is helping
billions of users finding postings from their connections efficiently.
Based on the postings being retrieved, we evaluate our two-tower
neutral network, and examine the importance of personalization
and textual signals in the ranking problem.

CCS CONCEPTS
• Information systems → Social networks; Information re-
trieval; Specialized information retrieval; Learning to rank;
Search engine architectures and scalability.

KEYWORDS
information retrieval, social networks, social search, search ranking

∗Both authors contributed equally to this research.

1 INTRODUCTION
The popularization of social platforms has changed how content
is organized on the internet, and has led to the diagram shift from
Web 1.0 to Web 2.0 [41]. In Web 1.0, users passively consume con-
tent from web pages, whereas in Web 2.0, users participate in the
creation and sharing of content. Compared to Web 1.0 content, con-
tent created on social networks (or Web 2.0) bears more personal
aspects. For example, the content may be only visible to a small
social group and could require more personal context to understand.
User studies also show that compared to web search, users seek
information differently on social networks, in which social relation
plays a critical role [12, 31, 40].

In classic models of information retrieval systems (such as Web
search engines), the main concern is about finding relevant docu-
ments based on search keywords. The user dimension is generally
a secondary concern and is often introduced into the system at the
re-ranking stage based on user profiles [10, 14, 37, 38]. Although
this works well for web pages, it cannot handle the complex social
structures of content created on social networks.

Some recent research introduces social relations into information
retrieval models by factoring them into user profiles and creating
personalized re-ranking models [5, 11, 43, 47] which are often used
in microblog search. Among those studies, the social relationship
between a user and a document is either used implicitly to construct
a better preference-based user profile [11, 43, 47], or used explicitly
as an additive term in the scoring function [5]. The focus on ranking
and microblog search overlooks the fact that for large scale social
networks, social relation is an important component to tractably
generate the candidate result set to be ranked, due to the private
nature of social network content. In addition, treating the social
connection as an additive term in ranking offers simplicity but
fails to capture the interactions between social signals and textual
matches.

Inspired by its success in artificial intelligence, researchers start
using deep learning to process personalization signals in recommen-
dation systems [8, 17, 19, 45] and textual relevance in web search
[23, 26, 32]. Some more recent studies also use deep learning for
personalized commerce search [14, 18], which essentially creates



He, et al.

Figure 1: Architecture of our proposed two tower neural net-
work.

neural networks that can jointly handle textual and contextual rel-
evance (e.g. location, interest). Although to our best knowledge, no
similar work has been done in the field of social network search, it
is natural for us to consider deep learning for the ranking problem
due to the rich social contexts behind the results being retrieved.
In this paper, we offer the following contributions.

(1) We introduce a social retrieval mechanism that treats con-
tent retrieval as constrained optimization of query rewriting.
We use it to help billions of users finding postings from
their connections, and we discuss the trade-offs between
various factors in this optimization problem using online
performance.

(2) We explore novel neural network architectures that jointly
model textual and social relevance for personalized ranking.
Based on search results from our production retrieval system
and neural network ranker, we examine the importance of
different signals in the ranking problem.

2 RELATEDWORKS
2.1 Social Search
Social search refers to the process of finding information based on
social connections [1]. With the increase in user-generated content
on the web, many researchers start to augment traditionally web
search engines with social relations or collaborative behaviors for
better search experiences [13, 30]. Another important area of so-
cial search is about searching content on social platforms such as
Facebook1 and Twitter2, which we will refer to as social network
search here. In a social network search, social relation plays a more
important role than a collaborative web search. Some early works
show that having social relations as a term in the ranking objective
can significantly improve ranking quality in social network search
[2, 5]. In more recent works, social relations are used to construct
better user preference models to enhance personalized search rank-
ing in microblog search [11, 43, 47]. The role of the user-author
relationship in microblog search ranking is also discussed in [28, 39]
with a focus on interests based similarity.

1facebook.com
2twitter.com

2.2 Personalized Ranking
Click-through rate (CTR) prediction is one of the tasks in informa-
tion retrieval. It focuses on predicting the probability that content
would be clicked if shown to the user. Traditionally, people use
handcrafted features extracted from Bayesian [34] or feature se-
lection methods [21, 27]. With the recent developments in deep
learning, many CTR prediction methods utilize deep neural net-
works to reduce the amount of manual feature engineering. For
example, neural collaborative filtering [20] uses a multi-layer per-
ceptron to replace inner product for collaborative filtering. Wide
and deep network [7] jointly trains wide linear models and deep
neural networks to account for both memorizations and general-
izations. Deep factorization machine [15] utilizes a factorization
machine layer so that it can incorporate the power of factorization
machines for the recommendation. Deep and cross network [46]
further replaces the factorization machine layer with cross net-
works, making it more efficient in learning certain bounded-degree
feature interactions.

2.3 Textual Relevance
Textual relevance is an extensively studied area in information
retrieval which aims to model the semantic similarity between
queries and documents [29]. Recent successes of neural methods in
the field can be mainly categorized into representation-based and
interaction-based methods [16]. Early attempts of neural textual
relevance models, such as DSSM [24] and CDSSM [36], are mainly
about learning good representations of the queries and documents,
and the similarity measure is based on similarities of the representa-
tions. Interaction-based methods, on the other hand, directly model
query-document matches at the token level. For example, Arc-II
[22] uses 1-D convolutional layers to model interactions between
two phrases. Match-SRNN [44] introduces the neural tensor layer
to model complex interactions between input tokens. MatchPyra-
mid [33] and PACRR [25] are inspired by the neural models for
the image recognition task - they both view the matching matrix
as a 2-D image and use convolutional neural networks to extract
hierarchical matching patterns for relevance estimations.

3 SOCIAL RETRIEVAL
Different from keyword search over web pages, keyword search
over a social network requires treating the social dimension as
the first-class citizen because the content may be only visible to a
small social group on a social network. In addition, social network
content is generally more personal and less authoritative, making
techniques based on document quality less effective. On a sparse
social network like Facebook, without considering social connec-
tions in retrieval, the majority of results retrieved may not have any
social connections to the searcher and would be either invisible3,
or irrelevant to the searcher. Even within the domain of all socially
connected content, not all social connections are equally relevant.
For example, there could be postings from a group that the user
joined, but never visited, leading to irrelevant postings retrieved.
Given these nuances, the problem of social retrieval is about biasing
the retrieval space towards the most relevant connections. Several
3Due to user-selected privacy settings, a posting might only be visible to a limited
audience. Visibility checks are always enforced on Facebook.



A Social Search Model for Large Scale Social Networks

possible solutions for efficient social network content indexing have
been explored in the past [3, 4, 6, 9], although their implications
on large scale social networks are rarely discussed. In this section,
we will use Unicorn [9] as our indexing system, and show how
keyword search over Facebook postings can be achieved efficiently
with its semantics and a few extended edge types.

3.1 Problem Definition
We denote a social network as a directed graph < U ,V >, where
U is the set of nodes, and V is the set of edges. On Facebook,
a node can be of different types, such as person,дroup,paдe , or
postinд. The interactions between nodes are captured by edges.
For example, a person can be a friend of another person, which

we denote as < person1
friend-of
−−−−−−−→ person2 >∈ V . Similarly, a

person can make a posting in a group, which we denote as {<

postinд1
authored-by
−−−−−−−−−−→ person1 >, < postinд1

posted-in
−−−−−−−→ дroup1 >

} ⊆ V . Note that we’re treating content (posting) and non-content
(person, group, page) equally as nodes on a social graph. Since the
focus of this paper is on content search, we do want to make the
distinction between the two types of nodes. We will refer to person,
group and page nodes as entities from now on. Therefore, we have
U = Entities ∪ Postinдs, Entities = Persons ∪ Paдes ∪ Groups .
For a searcher u, let us define its social connections as Conn(u) =
{e | e ∈ Entities AND (< e,u >∈ V OR < u, e >∈ V OR u = e)}.
And we can now formally define its socially connected postings
asConnPostinдs(u) = {p | p ∈ Postinдs AND ∃ e ∈ Conn(u) s .t . (<
e,p >∈ V OR < p, e >∈ V )}. Here, ConnPostinдs(u) represents
all the postings on a social network that are directly connected
to entities that are within 1-degree of connections between the
searcher. As discussed above, we may not want to consider all so-
cial connections as the result sets could be noisy, so we would like
to filter down to the postings from a set of good social connec-
tions GoodConn(u) ⊆ Conn(u), leading to the final retrieval space
GoodConnPostinдs(u) = {p | p ∈ Postinдs AND ∃ e ∈ GoodConn(u)
s .t . (< e,p >∈ V OR < p, e >∈ V )}. Thus, the goal of social
retrieval is to retrieve postings with keyword matches like tra-
ditional web search does, but restricted to the retrieval space of
GoodConnPostinдs(u) by enforcing a bias at query rewriting stage
towards GoodConn(u).

3.2 Unicorn
We use Unicorn [9] as our indexing system. In Unicorn, an edge
on a social network is indexed as a prefixed term in a document’s

inverted index. For example, edge < person1
friend-of
−−−−−−−→ person2 > is

indexed as friend:2 in the inverted index of person1 4. To support
keyword search on postings, we extended Unicorn with edge types
as shown in Table 1, which captures various relationships a posting
can have with a person, a group, and a page. As for text terms in a
posting, they are indexed the same way as traditional web search
engines do. For example, a posting about "Billie Eilish" will have
the following indexing terms text:billie, text:eilish. 5

4We denote entity an unique identifier x with entit iyx
5Extensive studies have been done on optimizing the indexing policies for text terms,
but we would like to keep it simple here as it is not the focus of this paper.

Edge-Type Description
authored-by A posting is authored by a person
involves A posting involves a person in any way
page-of A posting is posted in a page
group-of A posting is posted in a group

Table 1: Extended edge types

During retrieval, we use the standard query language provided
by Unicorn - s-expressions that support logical operators such as
AND/OR. Suppose searcher person0 has best friends person1 and
person2, is an active member of дroup3, and maintains a Facebook
page paдe4, then a possible set of good social connections could
be GoodConn(u) = {0, 1, 2, 3, 4}. Thus the condition of enforcing
posting fromGoodConn(u) can be expressed as the following query
string.

(or
involves:0
authored-by:1
authored-by:2
group-of:3
page-of:4

)

3.3 Social Query Rewriting
We have now formulated the problem of social retrieval as finding
an optimal query string to enforce postings from GoodConn(n). Be-
cause this is independent of the query string of enforcing text term
matches, we will refer to this process as "social query rewriting".
More specifically, for a searcher u, and a query query-keyword-
match, we enforce the social conditions by rewriting it into a fi-
nal query string of the form (and query-keyword-match query-
social-match(u)). For example, after social query rewriting, the
query string for keyword "Billie Eilish" will be the following

(and
(or

text:billie
text:eilish

)
(or

involves:0
authored-by:1
authored-by:2
group-of:3
page-of:4

)
)

Now that we have formulated the problem of social retrieval as
an optimal query rewriting problem, the next thing is to define
the optimality condition and provide an optimization mechanism.
Since we are optimizing for a candidate generation process, we
want to focus more on recall rather than precision. However, higher
recall generally requires a larger retrieval space to look at, leading
to higher computational cost on the index servers. So finding an
optimal query rewriting is essentially a constrained optimization
that maximizes recall under a fixed budget of CPU cost.



He, et al.

3.4 Ground Truth Recall Set
Before diving into the final optimization formulation, we need
to define a measure of the recall that we are trying to optimize.
We sampled a ground truth set of 2k ideal results of the form
< query, searcher , ideal result > through rater data. The ideal
result does not necessarily come from Search Engine Results Page
(SERP), as raters may be searching a piece of content seen on
a friend’s profile. This way we can get rid of the presentation
bias. We anonymized and featurized the dataset into the form
f eature(searcher ,author ), which contains no user-identifiable in-
formation, but rather indicators of the social relationship between
the user and the author of the ideal result. Table 2 illustrates the
features we used. When a search request is issued, the information
is pre-fetched as the request’s meta-data from Facebook’s graph
database [42], which makes them readily available in real-time.
For model training, we also sampled non-ideal results from their
corresponding SERPs as negatives.

3.5 Constrained Optimization for Optimal
Social Rewriting

Given the small size of training data and feature space, we use
a linear model to optimize the connection terms. For each social
prefix p, we want to solve for the optimal social feature weightsw∗

p ,
and a threshold t∗p that maximizes the recall in the ground truth set
DG under a fixed CPU cost k . More formally,

maximize
wp ,tp

recallDG (expr (wp , tp ))

subject to cpu_cost(expr (wp , tp )) < k

in which expr (wp , tp ) is the s-expression parameterized by feature
weightswp of a linear model that selects the best connection terms,
and a bound on the number of social connections tp .

To solve for t∗p , we assume an uniform retrieval space incurred
by each social prefix (i.e. each friend, group and page can provide
as many results matching the text constraints as all other friends,
groups and pages do, respectively), which makes the CPU cost from
each prefix effectively a function of the number of connections with
the prefix. This assumption is an oversimplification as some groups
may contain more postings than others. However, we found tp to
be the dominating factor of CPU cost when it is aggregated over all
search sessions. Since we budget CPU cost at an aggregated level,
this is in fact a valid assumption. And to maximize the recall, we
simply ran parameter sweep experiments online and obtained the
maximal tp under budget k .

As we fix tp , this constrained optimization becomes a simple
maximization of recallConn(DG )@t∗p (LM(wp )). Namely, we want to
maximize the top t∗p recall of the connections that a posting comes
from in the ground truth set DG , when the connections are ranked
by a linear model parametrized by weightswp . We then solvew∗

p
using linear regression.

Essentially, what this constrained optimization does is approxi-
mate the optimal connection space GoodConn(u), using a ground
truth dataset sampled from GoodConnPostinдs(u). And it is done
through first fixing its size, and then selecting its most likely mem-
bers. The weights and thresholds are computed offline, but the

Feature
Whether this user/page/group is recently visited
Time since last visit of this user/page/group
Whether this is a liked page
Whether this is a joined group
Social network coefficient between the searcher and author

Table 2: Social features for query rewriting

Method CPU CTR(friend) CTR(group/page)
Recency - - -
Social Coef (p>0.05) 0.32% (p =1.2e-4) 0.94% (p =6.8e-5)
Linear Model (p>0.05) 0.56% (p =1.2e-6) 2.07% (p =3.3e-5)

Table 3: Post-launch performance of social query rewriting

inference on optimal connections is performed online because of
the dynamic nature of social connections.

3.6 Results
Wedeployed this rewriting system on Facebook search, and it is now
powering the retrieval of postings from a searcher’s connections.
The retrieval system had evolved from naively including postings
from all friends and groups, to a heuristics-based approach (i.e. order
by interaction recency) that also enables postings from followed
pages, and to the constrained optimization approach that allows
more general connection types such as liked or recently visited
pages, and achieved good quality improvement with even CPU
cost savings. Table 3 shows the relative improvements from its
post-launch backtesting compared against other approaches, where
we rank connections based on the recency in the searcher’s last
interaction as the baseline. We report the overall CTR on postings
from friend and group/page. Note that for this backtesting we fix
tp for a fair evaluation of social rewriting quality, and all of the
results were ranked by our production ranking model before being
displayed to the searchers.

From Table 3 we can see that CPU cost does not differ signifi-
cantly between different methods, confirming our hypothesis that
CPU cost is a function of tp . And our linear model indeed outper-
forms any heuristics-based methods like interaction recency or
social graph coefficient. We believe that being able to aggregate
different real-time interactions from a social network is an advan-
tage of this online linear model, and is where its gain comes from.
We have learned from this backtesting and other past experiments
that, in general, strong real-time signals like recent interactions
can outperform more sophisticated offline models, while the best
performance was often achieved when the two were combined.

4 TWO-TOWER NEURAL NETWORK FOR
PERSONALIZED RANKING

After a set of socially connected postings are retrieved, they need
to be ordered based on their relevance for the best user experi-
ence. Since content on a social network is highly personal, social
relevance should be factored into the ranking objective as much
as textual relevance. Although social relevance was considered in
the ranker from section 3.5, a key difference here is that the afore-
mentioned ranker only ranks the connections to retrieve from but
cannot compare the relevance between two postings to display.



A Social Search Model for Large Scale Social Networks

Therefore, we want to explore result-level ranking models that can
jointly handle social and textual relevance here.

4.1 Multi-stage Ranking
Because result-level ranking can have non-trivial CPU cost, we
use a multi-stage ranking in our production system. Our stage 1
ranker is a gradient-boosting decision tree (GBDT) model that uses
standard textual relevance features like BM25 [35], as well as social
relevance features. And the stage 2 ranker is a neural network that
leverages more sparse features on top of the stage 1 features, using
a DLRM-like [17] architecture. We observed a big search quality
improvement when we launched the stage 2 neural network ranker,
even without the additional sparse features. For the sake of space,
we will focus our discussions on the architecture explorations for
the neural network ranker here. And the exploration is based on
our production neural network architecture.

4.2 Motivation
While extensive studies have been done on neural IR models, the
focus has been on learning better text representations and query-
document interactions [16, 24, 25, 29, 36]. In the settings of per-
sonalized web search, personalization signals generally come from
historical search behaviors, and the focus is usually on preference-
based user profiling [10, 11, 37, 38]. In social network search, how-
ever, personalization signals are so much richer and contain an
extra dimension of social relations. This motivates us to look at the
click-through rate (CTR) models from recommendation systems, as
the scope of personalization is closer to CTR prediction problems
rather than traditional web search ranking. However, textual rele-
vance does still play an important role in ranking, so naturally, to
combine the best of the two, we proposed a two-tower approach
which contains a CTR model trained from personalization features,
and a textural relevance model trained from n-grams of query and
document tokens. In addition, we decided to train the model with
click data, not only because of its availability but also because any
3rd-party labeled data cannot capture the social context of the
original searcher.

4.3 Two-Tower Architecture
The overall architecture of our two-tower network can be expressed
as follows.

Φ(q,d,u) = д(NNtr (ψ (q),η(d)),NNctr (fd (u,d), fs (u,d)))

where NNtr is a typical query-doc textural relevance (TR) model,
modeling the semantic similarity between a query q, and a doc-
ument d , based on their embedding representationψ (q) and η(d).
NNctr , on the other hand, is a CTR model capturing the contextual
relevance between a user u and the document d using a hand-tuned
user-doc dense feature vector, fd (u,d), and sparse feature vector
fs (u,d). The output of NNtr and NNctr are both vectors, which
we denote as xtr and xctr . Note that xtr is a vector because each di-
mension of xtr represents the cosine similarity between one type of
query n-gram (e.g. query bi-gram, query tri-gram) and one type of
document n-gram (e.g. doc-title-trigram, doc-body-bigram). Finally,
xtr and xxtr are concatenated into vector x = xtr ·xctr as the input
to a final matrix factorization layer, to represent feature-feature
interactions. So we have

Feature Type
If the post is authored by the searcher user-doc
If the post comes from a friend user-doc
If the post comes from a joined group user-doc
If the post comes from a followed page user-doc
If the searcher has recently seen the post user-doc
Global click count from SERP of a post doc-side
If the post contains a photo doc-side
Age of a post doc-side
Number of comments on a post doc-side
Number of friends of the searcher user-side
Number of followees of the searcher user-side
Number of SERP impressions of the searcher user-side
Region id of the searcher user-side, sparse
City id of the searcher user-side, sparse

Table 4: Hand-crafted features used in the CTR arm

Φ(q,d,u) = д(xtr , xctr ) = w
T x + xTupper (VVT )x

Note that different from standalone TR or CTR models, there isn’t
any softmax layer in NNtr or NNctr to normalize the final vector
representation into a probability value. Instead, we use the vector
representation directly into a matrix factorization layer. Although
by design the two-tower architecture could support any TR and
CTR models, in practice we use DLRM [17] as our CTR tower, and
a simple cosine similarity model as our TR tower, as illustrated in
Figure 1. The neural network is trained with click data, which is a
collection of pairs < q,u,d,y >, in which y ∈ {1, 0} representing
a user click (y = 1), or no click (y = 0). Therefore the neural
network can be trained by minimizing a BCE loss just like a neural
factorization machine [15].

4.4 Representation Details
To learn the query representationψ (q) and document representa-
tion η(d), we extract n-grams from their raw texts, and feed them
into randomly initialized embedding lookup matrices. Note that
ψ (q) and η(d) don’t share the same embeddings, as we believe
queries and documents have different textual characteristics.

To encode signals outside of textual relevance, we use a fea-
ture vector fd (u,d) with around 30 dimensions in our experiments.
fd (u,d) is essentially a concatenation of many hand-tuned features
we designed, and those features can be categorized as user-side
features, doc-side features, and user-doc features. We also use two
user-side sparse features for better personalization, encoded as
sparse vectors in fs (u,d). Table 4 illustrates those features.

5 EXPERIMENTS
5.1 Dataset
Given the personal nature of social content search, it is difficult to
create any labeled dataset to evaluate our models. So instead, we
use clicks sampled from real search traffic for model training and
evaluation. When a search query is issued, for the results shown,
their n-gram features from raw texts, as well as the feature vectors
fd (u,d) and fs (u,d), are computed online. They are then sampled
and logged along with any click activities on them as our training
and evaluation data. Any user identifiable information is omitted in



He, et al.

Feature
BM25
AVG TF-IDF
Position of the last matched term

Table 5: Textual Relevance Features

the final dataset. So the dataset is a collection of <session-id, hashed
n-grams, fd (u,d), fs (u,d)>, where session-id is a unique identifier
of the search session, which can contain many documents displayed.
We sampled 120 millions of data from a 30-day window for model
training. To mimic the production behavior, the evaluation set
is sampled from some dates after the 30-day window of training
data, containing 6 million rows in total, as we find empirically that
evaluating on future data yields a closer estimation of a model’s
online performance.

5.2 Hand-tuned Textual Relevance Features
To evaluate how our models can learn textual relevance end to
end from raw texts, we adopt several popular query-doc relevance
features from information retrieval for comparison. Table 5 shows
the textual relevance features we used. For simplicity we will refer
to features in Table 4, features in Table 5, and raw text n-grams as
CTR features, TR features, and n-gram features respectively.

5.3 Experiment Setup
To investigate how social/personalization signal and textual rele-
vance signal can influence the final search ranking results, we train
and evaluate our model under the following settings: (1) DLRM
with CTR features only; (2) DLRM with TR features only; (3) DLRM
with CTR + TR features; (4) cosine similarity with n-gram features
only; (5) two-tower with CTR + n-gram features (6) two-tower with
CTR + TR + n-gram features.

Note that under our two-tower design, the CTR arm is essentially
a DLRM model without a final softmax layer, so experiment (1) (2)
and (3) are essentially the NNctr tower adding a softmax layer to
generate a probability value for ranking. On the other hand, the
textual relevance arm adopts a DSSM structure with two heads to
process query and document respectively. Setting (4) uses textual
relevance arm only. Similarly, we also add a softmax layer for rank-
ing in (4). Setting (5) and (6) use two-tower structures to process
social/personalization and textual relevance signals. The only dif-
ference is that in setting (6), we also use TR features in the CTR
arm, so that it has the richest signals. A detailed model architecture
of our proposed method can be found in Table 6.

Our model is implemented in Pytorch and trained on 2 Tesla M40
GPU. We use an Adam optimizer with the initial learning rate of
0.01. We also use batch normalization to ease the training, and add
a dropout layer after each fully connected layer for regularization.

5.4 Evaluation
We evaluate our model performance on 0.1 million search results
seen by the users, where clicked results are labeled as positives,
and non-clicks as negatives. We use ROC-AUC and Normalized
Discounted Cumulative Gain (NDCG) as the evaluation metrics
here. See Table 7 for the detailed numbers.

CTR and TR features:We first focus on evaluating the effec-
tiveness of CTR and TR features in the context of search ranking.
We evaluate the features using a DLRM model, which is effectively
our two-tower model without the TR arm. We compare the model
performance using social features, TR features, and CTR+TR fea-
tures. The model with the lowest AUC/NDCG uses only TR features,
which indicates that manually designed textual relevance features
are not expressive enough for a social search problem. Adding CTR
and features further improves the AUC from 59.01% to 62.16% and
NDCG from 80.66% to 81.55%. Overall, we observe that personal-
ization signals are important for the social search ranking model.

N-gram Features: Next, we experiment with text n-gram fea-
tures using a simple DSSM-like model, in which each n-gram will
have its embeddings. Using n-gram features alone outperforms
TR features by at 1.7% AUC, likely because embeddings improve
the expressiveness of the representations. For example, for query
"kitten" and a document titled "cat videos", traditional TR features
may consider it as a total mismatch. However, such similarity could
be modeled in the space of text embeddings.

Two-tower architecture: Finally, we test our proposed two-
tower method using CTR + n-gram features. Our proposed model
achieves 64.49% AUC, which is another 2.0%+ ROC-AUC increase
over any of the single tower approaches (with the highest NDCG).
That is, combining social and textual relevance signals with embed-
dings yields the best performance. In addition, combining the n-
gram features with TR features further improves AUC from 64.49%
to 65.02%.

Overall, we conclude that social/personalization and textual rel-
evance signals are both important for post ranking, and manually
engineered textual relevance features are not as effective as text
embeddings learned from n-grams. Our proposed two-tower archi-
tecture, which jointly models personalization and textual relevance,
yields the best ranking based on ROC-AUC and NDCG of click
prediction data.

6 CONCLUSION
In this paper, we present the challenges of social search on large
scale social networks such as Facebook. We argue that it is im-
portant to tractably generate a meaningful result set is to bias re-
trieval towards a set of good connections, and we solve this through
a constrained optimization problem of query rewriting. We also
demonstrate the effectiveness of this approach by comparing online
performance across different methods.

Finally, we introduce a neural learning-to-rank model, which
jointly learns personalization and textual relevance, in the social
network search domain. We argue that the scope of personalization
signals in a social network search is similar to recommendation
systems, while textual relevance still plays an important role as it is
in classic information retrieval models. So we propose a two-tower
neural network that combines the best of the two, and our experi-
ments show that it indeed outperforms state-of-the-art models like
DLRM, with substantial gains coming from our two-tower design.

REFERENCES
[1] 2016. Social Networks and Information Retrieval, How Are They Converging? A

Survey, a Taxonomy and an Analysis of Social Information Retrieval Approaches



A Social Search Model for Large Scale Social Networks

CTR Arm Textual Relevance Arm
Input Dense Features Sparse Features Query Document

Model

2-Layer MLP:
fc(256), batchnorm, relu

dropout (0.2)
fc(128), batchnorm, relu

Hash & Embedding Hash & Embedding Hash & Embedding

Concatenate Cosine Similarity
Factorization Machine

3-Layer MLP:
fc(64), batchnorm, relu

dropout (0.2)
fc(32), batchnorm, relu

fc(1)
Output Logistic Layer (click probability)

Table 6: Detailed model architecture.

Inputs ROC-AUC NDCG
CTR dense features 61.74% 81.30%
TR dense features 59.01% 80.66%
CTR + TR 62.16% 81.55%
n-gram sparse features 60.81% 80.80%
CTR + n-gram 64.49% 81.67%
CTR + TR + n-gram 65.02% 81.98%

Table 7: Model performance under different settings.

and Platforms. Inf. Syst. 56, C (March 2016), 1–18. https://doi.org/10.1016/j.is.
2015.07.008

[2] Matthias Bender, Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neu-
mann, Josiane Xavier Parreira, Ralf Schenkel, and Gerhard Weikum. 2008. Ex-
ploiting social relations for query expansion and result ranking. 2008 IEEE 24th
International Conference on Data Engineering Workshop (2008), 501–506.

[3] Truls A. Bjørklund, Michaela Götz, Johannes Gehrke, and Nils Grimsmo. 2011.
Workload-aware Indexing for Keyword Search in Social Networks. In Pro-
ceedings of the 20th ACM International Conference on Information and Knowl-
edge Management (CIKM ’11). ACM, New York, NY, USA, 535–544. https:
//doi.org/10.1145/2063576.2063656

[4] Mohamed Reda Bouadjenek, Hakim Hacid, Mokrane Bouzeghoub, and Athena
Vakali. 2013. Using social annotations to enhance document representation for
personalized search. 1049–1052. https://doi.org/10.1145/2484028.2484130

[5] David Carmel, Naama Zwerdling, Ido Guy, Shila Ofek-Koifman, Nadav Har’el,
Inbal Ronen, Erel Uziel, Sivan Yogev, and Sergey Chernov. 2009. Personalized
Social Search Based on the User’s Social Network. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management (CIKM ’09). ACM, New
York, NY, USA, 1227–1236. https://doi.org/10.1145/1645953.1646109

[6] H. Chen and H. Jin. 2018. Efficient Keyword Searching in Large-Scale Social
Network Service. IEEE Transactions on Services Computing 11, 5 (Sep. 2018),
810–820. https://doi.org/10.1109/TSC.2015.2464819

[7] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. ACM, 7–10.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan
Anil, Zakaria Haque, Lichan Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah.
2016. Wide & Deep Learning for Recommender Systems. In Proceedings of the 1st
Workshop on Deep Learning for Recommender Systems (DLRS 2016). ACM, New
York, NY, USA, 7–10. https://doi.org/10.1145/2988450.2988454

[9] Michael Curtiss, Iain Becker, Tudor Bosman, Sergey Doroshenko, Lucian Grijincu,
Tom Jackson, Sandhya Kunnatur, Soren Lassen, Philip Pronin, Sriram Sankar,
Guanghao Shen, Gintaras Woss, Chao Yang, and Ning Zhang. 2013. Unicorn:
A System for Searching the Social Graph. Proc. VLDB Endow. 6, 11 (Aug. 2013),
1150–1161. https://doi.org/10.14778/2536222.2536239

[10] Mariam Daoud, Lynda Tamine-Lechani, Mohand Boughanem, and Bilal Chebaro.
2009. A Session Based Personalized Search Using an Ontological User Profile. In
Proceedings of the 2009 ACM Symposium on Applied Computing (SAC ’09). ACM,
New York, NY, USA, 1732–1736. https://doi.org/10.1145/1529282.1529670

[11] Amna Dridi and Yahya Slimani. 2017. Leveraging social information for per-
sonalized search. Social Network Analysis and Mining 7, 1 (26 Apr 2017), 16.
https://doi.org/10.1007/s13278-017-0435-4

[12] Brynn M. Evans and Ed H. Chi. 2008. Towards a Model of Understanding
Social Search. In Proceedings of the 2008 ACM Conference on Computer Sup-
ported Cooperative Work (CSCW ’08). ACM, New York, NY, USA, 485–494.
https://doi.org/10.1145/1460563.1460641

[13] Fernando Figueira Filho, Gary M. Olson, and Paulo Lício de Geus. 2010. Kolline:
A Task-oriented System for Collaborative Information Seeking. In Proceedings
of the 28th ACM International Conference on Design of Communication (SIGDOC
’10). ACM, New York, NY, USA, 89–94. https://doi.org/10.1145/1878450.1878465

[14] Mihajlo Grbovic and Haibin Cheng. 2018. Real-time Personalization Using Em-
beddings for Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &#38; Data Mining (KDD ’18).
ACM, New York, NY, USA, 311–320. https://doi.org/10.1145/3219819.3219885

[15] Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. 2017.
DeepFM: A Factorization-machine Based Neural Network for CTR Prediction.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI’17). AAAI Press, 1725–1731. http://dl.acm.org/citation.cfm?id=3172077.
3172127

[16] Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani, Chen
Wu, W Bruce Croft, and Xueqi Cheng. 2019. A deep look into neural ranking
models for information retrieval. arXiv preprint arXiv:1903.06902 (2019).

[17] Udit Gupta, Xiaodong Wang, Maxim Naumov, Carole-Jean Wu, Brandon Reagen,
David Brooks, Bradford Cottel, Kim M. Hazelwood, Bill Jia, Hsien-Hsin S. Lee,
Andrey Malevich, Dheevatsa Mudigere, Mikhail Smelyanskiy, Liang Xiong, and
Xuan Zhang. 2019. The Architectural Implications of Facebook’s DNN-based
Personalized Recommendation. CoRR abs/1906.03109 (2019). arXiv:1906.03109
http://arxiv.org/abs/1906.03109

[18] Malay Haldar, Mustafa Abdool, Prashant Ramanathan, Tao Xu, Shulin Yang,
Huizhong Duan, Qing Zhang, Nick Barrow-Williams, Bradley C. Turnbull, Bren-
dan M. Collins, and Thomas Legrand. 2019. Applying Deep Learning to Airbnb
Search. In Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD ’19). ACM, New York, NY, USA, 1927–1935.
https://doi.org/10.1145/3292500.3330658

[19] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web (WWW ’17). International World Wide Web
Conferences Steering Committee, Republic and Canton of Geneva, Switzerland,
173–182. https://doi.org/10.1145/3038912.3052569

[20] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th interna-
tional conference on world wide web. International World Wide Web Conferences
Steering Committee, 173–182.

[21] Xinran He, Junfeng Pan, Ou Jin, Tianbing Xu, Bo Liu, Tao Xu, Yanxin Shi, Antoine
Atallah, Ralf Herbrich, Stuart Bowers, et al. 2014. Practical lessons from predicting
clicks on ads at facebook. In Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 1–9.

[22] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. 2014. Convolutional neu-
ral network architectures for matching natural language sentences. In Advances
in neural information processing systems. 2042–2050.

[23] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning Deep Structured Semantic Models for Web Search Using
Clickthrough Data. In Proceedings of the 22Nd ACM International Conference on

https://doi.org/10.1016/j.is.2015.07.008
https://doi.org/10.1016/j.is.2015.07.008
https://doi.org/10.1145/2063576.2063656
https://doi.org/10.1145/2063576.2063656
https://doi.org/10.1145/2484028.2484130
https://doi.org/10.1145/1645953.1646109
https://doi.org/10.1109/TSC.2015.2464819
https://doi.org/10.1145/2988450.2988454
https://doi.org/10.14778/2536222.2536239
https://doi.org/10.1145/1529282.1529670
https://doi.org/10.1007/s13278-017-0435-4
https://doi.org/10.1145/1460563.1460641
https://doi.org/10.1145/1878450.1878465
https://doi.org/10.1145/3219819.3219885
http://dl.acm.org/citation.cfm?id=3172077.3172127
http://dl.acm.org/citation.cfm?id=3172077.3172127
http://arxiv.org/abs/1906.03109
http://arxiv.org/abs/1906.03109
https://doi.org/10.1145/3292500.3330658
https://doi.org/10.1145/3038912.3052569


He, et al.

Information & Knowledge Management (CIKM ’13). ACM, New York, NY, USA,
2333–2338. https://doi.org/10.1145/2505515.2505665

[24] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management. ACM, 2333–2338.

[25] Kai Hui, Andrew Yates, Klaus Berberich, and Gerard de Melo. 2017. PACRR:
A position-aware neural IR model for relevance matching. arXiv preprint
arXiv:1704.03940 (2017).

[26] Aaron Jaech, Hetunandan Kamisetty, Eric K. Ringger, and Charlie Clarke. 2017.
Match-Tensor: a Deep Relevance Model for Search. CoRR abs/1701.07795 (2017).
arXiv:1701.07795 http://arxiv.org/abs/1701.07795

[27] Michael Jahrer, A Toscher, Jeong-Yoon Lee, J Deng, Hang Zhang, and Jacob
Spoelstra. 2012. Ensemble of collaborative filtering and feature engineered
models for click through rate prediction. In KDDCup Workshop.

[28] Y. Jiang, Y. Xu, and L. Shao. 2016. A Personalized Microblog Search Model
Considering User-Author Relationship. In 2016 IEEE First International Conference
on Data Science in Cyberspace (DSC). 508–513. https://doi.org/10.1109/DSC.2016.
91

[29] Bhaskar Mitra and Nick Craswell. 2017. Neural models for information retrieval.
arXiv preprint arXiv:1705.01509 (2017).

[30] Meredith Ringel Morris and Eric Horvitz. 2007. SearchTogether: An Interface for
Collaborative Web Search. In Proceedings of the 20th Annual ACM Symposium
on User Interface Software and Technology (UIST ’07). ACM, New York, NY, USA,
3–12. https://doi.org/10.1145/1294211.1294215

[31] Anne Oeldorf-Hirsch, Brent Hecht, Meredith Ringel Morris, Jaime Teevan, and
Darren Gergle. 2014. To Search or to Ask: The Routing of Information Needs
Between Traditional Search Engines and Social Networks. In Proceedings of
the 17th ACM Conference on Computer Supported Cooperative Work &#38; Social
Computing (CSCW ’14). ACM, New York, NY, USA, 16–27. https://doi.org/10.
1145/2531602.2531706

[32] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,
Xinying Song, and Rabab Ward. 2016. Deep Sentence Embedding Using Long
Short-termMemory Networks: Analysis and Application to Information Retrieval.
IEEE/ACM Trans. Audio, Speech and Lang. Proc. 24, 4 (April 2016), 694–707. https:
//doi.org/10.1109/TASLP.2016.2520371

[33] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.
2016. Text matching as image recognition. In Thirtieth AAAI Conference on
Artificial Intelligence.

[34] Matthew Richardson, Ewa Dominowska, and Robert Ragno. 2007. Predicting
clicks: estimating the click-through rate for new ads. In Proceedings of the 16th
international conference on World Wide Web. ACM, 521–530.

[35] Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Found. Trends Inf. Retr. 3, 4 (April 2009), 333–389.
https://doi.org/10.1561/1500000019

[36] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd International Conference on World Wide Web.
ACM, 373–374.

[37] Ahu Sieg, BamshadMobasher, and Robin Burke. 2007. Web Search Personalization
with Ontological User Profiles. In Proceedings of the Sixteenth ACM Conference on
Conference on Information and Knowledge Management (CIKM ’07). ACM, New
York, NY, USA, 525–534. https://doi.org/10.1145/1321440.1321515

[38] Micro Speretta and Susan Gauch. 2005. Personalized Search Based on User Search
Histories. In Proceedings of the 2005 IEEE/WIC/ACM International Conference on
Web Intelligence (WI ’05). IEEE Computer Society, Washington, DC, USA, 622–628.
https://doi.org/10.1109/WI.2005.114

[39] S. A. Tabrizi, A. Shakery, M. A. Tavallaei, and M. Asadpour. 2019. Search Person-
alization Based on Social-Network-Based Interestedness Measures. IEEE Access 7
(2019), 119332–119349. https://doi.org/10.1109/ACCESS.2019.2935425

[40] Jaime Teevan, Daniel Ramage, andMerredith Ringel Morris. 2011. #TwitterSearch:
A Comparison of Microblog Search and Web Search. In Proceedings of the Fourth
ACM International Conference on Web Search and Data Mining (WSDM ’11). ACM,
New York, NY, USA, 35–44. https://doi.org/10.1145/1935826.1935842

[41] O’Reilly Tim. 30.09.2005. What Is Web 2.0. - O’Reilly Media. (30.09.2005). http:
//oreilly.com/web2/archive/what-is-web-20.html

[42] Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabr-
era III, Prasad Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giar-
dullo, Jeremy Hoon, Sachin Kulkarni, Nathan Lawrence, Mark Marchukov,
Dmitri Petrov, and Lovro Puzar. 2012. TAO: How Facebook Serves the So-
cial Graph. In Proceedings of the 2012 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’12). ACM, New York, NY, USA, 791–792.
https://doi.org/10.1145/2213836.2213957

[43] Jan Vosecky, Kenneth Wai-Ting Leung, and Wilfred Ng. 2014. Collabora-
tive Personalized Twitter Search with Topic-language Models. In Proceedings
of the 37th International ACM SIGIR Conference on Research &#38; Develop-
ment in Information Retrieval (SIGIR ’14). ACM, New York, NY, USA, 53–62.
https://doi.org/10.1145/2600428.2609584

[44] Shengxian Wan, Yanyan Lan, Jun Xu, Jiafeng Guo, Liang Pang, and Xueqi Cheng.
2016. Match-srnn: Modeling the recursive matching structure with spatial rnn.
arXiv preprint arXiv:1604.04378 (2016).

[45] Hao Wang, Naiyan Wang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning
for Recommender Systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD ’15). ACM, New York,
NY, USA, 1235–1244. https://doi.org/10.1145/2783258.2783273

[46] Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang. 2017. Deep & cross network
for ad click predictions. In Proceedings of the ADKDD’17. ACM, 12.

[47] Yukun Zhao, Shangsong Liang, and Jun Ma. 2016. Personalized Re-ranking of
Tweets. InWeb Information Systems Engineering – WISE 2016, Wojciech Cellary,
Mohamed F. Mokbel, Jianmin Wang, Hua Wang, Rui Zhou, and Yanchun Zhang
(Eds.). Springer International Publishing, Cham, 70–84.

https://doi.org/10.1145/2505515.2505665
http://arxiv.org/abs/1701.07795
http://arxiv.org/abs/1701.07795
https://doi.org/10.1109/DSC.2016.91
https://doi.org/10.1109/DSC.2016.91
https://doi.org/10.1145/1294211.1294215
https://doi.org/10.1145/2531602.2531706
https://doi.org/10.1145/2531602.2531706
https://doi.org/10.1109/TASLP.2016.2520371
https://doi.org/10.1109/TASLP.2016.2520371
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/1321440.1321515
https://doi.org/10.1109/WI.2005.114
https://doi.org/10.1109/ACCESS.2019.2935425
https://doi.org/10.1145/1935826.1935842
http://oreilly.com/web2/archive/what-is-web-20.html
http://oreilly.com/web2/archive/what-is-web-20.html
https://doi.org/10.1145/2213836.2213957
https://doi.org/10.1145/2600428.2609584
https://doi.org/10.1145/2783258.2783273

	Abstract
	1 Introduction
	2 Related Works
	2.1 Social Search
	2.2 Personalized Ranking
	2.3 Textual Relevance

	3 Social Retrieval
	3.1 Problem Definition
	3.2 Unicorn
	3.3 Social Query Rewriting
	3.4 Ground Truth Recall Set
	3.5 Constrained Optimization for Optimal Social Rewriting
	3.6 Results

	4 Two-Tower Neural Network for Personalized Ranking
	4.1 Multi-stage Ranking
	4.2 Motivation
	4.3 Two-Tower Architecture
	4.4 Representation Details

	5 Experiments
	5.1 Dataset
	5.2 Hand-tuned Textual Relevance Features
	5.3 Experiment Setup
	5.4 Evaluation

	6 Conclusion
	References

