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Abstract

One of the most pressing challenges for the detection of
face-manipulated videos is generalising to forgery methods
not seen during training while remaining effective under
common corruptions such as compression. In this paper,
we examine whether we can tackle this issue by harnessing
videos of real talking faces, which contain rich information
on natural facial appearance and behaviour and are read-
ily available in large quantities online. Our method, termed
RealForensics, consists of two stages. First, we exploit the
natural correspondence between the visual and auditory
modalities in real videos to learn, in a self-supervised cross-
modal manner, temporally dense video representations that
capture factors such as facial movements, expression, and
identity. Second, we use these learned representations as
targets to be predicted by our forgery detector along with
the usual binary forgery classification task; this encourages
it to base its real/fake decision on said factors. We show
that our method achieves state-of-the-art performance on
cross-manipulation generalisation and robustness experi-
ments, and examine the factors that contribute to its per-
formance. Our results suggest that leveraging natural and
unlabelled videos is a promising direction for the develop-
ment of more robust face forgery detectors.

1. Introduction
Automatic face manipulation methods can realistically

change someone’s appearance or expression without requir-
ing substantial human expertise or effort [37,62,67,72,94].
This technology’s potential social harm has spurred consid-
erable research efforts to detect forgery content [3, 24, 35,
44, 49, 50, 53, 63, 68, 81, 92, 112, 116, 118].

It is known that although deep learning-based detectors
can achieve high accuracy on in-distribution data, perfor-
mance often plummets on videos generated using novel ma-
nipulation methods (i.e., not seen during training) [19, 34,
53, 68, 72, 105, 118].
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Figure 1. Overview of our two-stage method. First, we learn
temporally dense video representations in a self-supervised way,
by exploiting the correspondence between the visual and auditory
modalities of real videos. Second, the network is presented with
real and fake data and is tasked with performing face forgery de-
tection while simultaneously predicting, for the real videos, the
representations learned in stage 1. We use many more real than
fake samples, as the former are more easily acquired.

Various frame-based methods (i.e., that take a sin-
gle frame as input) have been proposed to tackle cross-
manipulation generalisation, including using data augmen-
tation [105], truncating classifiers [19], using 3D decompo-
sition [118], amplifying multi-band frequencies [79], and
targeting the blending boundary between the background
and the altered face [68]. Nevertheless, many still signif-
icantly underperform on novel forgery types or focus on
low-level cues which can easily be corrupted by common
perturbations like compression [53].

It is reasonable to believe that incorporating the tempo-
ral dimension can improve performance, especially since
many synthesis methods do not take into account tempo-
ral consistency during the generation process [94]. How-
ever, as with frame-based methods, naively training deep
networks on videos can lead to overfitting to the seen
forgeries [53, 97, 114]. To counteract this, LipForensics
[53] pre-trains on a large-scale lipreading dataset and then
freezes part of the network to prevent it from focusing on
low-level cues. It achieves strong performance in cross-
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Figure 2. Top: consecutive frames of a fake video [37]. Bottom:
same frames but heavily compressed. High-level semantics remain
largely undisturbed under compression.

manipulation generalisation and robustness to common cor-
ruptions. On the other hand, (1) it requires pre-training on
a labelled dataset, limiting its scalability; (2) it focuses ex-
clusively on the mouth region; and (3) it freezes almost one
third of the network when training on forgery data, which
could sacrifice performance. A very recent method, FTCN
[114], demonstrates high cross-manipulation generalisation
by constraining all spatial convolutional kernel sizes to one.
But, as we show, the impressive generalisation may come at
a cost of reduced robustness to compression changes.

In this work, we are motivated by the observation that
fake videos often exhibit anomalous facial movements (in-
cluding mouth, eyes, and brows) and expressions, as well as
subtle changes in facial form over time. Such cues are high-
level in nature and thus more resilient to corruptions which
destroy low-level content, e.g., compression or blurring (see
Figure 2). We ask ourselves whether it is possible to guide
a detector to focus on such cues by utilising unlabelled real
videos, which are relatively easy to obtain with tools like
face and voice activity detectors.

To this end, we propose a two-stage approach, termed
RealForensics (see Figure 1). We first use self-supervision
to exploit the known correspondence between the visual and
auditory modalities in natural videos. Inspired by the state-
of-the-art method in image representation learning BYOL
[48], we use a cross-modal student-teacher framework,
where a student processing the video stream must predict
representations formed by a slowly-improving teacher from
the audio stream, and vice versa. We learn temporally dense
representations (one embedding per frame), since cues re-
lated to facial movements are often fast-varying. Our goal
is to capture all shared information between the two modal-
ities, including factors associated with lexical content [29],
emotion [96], and identity [83]. Hence, we directly predict
the teachers’ outputs. In the second stage, the forgery de-
tector is tasked with performing classification while simul-
taneously predicting video targets generated by the video
student from the first stage. This prediction task incentivises

the detector to focus on the aforementioned cues when clas-
sifying the samples and, as a result, alleviates overfitting.

Our contributions are as follows: (1) We present a novel
two-stage detection approach that uses large amounts of nat-
ural talking faces for strong generalisation and robustness
performance; this opens up the avenue for future forgery
detection works to exploit the ubiquitous real videos online.
(2) We propose, for the first stage, a non-contrastive self-
supervised framework that learns temporally dense repre-
sentations, and we validate its design for our task through
ablations. (3) We achieve state-of-the-art performance in
experiments that test cross-manipulation generalisation and
robustness to common corruptions, and highlight the factors
responsible for our method’s performance.

2. Related Works

2.1. Face forgery detection

General approaches. Earlier works using convolutional
neural networks (CNNs) include recasting steganalysis fea-
tures as CNNs [32], constraining convolutional filters [13],
and using shallow networks [3] to suppress high-level con-
tent. However, an unconstrained Xception [25] network
outperforms these approaches on more recent forgery types
[94]. Other works aim at detecting inconsistent head poses
[108] or irregular eye blinking [69], although more recent
fakes may not exhibit such anomalies. More recently, works
have focused on attention mechanisms [35, 102, 112], ex-
ploiting the frequency spectrum [41, 43, 66, 73, 75, 79, 92],
detecting anomalies in features from a face recognition net-
work [104], or using extra identity information [6, 33, 38].
[44] and [111] use self-supervision for frame-based detec-
tion, but do not study the effect of using many real samples.

Cross-manipulation generalisation. Detectors often gen-
eralise poorly to unseen forgeries [19, 34, 53, 68, 105]. Ap-
proaches to improve generalisation include applying aug-
mentations [105], reconstructing the input as an auxiliary
task [34, 40, 85], mining frequency cues [75, 79], truncat-
ing classifiers [19], focusing on self-consistency [60,68,70,
113], or using spatio-temporal convolutional networks [45].

However, it has been shown that it is especially challeng-
ing to achieve cross-manipulation generalisation and at the
same time perform well on corrupted data [53]. A closely
related work to ours is LipForensics [53], which addresses
this by finetuning a network that was pre-trained to perform
lipreading. Unlike our method, it requires a large-scale
labelled dataset and focuses exclusively on the mouth re-
gion. Very recently, [114] report high generalisation by re-
ducing the spatial kernel sizes of convolutional layers to 1,
thus learning temporal inconsistencies while ignoring spa-
tial ones. By contrast, we target spatio-temporal irregular-
ities that may be more consistent with human perception
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of forgery cues. Finally, some recent works have focused
on mismatches between the visual and auditory modalities
in fake videos [5, 26, 65, 81, 117]. Our work, on the other
hand, is visual-only at test-time: It uses the audio modality
only for cross-modal supervision in an intermediate step, in
which only real videos are used.

2.2. Self-supervised learning

Image SSL. Recently, contrastive learning using the In-
foNCE loss [88] has become a popular approach in im-
age representation learning [20, 21, 54, 57, 88, 100, 107].
In this paradigm, the similarity between two views of an
image is maximised, while different images (“negatives”)
are repelled. Contrastive learning has also been used to
learn dense visual representations [91, 106]. However, re-
cent works that remove negatives generally outperform con-
trastive approaches [11, 16–18, 22, 48, 109]. Our work
is partly inspired by BYOL [48], which uses a slowly-
evolving teacher network that produces targets for a stu-
dent to predict. The first stage of our approach can be
viewed as an extension of BYOL to the audiovisual setting,
in which we have a student-teacher pair for each modality
and the output representations are temporally dense. Recent
works [86] and [42,93] also use BYOL-style training but are
for audio-only learning and action recognition, respectively.

Audiovisual SSL. Many works exploit audiovisual corre-
spondence for video action recognition [7–10,29,64,76,82,
90]. However, these approaches learn a single representa-
tion for a video clip, which is less suitable for modelling
the fine-grained movements of a speaking face. The very
recent work [77] proposes to learn, in a contrastive manner,
both global and local representations that are agnostic to the
specific downstream task. In contrast, aside from method-
ological differences, our work focuses on cross-dataset gen-
eralisation and robustness for face forgery detection. Au-
diovisual methods have also been proposed for applications
involving faces (e.g., audiovisual synchronisation and bio-
metric matching). In general, methods that model lexical
content tend to contrast samples from the same video for
identity invariance [29–31]. Conversely, works that learn
identity embeddings tend to match misaligned video-audio
pairs from the same person for invariance to lexical con-
tent [83, 84]. We posit that it is beneficial to capture both
types of information for forgery detection and hence di-
rectly predict aligned embeddings.

Generalisation via self-supervision. It has been shown
that using self-supervision as an auxiliary task, e.g., pre-
dicting rotations [47] or solving jigsaw puzzles [87], can
improve generalisation on the main task at hand [15,46,58].
We use a similar idea for improving generalisation for
forgery detection, but we learn the targets in a separate stage
before using them to define the auxiliary task.

3. Method
RealForensics comprises two stages (see Figure 3). The

first stage involves learning temporally dense video repre-
sentations using cross-modal self-supervision from many
natural talking faces. These representations are subse-
quently used as prediction targets in the second stage to reg-
ularise the binary forgery classification task.

3.1. Stage 1: representation learning

Given real videos and the corresponding audio, we aim
to learn video representations that capture information asso-
ciated with facial appearance and behaviour. Cues like fa-
cial movements are temporally fine-grained by nature, and
hence we wish to learn temporally dense representations,
i.e., an embedding per frame. We use a student-teacher
framework without contrasting negatives for the following
reasons. (1) This style of training has resulted in state-of-
the-art results in image representation learning [48]; (2) it
incentivises the network to retain all information shared by
the two modalities [48]; and (3) it obviates the need for large
batch sizes [20] or a queue [54] to store the negatives.

Formulation. We assume access to a large dataset Dr of
real talking faces. A sample x ∈ Dr is a video xv ∈
RTv×H×W×3 (of Tv video frames, height H , and width
W ) with its corresponding audio, represented as a log-mel
spectrogram, xa ∈ RTa×L (of Ta audio frames and L mel
filters). We ensure that Ta = 4Tv .

Our architecture consists of a student and teacher pair
for each modality. The teachers produce targets that the
students from the other modality must predict. Specifi-
cally, teacher video and audio backbone networks, fvt and
fat , produce embeddings evt = fvt (x

v) and eat = fat (x
a)

from the inputs, which are then passed through projec-
tors, gvt and gat , to yield dense video and audio targets,
zvt = norm(gvt (e

v
t )) ∈ RTv×C and zat = norm(gat (e

a
t )) ∈

RTv×C , where C is the dimensionality of the embeddings
and norm(·) denotes l2 normalisation across the channel
dimension. Note that the audio backbone subsamples the
temporal dimension such that the video and audio embed-
dings have the same shape. The students have the same
architecture as their corresponding teachers, except that
each student additionally contains a predictor, whose job
is to predict the targets from the other modality. Let the
video and audio predictions be pv = norm(hv(zvs )) and
pa = norm(ha(zas )), respectively, where hv and ha denote
the predictors and zvs and zas are the unnormalised student
representations after the student projectors; then the loss is

L =
1

2
||sg (zvt )− pa||2F +

1

2
||sg (zat )− pv||2F , (1)

where || · ||F denotes the Frobenius norm, and sg, which
stands for “stop-gradient,” emphasises that the targets are
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Figure 3. The two stages of RealForensics. In stage 1, the aim is to learn, in a self-supervised manner, frame-wise representations
that capture information on natural facial behaviour and appearance. We utilise an audiovisual, cross-modal, student-teacher framework,
whereby the student networks ingest real video and audio and try to predict the corresponding targets generated from the other modality.
We also randomly mask the student inputs (omitted from the diagram for clarity). The teacher networks are momentum encoders that are
updated via an exponential moving average (EMA), as in [48]. In stage 2, the detector performs face forgery classification, while predicting
the video targets produced by the (now frozen) video teacher from stage 1; only real videos contribute to the prediction loss. The video
student from stage 1 is used to initialise the backbone. This multi-task formulation likely incentivises the network to detect forgeries based
on stable cues that generalise well to unseen forgeries and are robust to low-level perturbations. Best viewed in colour.

treated as constants. The total loss is averaged over all sam-
ples. The students are optimised via gradient descent, and
the teachers are exponential moving averages of the stu-
dents. That is, if we denote the video teacher weights as ψv

and the corresponding student weights as θv , then at each
iteration

ψv ← µψv + (1− µ)θv, (2)

where µ is a momentum parameter close to 1. The audio
teacher weights are updated similarly.

Transformer as predictor. BYOL shows that the predic-
tor is a necessary component to avoid representation col-
lapse, a situation where the representations for all samples
are the same [48]. We observe the same for our framework
(see Section 5). Whereas BYOL outputs global represen-
tations and thus uses an MLP as a predictor, we find that a
shallow transformer is suitable for our dense representation
learning task (see the appendix for an ablation).

Random masking. We also find that random masking re-
sults in better representations (see Section 5). For videos,
we zero random rectangular regions in frames [115], con-
sistent across a whole video clip, as well as erase a ran-
dom number of consecutive frames. For spectrograms, we
erase a random number of consecutive audio frames and fre-
quency bins. This is similar to the SpecAugment method
[89], but without the time warping step. We apply this
masking only to the inputs of the students. Intuitively, this

forces the students to make use of context to infer the miss-
ing information and prevents them from overly relying on
specific features of the input, e.g., the mouth region.

Implementation details. Unless specified otherwise, we
use the following settings for this stage (see the appendix
for more details).

• Inputs. We extract the faces using face detection and
alignment. A clip consists of 25 frames. The log-mel
spectrograms contain 80 mel filters and 100 audio frames.
During training, we randomly crop the video clips to size
140×140 and resize them to 112×112. We randomly ap-
ply horizontal flipping and grayscale transformation, each
with probability 0.5. As mentioned, we also randomly
mask the students’ inputs.

• Backbones. The video backbone is a Channel-Separated
Convolutional Network (CSN) [101]; we set the tempo-
ral strides to 1 to prevent temporal subsampling. The
audio backbone is a ResNet18 [55], with the strides in
the convolutional layers modified such that it subsamples
the temporal dimension by 4, thus matching the temporal
span of the video backbone’s output.

• Projectors. The projection network used for both the
video and audio modalities is a single 1×1 convolutional
layer with output dimension of 256, followed by batch
normalisation (BN) [61]. We find that this BN layer helps
with training, similarly to [22].
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• Predictors. The predictor for both modalities is a 1-block
transformer encoder. It follows the design of a ViT block
[39]. We use 8 attention heads, each with dimension 64,
MLP dimension of 2048, and replace layer normalisation
[12] with batch normalisation [61] before the MLP.

• Optimisation. We use the AdamP optimiser [59] with
learning rate 7 × 10−4 and weight decay 10−2. We train
for 150 epochs, with an initial 20-epoch linear warmup
followed by a cosine decay schedule for the learning rate
[74]. The predictors’ lr are kept fixed [22]. The EMA
momentum parameters for the teachers are set to 0.999.

3.2. Stage 2: multi-task forgery detection

The aim of this work is to learn a visual-only forgery
detector. Indeed, many forgery datasets do not officially
release audio along with the videos [62,72,94]. As a result,
at this stage we discard the audio student-teacher pair, after
having served its purpose in stage 1.

We propose to use the video teacher from stage 1 to pro-
duce targets for our network to predict. At the same time,
the network performs forgery detection, in a multi-task
fashion. Note that the teacher is frozen in this stage. Us-
ing this auxiliary loss likely encourages the network to clas-
sify real and fake videos by focusing on high-level spatio-
temporal characteristics of facial appearance and behaviour.

Formulation. We again use our dataset of real faces Dr,
but we now also assume access to a dataset of fake videos,
Df .1 Our full dataset is thusD = Dr∪Df . Our architecture
consists of a shared backbone f with weights θb and two
heads: a supervised head with weights θs for the forgery
classification loss and an auxiliary one q with weights θa
for the target prediction loss. The auxiliary loss is given by

La(Dr; θb, θa) = E
x∼Dr

||q (f(xv; θb); θa)− t(xv)||2F , (3)

where t is the teacher from stage 1, and the auxiliary head’s
and teacher’s outputs are l2-normalised as in stage 1.

The supervised loss Ls(D; θb, θs) is a logit-adjusted ver-
sion of binary cross entropy, as proposed in [80], to address
any class imbalance (see the appendix for details). Moreo-
ever, to obtain the logits, we l2-normalise the feature vectors
and the weights of the last linear layer (and set its bias to 0),
thus obtaining a cosine classifier [103]. This combines bet-
ter with the auxiliary loss, which can also be cast in terms
of cosine similarity. Finally, the objective is given by

min
θb,θs,θa

Ls(D; θb, θs) + wLa(Dr; θb, θa), (4)

where w is a scaling factor, which we set to 1.
1In practice, the real samples for this stage include our auxiliary dataset

as well as the real samples from the forgery dataset.

Implementation details. The video teacher is transferred
from stage 1 and remains frozen henceforth. The back-
bone’s architecture is the same as the video backbone in
stage 1, and we initialise it with the learned weights. The
auxiliary head is comprised of a randomly initialised pro-
jector and predictor as in stage 1. The supervised head is a
cosine classifier, as previously described. A batch consists
of 32 fake and 256 real samples, to effectively make use of
the many more real samples available. We use the AdamP
optimiser with learning rate 3× 10−4 and the same prepro-
cessing and augmentations described in stage 1. We train
for 150 epochs and use the validation set for early stopping.

4. Experiments
Auxiliary dataset. We use the LRW dataset [28] without
the labels for our extra real samples. It contains 500,000
videos of talking faces with hundreds of different identities.
This dataset was also used by LipForensics [53], which al-
lows for fairer comparisons. In addition, its size strikes
a balance between meaningful results and non-prohibitive
computational costs. We present results for another dataset,
VoxCeleb2 [27], in Section 5.

Forgery datasets. We use the following forgery datasets:
(1) FaceForensics++ (FF++) [94] consists of 1,000 real
videos and 4,000 fake videos, generated using two face
swapping methods, Deepfakes [1] and FaceSwap [2], and
two face reenactment methods, Face2Face [99] and Neural-
Textures [98]. Unless stated otherwise, we use the mildly
compressed version of the dataset (c23). As in [53, 94],
we take the first 270 frames for each training video, and
the first 110 frames for each validation/testing video. (2)
FaceShifter [67] and (3) DeeperForensics [62] are state-
of-the-art face swapping methods that have been applied to
the real videos of FF++; we use the test videos, according to
the FF++ split. (4) CelebDF-v2 [72] is a challenging face
swapping dataset with 518 test videos. (5) DFDC is a subset
of the Deepfake Detection Challenge Dataset (DFDC) [37]
used in [53]. It features 3,215 videos, many of which have
been subjected to strong perturbations.

Evaluation metrics. Following e.g., [2, 53, 94, 114, 117],
we use accuracy and area under the receiver operating
characteristic curve (AUC) for evaluation. We use video-
level metrics: For a single video we first uniformly sample
non-overlapping clips and then average all clip predictions
across the video.

4.1. Cross-manipulation generalisation

A deployed detector is expected to recognise fake videos
that were created using methods not seen during training, a
non-trivial task in practice [53, 68, 85, 114]. In this section,
we follow the protocol used in [53, 70, 85] to evaluate our
detector’s ability to generalise to unseen manipulations.
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Method Train on remaining three

DF FS F2F NT

Xception [94] 93.9 51.2 86.8 79.7
CNN-aug [105] 87.5 56.3 80.1 67.8
Patch-based [19] 94.0 60.5 87.3 84.8
Face X-ray [68] 99.5 93.2 94.5 92.5
CNN-GRU [95] 97.6 47.6 85.8 86.6
LipForensics [53] 99.7 90.1 99.7 99.1
AV DFD [117] 100. 90.5 99.8 98.3
FTCN [114] 99.9 99.9 99.7 99.2

CSN 98.8 87.9 98.7 88.6
RealForensics (ours) 100. 97.1 99.7 99.2

Table 1. FF++ cross-manipulation generalisation. AUC scores
(%) for each FF++ manipulation type after training on the remain-
ing types. We use the test sets of Deepfakes (DF), FaceSwap (FS),
Face2Face (F2F), and NeuralTextures (NT), as well as the real test
videos. Top-2 best methods are underlined.

Table 1 shows results obtained by RealForensics on each
manipulation type in the FF++ dataset after training on the
remaining types. Our detector works on par with the state-
of-the-art without (1) using auxiliary labelled supervision
[53], (2) heavily constraining the network by freezing large
parts [53] or removing spatial convolutions [114], nor (3)
using audio at test-time [117]. We also outperform the base-
line of training a CSN [101] network on the forgery data
(with the same augmentations as RealForensics), indicating
the effectiveness of leveraging real data using our approach.

We also evaluate cross-dataset generalisation by train-
ing on FF++ and then testing a single model on un-
seen, challenging datasets: CelebDF-v2 [72], DFDC [37],
FaceShifter [67], and DeeperForensics [62]. The AUC re-
sults are given in Table 2. Our method achieves state-of-the-
art results on all datasets, suggesting that our detector per-
forms well when exposed to more advanced forgeries than
originally trained on. RealForensics also beats the CSN
baseline by a large margin. Finally, as seen in Table 3, we
achieve higher generalisation accuracy on FaceShifter and
DeeperForensics than related methods, with fewer network
parameters at test-time.

4.2. Robustness to common corruptions

In addition to good cross-manipulation generalisation,
detectors should also be able to withstand common cor-
ruptions that videos may be subjected to on social media.
We follow [53] to assess robustness to unseen perturba-
tions. As in [53], we train on FF++ with grayscale clips
and no augmentation other than horizontal flipping and ran-
dom cropping, to avoid any intersection between train- and
test-time perturbations. The set of perturbations, proposed

Method CDF DFDC FSh DFo Avg

Xception [94] 73.7 70.9 72.0 84.5 75.3
CNN-aug [105] 75.6 72.1 65.7 74.4 72.0
Patch-based [19] 69.6 65.6 57.8 81.8 68.7
Face X-ray [68] 79.5 65.5 92.8 86.8 81.2
CNN-GRU [95] 69.8 68.9 80.8 74.1 73.4
Multi-task [85] 75.7 68.1 66.0 77.7 71.9
DSP-FWA [71] 69.5 67.3 65.5 50.2 63.1
Two-branch [79] 76.7 — — — —
LipForensics [53] 82.4 73.5 97.1 97.6 87.7
FTCN [114] 86.9 74.0 98.8 98.8 89.6

CSN 69.4 68.1 87.9 89.3 78.7
RealForensics (ours) 86.9 75.9 99.7 99.3 90.5

Table 2. Cross-dataset generalisation. AUC scores (%) on
CelebDF-v2 (CDF), DeepFake Detection Challenge (DFDC),
FaceShifter (FSh), and DeeperForensics (DFo), after training on
FaceForensics++. Best results are in bold.

Method Settings Accuracy

Arch # params FSh DFo

LipForensics [53] RN+TCN [78] 36.0 87.5 90.4
FTCN [114] FTCN [114] 26.6 93.9 91.1
RealForensics (ours) CSN [101] 21.4 97.1 97.1

Table 3. Parameters and generalisation accuracy. Number of
parameters (in millions), at test-time, for related state-of-the-art
methods, and accuracy on FaceShifter (FSh) and DeeperForensics
(DFo) after training on FaceForensics++. Best results are in bold.

in [62], are changes in saturation and contrast, block-wise
occlusions, Gaussian noise and blur, pixelation and video
compression. Each perturbation type is applied at five dif-
ferent intensity levels. Table 4 presents the average AUC
across all intensity levels for each corruption type. Real-
Forensics suffers significantly less from common corrup-
tions than frame-based methods that target low-level cues,
such as [19, 68], and also outperforms LipForensics and
FTCN. (We use FTCN’s publicly available model2, which
was trained on FF++ c23.) We notice that, relative to Re-
alForensics and LipForensics, FTCN struggles on Gaussian
noise and video compression (see also Figure 4), which dis-
turb temporal coherence. This may be explained by FTCN’s
lack of spatial convolutions.

5. Ablations
In this section, we present ablations to understand the

factors responsible for our method’s performance. See the
appendix for more ablations.

Framework ablation. In Table 5, we ablate different com-
ponents of our method and inspect its generalisation per-

2https://github.com/yinglinzheng/FTCN
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Method Clean Saturation Contrast Block Noise Blur Pixel Compress Avg

Xception [94] 99.8 99.3 98.6 99.7 53.8 60.2 74.2 62.1 78.3
CNN-aug [105] 99.8 99.3 99.1 95.2 54.7 76.5 91.2 72.5 84.1
Patch-based [19] 99.9 84.3 74.2 99.2 50.0 54.4 56.7 53.4 67.5
Face X-ray [68] 99.8 97.6 88.5 99.1 49.8 63.8 88.6 55.2 77.5
CNN-GRU [95] 99.9 99.0 98.8 97.9 47.9 71.5 86.5 74.5 82.3
LipForensics [53] 99.9 99.9 99.6 87.4 73.8 96.1 95.6 95.6 92.5
FTCN [114] 99.4 99.4 96.7 97.1 53.1 95.8 98.2 86.4 89.5

RealForensics (ours) 99.8 99.8 99.6 98.9 79.7 95.3 98.4 97.6 95.6

Table 4. Robustness to common corruptions. Average AUC scores (%) across five intensity levels for each corruption type proposed
in [62]. We also present, for each method, the average score across all corruptions. Best results are in bold. For a more detailed analysis,
see the appendix.
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Figure 4. Robustness to compression. AUC scores (%) on Face-
Forensics++ (FF++) at various H.264 video compression rates (23,
30, 32, 35, 38, 40), after training on FF++ with light compression
(rate of 23).

formance on FaceShifter and DeeperForensics after train-
ing on FaceForensics++. We make the following observa-
tions. First, simply training a CSN [101] model without our
two-stage framework leads to a drop in accuracy of about
14%. Second, transferring the weights from stage 1 to the
video backbone and finetuning the network on forgery data,
without the auxiliary loss in stage 2, results in a drop of
about 2%. This suggests that forcing the network to pre-
dict the video representations along with its main task has
a positive regularisation effect. Finally, we observe modest
improvements by employing logit adjustment [80] for im-
balanced classification and using time masking and random
erasing [115].

Representation learning ablation. For stage 1 of our
method, we propose to learn temporally dense represen-
tations without contrasting negatives. Here, we test our
choices against alternatives. We train the network with
all combinations of the following settings: dense/global
representations, with/without negatives, and with/without a
predictor network. For global representation learning, we

average-pool the output of the backbone networks, and use
MLPs for the projector and predictor. To employ nega-
tives, we use a queue of 65,536 samples and use the In-
foNCE loss [88] with a temperature of 0.07. Note that
global learning with negatives is similar to cross-modal con-
trastive learning used in e.g., [76,82]. The predictor network
used for global learning is an MLP and for dense learning a
one-block transformer. Global learning with negatives and
a predictor is analogous to the recent image representation
learning method MoCo v3 [23], but for cross-modal learn-
ing. More information can be found in the appendix.

In Table 6, we show accuracy scores on FaceShifter and
DeeperForensics after training on FaceForensics++. We see
that dense representations lead to significantly better perfor-
mance than global. Also, consistent with the original BYOL
method, we find that without negatives and without a pre-
dictor the outcome is representation collapse [48]. Without
negatives and with global representations, no collapse was
observed (with a predictor), but we had trouble achieving
competitive performance. This may have to do with optimi-
sation difficulties encountered without contrastive learning,
since the subsequent inclusion of negatives yielded better
results. However, adding negatives does not seem to help
when we use dense learning (and a predictor).

Effect of number of real samples. Next, we vary the
number of LRW samples in both stages of our method to
see the effect on generalisation. As a baseline, we also con-
sider simply treating the problem as an imbalanced classi-
fication task, i.e., training the model with logit adjustment
(but without our proposed method). We can see in Figure
5 that RealForensics benefits from a large number of real
samples. Moreover, although generalisation for the base-
line does increase with more real samples, the increase is
significantly less than for RealForensics.

Using a different auxiliary dataset. Here, we use the
VoxCeleb2 dataset [27] for our extra real samples. It con-
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Method FSh DFo

RealForensics (ours) 97.1 97.1
only CSN 82.1 83.1
stage 1 + finetune 95.0 95.2
w/o logit adjustment 95.7 96.4
w/o time masking 96.1 95.9
w/o random erasing 96.3 96.3

Table 5. Framework ablation. Accuracy scores (%) on
FaceShifter (FSh) and DeeperForensics (DFo) after training on
FaceForensics++. Refer to subsection “Framework ablation” for
a discussion. Best results are in bold.
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Figure 5. Effect of number of real samples. Accuracy scores
(%) as a function of the number of real samples from LRW, in log-
scale. We show results for our method as well as a baseline where
we treat the task as an imbalanced classification one. We average
the accuracy of FaceShifter and DeeperForensics after training on
FaceForensics++.

Settings Accuracy (%)

Global/Dense Negatives Predictor FSh DFo

Global ✗ ✗ n/a n/a
Global ✗ ✓ 70.7 74.1
Global ✓ ✗ 87.9 88.6
Global ✓ ✓ 87.9 89.1
Dense ✗ ✗ n/a n/a
Dense ✗ ✓ 97.1 97.1
Dense ✓ ✗ 94.0 95.7
Dense ✓ ✓ 96.4 96.8

Table 6. Representation learning ablation. We ablate different
components of our representation learning stage (stage 1). Note
that “n/a” means that representation collapse was observed in stage
1. Refer to subsection “Representation learning ablation” for a dis-
cussion. Best results are in bold. Default setting is highlighted .

tains about 1 million videos of talking faces with various
identities. We train with the same hyperparameters as for
LRW. The AUC results (in %) on CelebDF-v2, DFDC,

FaceShifter, and DeeperForensics after training on Face-
Forensics++ are 82.9, 78.9, 99.3, and 98.8, respectively.
This suggests that competitive results can be obtained with
minimal tuning using a different dataset.

6. Limitations / Societal Impact
The strong generalisation of RealForensics comes at a

cost of higher computational demands during training than
methods that do not use auxiliary datasets; however, this
is not the case at test-time. Moreover, our detector takes
videos as input, and thus does not work for single im-
ages. Despite state-of-the-art accuracy, we also observe that
when our network produces wrong predictions, they are of-
ten confidently wrong, so the probabilities outputted by the
model should be interpreted with care. This issue of model
calibration is common in deep learning models [51], in-
cluding forgery detectors; thus, an important future direc-
tion would be to apply methods in calibration literature [51]
to detectors.

Although the purpose of research on forgery detection is
to protect society, there are a few concerns that should be
kept in mind. For example, pointing out the flaws in cur-
rent face forgeries could facilitate the development of even
better fake videos in the future. This, however, is less of an
issue for methods that do not target a specific cue, such as
RealForensics. Further, it is not prudent for a deployed sys-
tem to rely exclusively on a single detection method. For
greater effectiveness, it should employ an ensemble of in-
dependent approaches.

7. Conclusion
In this paper, we propose RealForensics, an approach

that uses large amounts of unlabelled real data to detect fake
videos. We have shown that our method simultaneously
achieves strong cross-manipulation generalisation and ro-
bustness to common corruptions. We hope our study en-
courages future research on leveraging real faces for robust
forgery detection.
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Method Accuracy (%) AUC (%)

Raw c23 c40 Raw c23 c40

Xception [94] 99.0 97.0 89.0 99.8 99.3 92.0
CNN-aug [105] 98.7 96.9 81.9 99.8 99.1 86.9
Patch-based [19] 99.3 92.6 79.1 99.9 97.2 78.3
Two-branch [79] — — — — 99.1 91.1
Face X-ray [68] 99.1 78.4 34.2 99.8 97.8 77.3
CNN-GRU [95] 98.6 97.0 90.1 99.9 99.3 92.2
LipForensics [53] 98.9 98.8 94.2 99.9 99.7 98.1
FTCN [114] — 99.1 — — 99.8 98.3

RealForensics (ours) 99.3 99.1 96.1 99.9 99.8 99.5

Table 7. In-distribution performance. Accuracy and AUC scores
on the test set of FaceForensics++ (FF++) after training on FF++.
We repeat experiments for the dataset’s three compression types:
raw (no compression), c23 (mild compression), and c40 (strong
compression. Best results are in bold.

Ours LipForensics [53] FTCN [114]

ForgeryNet 71.8 66.7 57.3

Table 8. Generalisation to ForgeryNet. AUC scores (%) on the
val set of ForgeryNet after training on FF++. Best results are in
bold.

A. More Experiments

A.1. In-distribution performance

Although our approach has been developed for cross-
manipulation generalisation and robustness, for complete-
ness we present results for in-distribution performance in
Table 7. For each compression level (raw, c23, c40), we
train on the training set and show results on the correspond-
ing test set. We are on par with the state-of-the-art in the
no/low compression regime, while outperforming the other
methods on the more compressed data.

A.2. Generalisation to ForgeryNet

In Table 8, we provide results on generalisation perfor-
mance to the newly-released ForgeryNet dataset [56]. We
compare our model with the publicly-available LipForen-
sics and FTCN models (all trained on FF++). RealForensics
significantly outperforms both.

A.3. Detailed analysis of robustness

Following [53], we present more detailed results on ro-
bustness by plotting AUC as a function of corruption sever-
ity (see Figure 7). On average, RealForensics deteriorates
less abruptly as severity increases than other methods, with
especially noteworthy results on video compression, which
is ubiquitous on social media. We also highlight our sig-
nificantly higher results over LipForensics on block-wise

13



Clean Saturation Contrast Block-wise

Gaussian Noise Gaussian Blur Pixelation Compression

Clean Saturation Contrast Block-wise

Gaussian Noise Gaussian Blur Pixelation Compression

Figure 6. Examples of corruptions. A clean frame from a real
FaceForensics++ video along with the same frame but corrupted
with various perturbations. For more information on this set of
corruptions, see [62].

Crop Acc (%) AUC (%)

FSh DFo FS

Full face 97.1 97.1 97.1
Mouth 95.5 95.0 88.9

Table 9. Full face versus mouth. Accuracy and AUC scores when
training on full faces and mouth crops. We test on FaceShifter
(FSh) and DeeperForensics (DFo) after training on FaceForen-
sis++ (FF++). We also test on FaceSwap (FS) after training on
the remaining three FF++ types. Best results are in bold. Default
setting is highlighted .

distortions (i.e., occlusions), which are likely influenced by
our method’s use of the whole face rather than solely the
mouth. For example, in some cases the mouth may be oc-
cluded while other parts of the face are not.

A.4. More ablations

Full face versus mouth. In the main text, we argue that fo-
cusing only on the mouth region, like LipForensics [53],
may be suboptimal for performance. We validate this by
training (for both stages 1 and 2) on mouth crops and com-
paring the performance with the default setting. As shown
in Table 10, our method consistently benefits from using the
full face rather than the mouth, which was not observed for
LipForensics [52]. This may be due to the cross-modal pre-
diction task being more general than lipreading. For exam-
ple, the video network is encouraged to retain information
about the eyes to better model expression (which correlates
with audio); on the other hand, a model trained to perform
lipreading may focus predominantly on the mouth region.

Effect of clip size. Table 9 shows the effect on generalisa-
tion when changing the video clip size (default is 25 frames
per clip). We observe that generalisation improves with clip

Clip size (# frames) 5 10 15 20 25 30

DeeperForensics 88.2 95.0 96.1 96.4 97.1 97.4
FaceShifter 87.9 93.4 95.4 95.7 97.1 96.7

Table 10. Effect of clip size. Accuracy (%) as a function of the clip
size. We test on FaceShifter and DeeperForensics after training on
FaceForensis++. Best results are in bold.

Backbone FSh DFo

CSN 97.1 97.1
ResNet+MS-TCN 94.0 95.7

Table 11. Backbones. Accuracy scores (%) on FaceShifter (FSh)
and DeeperForensics (DFo) after training on FaceForensics++. We
show results for two different backbones. Best results are in bold.
Default setting is highlighted .

size, up to a point.

Different backbone. Our default video backbone is a CSN
network [101]. In Table 11 we also show generalisation re-
sults for ResNet+MS-TCN [78], used in [53]. We signif-
icantly outperform LipForensics with the same backbone
and auxiliary dataset (compare with Table 3 in the main
text), without requiring any auxiliary labels.

Projector and predictor. We propose in the main text to
use a single linear layer as our projector and a shallow trans-
former as the predictor. In Table 12, we show generalisation
results when using different types of projectors/predictors.
Since we output dense representations, the linear layers in
the MLPs can be thought of as convolutional layers with
kernel size 1. We use a learning rate of 3× 10−4 when em-
ploying MLP predictors, as we found it to perform best in
that setting.

Notably, we observe that using a transformer improves
results over the MLP variant. This suggests that allowing
the predictor to model temporal dynamics can benefit rep-
resentation learning for our task. Further, in Table 13 we
show results for a 1-block and a 2-block transformer pre-
dictor. We find that the 1-block variant performs slightly
better.

Different contrastive baselines. As mentioned in the
main text, self-supervised methods that aim to learn
representations for lipreading tend to contrast samples from
the same video to achieve invariance to identity [4, 29, 30].
Here, instead of our proposed non-contrastive approach,
we apply the strategy of the audiovisual method Perfect
Match [30] for stage 1 of our method. For fair comparison,
we use the same backbones as for RealForensics. We
follow the instructions from the paper for implementation.
In particular, the inputs to the video and audio backbones
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Figure 7. Robustness to unseen perturbations. AUC scores (%) on FaceForensics++ samples which have been corrupted by various
unseen perturbations of varying severity. We also present the average scores across all perturbations. All methods were trained on FF++
without these corruptions. To avoid visual clutter in the plots, we show results for five representative methods. For more results, see [53]
and [114].

Settings Accuracy (%)

Projector Predictor FSh DFo

Linear MLP 91.8 92.9
Linear Transformer 97.1 97.1
MLP MLP 91.1 92.5
MLP Transformer 96.1 97.5

Table 12. Projector and predictor. We test different types of
projectors and predictors for the representation learning stage of
our method (stage 1), and see how generalisation to FaceShifter
(FSh) and DeeperForensics (DFo) is affected after training on
FaceForensics++. Refer to subsection “Projector and predictor”
for a discussion. Best results are in bold. Default setting is
highlighted .

are 5-frame video clips and 20-frame log mel spectrograms.
Each network yields a single feature (via a temporal pool-
ing layer). Then, for a single video feature, a contrastive
loss is employed to match it to its aligned audio feature
while repelling misaligned ones from the same video. We
found that symmetrising this loss by additionally adding
the loss corresponding to the reversal of the roles of the
video and audio features yielded improvements; we refer
to this variant as Perfect Match++. The results in Table 14
suggest that our proposed method, which does not target

# blocks FSh DFo

1 97.1 97.1
2 96.8 96.4

Table 13. Number of transformer blocks. Accuracy scores (%)
on FaceShifter (FSh) and DeeperForensics (DFo) after training on
FaceForensics++. We show results for a 1-block and a 2-block
transformer predictor. Best results are in bold. Default setting is
highlighted .

Method FSh DFo

PMatch 91.4 87.9
PMatch++ 91.8 90.2

RealForensics (ours) 97.1 97.1

Table 14. Different contrastive baselines. Accuracy scores (%)
on FaceShifter (FSh) and DeeperForensics (DFo) after training
on FaceForensics++. We show results by employing the learning
strategy of Perfect Match [30] (PMatch) for stage 1 of our method.
We also use a symmetrised version of Perfect Match, which we
call PMatch++. Best results are in bold.

identity invariance, is better suited for forgery detection.

Visual-only representation learning. Although it is natu-
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Type FSh DFo

Visual 92.9 89.7
Audiovisual 97.1 97.1

Table 15. Visual versus audiovisual representation learning.
Accuracy scores (%) on FaceShifter (FSh) and DeeperForensics
(DFo) after training on FaceForensics++. We compare visual-only
with audiovisual representation learning (using BYOL-style train-
ing) for stage 1 of our method. Best results are in bold. Default
setting is highlighted .

ral to use the correspondence between the visual and audi-
tory modalities to capture information related to facial be-
haviour and appearance, we present here some preliminary
results on using only the visual modality in the representa-
tion learning stage. To this end, we extend BYOL to the
video setting by using a single student-teacher pair. As is
the case for the cross-modal task, the network outputs tem-
porally dense representations, and we use a transformer for
the predictor. We apply the augmentations proposed in [48]
to each frame, consistently across the whole video. The re-
sults in Table 15 indicate that our proposed cross-modal task
strongly benefits generalisation, likely because audiovisual
correspondence provides a richer signal for encoding natu-
ral facial movements and expressions. We leave for future
work the investigation of more effective video augmenta-
tions that could further improve the visual-only baseline.

B. Further Implementation Details
B.1. Preprocessing

We use RetinaFace [36]3 for face detection and a 2-D
FAN network [14]4 to extract 68 facial landmarks. For each
frame, we take the mean landmarks around a 12-frame win-
dow to reduce motion jitter and then affine warp to LRW’s
mean face based on eight stable points.

B.2. Dataset details

We provide further details on the used datasets. The li-
censes of all datasets permit their use for research purposes.

FaceForensics++ [94] (FF++). We use the dataset
from the official webpage5. We use the provided
train/validation/test splits, which include 720 training, 140
validation, and 140 test videos, respectively.

FaceShifter [67]. We use the dataset (at compression c23)
from the FF++ webpage. Its real videos come from FF++.
Note that we do not treat FaceShifter as part of FF++, con-
sistent with the original paper [94].

3https://github.com/biubug6/Pytorch_Retinaface
4https://github.com/1adrianb/face-alignment
5https://github.com/ondyari/FaceForensics

DeeperForensics [62]. We use the dataset from the official
webpage6. Its real videos also come from FF++ c23.

CelebFD-v2 [72]. We use the dataset from the official
webpage7.

DFDC [37]. We use a subset of the dataset from the offi-
cial webpage8. This subset was used in [53] and features
single-subject videos for which the face and landmark de-
tectors did not fail (since many videos have been subjected
to extreme perturbations).

B.3. Architecture and training details

Supervised loss details. As described in Section 3.2 of the
main text, we use a cosine classifier for our supervised head
and also employ logit adjustment [80] to address data imbal-
ance. Given the (average-pooled) output e of the backbone
network and the weight vector w of the supervised head’s
linear layer, the normalised score of a sample’s “fakeness”
during training is given as

p =
1

1 + e
−
(
s w·e
∥w∥2∥e∥2

+log π
1−π

) , (5)

where s = 64 scales the cosine similarity, as in e.g., [103],
and π is the prior probability of a sample being fake, as
described in [80]. We set π to be the ratio of fake samples
to the batch size. We found using cosine similarity (i.e.,
normalising the feature and weight vectors) yielded slight
improvements; the ablation on logit adjustment is given in
Table 5 of the main text. The supervised loss Ls(D; θb, θs),
introduced in Section 3.2 of the main text, is simply the
standard binary cross entropy acting on these scores.

Random masking. We apply random erasing to video
frames with probability 0.5, scale of (0.02, 0.33), and ra-
tio of (0.3, 3.3). Moreover, we randomly erase a random
number of video frames, ranging from 0 to 12, a random
number of audio frames, ranging from 0 to 48, and a ran-
dom number of mel filters, ranging from 0 to 27. This is
applied with probability 0.5.

Backbones. Our video backbone is a modified Channel-
Separated Convolutional Network (CSN) [101], chosen for
its high accuracy in video action recognition [101] in con-
junction with its relatively low parameter count. Unlike the
original architecture, we set the temporal strides to 1 for all
layers, thus preserving the temporal dimension. See Table
16 for more information.

6https : / / github . com / EndlessSora /
DeeperForensics-1.0/tree/master/perturbation

7https : / / github . com / yuezunli / celeb -
deepfakeforensics

8https://ai.facebook.com/datasets/dfdc
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Figure 8. Occlusion sensitivity analysis. Occlusion sensitivity
examples for FaceForensics++ types. The faces have been blurred
to preserve anonymity.

Our audio backbone is a ResNet18 [55]. We modify the
temporal strides to match the output size of the video back-
bone. In particular, the stem subsamples the temporal di-
mension by 4, after which no further temporal subsampling
is performed. See Table 17 for more information.

Details on MLPs used in ablations. In the ablations
where we use MLPs for the projector and/or predictor,
we follow the design proposed in [22], as we found it to
perform well. Thus, the projector MLP has 3 layers with
hidden dimension 2048, and each layer is followed by
batch normalisation (BN); the output layer has no ReLU
activation. The predictor MLP has 2 layers with hidden
dimension 512 and output dimension 2048, and the output
layer has no BN nor ReLU.

Further details on contrastive experiments. We provide
more details on the experiments with contrastive learning
given in Table 6 of the main text. For dense representa-
tion learning, the output of the network consists of 25 em-
beddings (one for each video frame); we select a random
embedding to add to the queue of negative samples. We
also use shuffling batch normalisation to prevent the net-
work from cheating on the pretext task [54].

C. Visualisation
We use occlusion sensitivity analysis [110] for visuali-

sation, as in [53]. We systematically occlude, in a sliding-
window fashion, parts of the video via random erasing of
size 40 × 40 × T (where T is the number of frames). We
record for each occluded pixel the effect that the occlusion
has on the model predictions. A heatmap is produced by
averaging the output probabilities for each pixel. After nor-
malisation, we overlay the heatmap on the first video frame.
We show examples for FaceForensics++ in Figure 8. We see
that for NeuralTextures and Face2Face (first two examples),
which modify expressions, our network usually focuses on
the mouth region. On the face-swapping types, we observe
that sometimes the network focuses on the mouth and some-
times on other facial regions.

stage filters output size

conv1 3× 7× 7, stride 1× 2× 2 25× 56× 56

pool1 max, 1× 3× 3, stride 1× 2× 2 25× 28× 28

res1

1× 1× 1, 256
3× 3× 3, 64
1× 1× 1, 256

× 3 25× 28× 28

res2

1× 1× 1, 512
3× 3× 3, 128
1× 1× 1, 512

× 4 25× 14× 14

res3

1× 1× 1, 1024
3× 3× 3, 256
1× 1× 1, 1024

× 23 25× 7× 7

res4

1× 1× 1, 2048
3× 3× 3, 512
1× 1× 1, 2048

× 3 25× 4× 4

pool2 global spatial average pool 25× 1× 1

Table 16. Video backbone architecture. The architecture of the
modified CSN [101] network that we employ for the video back-
bone. The layers in the bottleneck blocks, shown in brackets, use
depthwise convolutions. Next to the brackets we give the number
of times the blocks are repeated in each stage. The output size is
of the form T ×H ×W , where T denotes time, H height, and W
width. Note that differently from the original architecture [101],
we do not subsample the temporal dimension at any stage and also
only use spatial pooling at the end, rather than spatio-temporal,
since we employ dense learning.

stage filters output size

conv1 7× 7, stride 2× 2 50× 40

pool1 max, 3× 3, stride 2× 2 25× 20

res1

[
3× 3, 64
3× 3, 64

]
× 2 25× 20

res2

[
3× 3, 128
3× 3, 128

]
× 2 25× 10

res3

[
3× 3, 256
3× 3, 256

]
× 2 25× 5

res4

[
3× 3, 512
3× 3, 512

]
× 2 25× 3

pool2 global frequency average pool 25× 1

Table 17. Audio backbone architecture. The architecture of our
modified ResNet18 [55] network that we employ for the audio
backbone. The layers in a residual blocks are in brackets, next to
which we give the number of times the blocks are repeated in each
stage. The output size is of the form T ×F , where T denotes time
and F mel filters. Note that differently from the original archi-
tecture [55], we do not subsample the temporal dimension at any
stage and also only use mel frequency pooling at the end, since we
employ dense learning.
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