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Fig. 1. Avatars rendered and driven by our system. These images highlight the quality of the renders produced by our system. On the left, we show
renders of the learned avatars, and on the right, a view of the avatar as driven in our real-time system.

Interacting with people across large distances is important for remote work,
interpersonal relationships, and entertainment. While such face-to-face in-
teractions can be achieved using 2D video conferencing or, more recently,
virtual reality (VR), telepresence systems currently distort the communica-
tion of eye contact and social gaze signals. Although methods have been
proposed to redirect gaze in 2D teleconferencing situations to enable eye
contact, 2D video conferencing lacks the 3D immersion of real life. To ad-
dress these problems, we develop a system for face-to-face interaction in
VR that focuses on reproducing photorealistic gaze and eye contact. To do
this, we create a 3D virtual avatar model that can be animated by cameras
mounted on a VR headset to accurately track and reproduce human gaze
in VR. Our primary contributions in this work are a jointly-learnable 3D
face and eyeball model that better represents gaze direction and upper facial
expressions, a method for disentangling the gaze of the left and right eyes
from each other and the rest of the face allowing the model to represent
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entirely unseen combinations of gaze and expression, and a gaze-aware
model for precise animation from headset-mounted cameras. Our quanti-
tative experiments show that our method results in higher reconstruction
quality, and qualitative results show our method gives a greatly improved
sense of presence for VR avatars.
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1 INTRODUCTION
Eye contact is a strong and important social signal [Chen 2002], and
humans can accurately estimate where someone’s eyes are pointing
just by looking at them [Cline 1967; Gibson and Pick 1963]. Recent
efforts in image-space gaze-correction [Kononenko et al. 2018; Wolf
et al. 2010] demonstrate the importance of achieving eye-contact in
a telepresence application, but such methods are motivated by the
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inherent conflict between looking at the screen (your conversation
partner) and the camera (for perceived eye-contact). A photorealistic
avatar viewed in 3D, e.g., in virtual reality, offers the unique benefit
that eye contact can potentially be enabled by simply looking at
someone’s eyes.
Our goal is to build a system that enables remote communica-

tion for anyone across the planet. Unfortunately, existing avatar
technology is limited in these areas. Conventional computer graph-
ics rigs and rendering approaches can produce an avatar of high
quality, but require significant manual artist work and are therefore
costly to scale to the general population. Image-space generative
models, such as StyleGAN [Karras et al. 2018], can synthesize ex-
tremely crisp photorealistic images of faces, and do so at large scales
in an automated fashion. Reliably controlling the output of these
unsupervised methods, however, is still an open research problem.
Recently, Lombardi et al. [2018] proposed a hybrid of machine

learning and conventional graphics methods to render and control
photorealistic avatars in real-time and Wei et al. [2019] introduced
an improved method for driving these avatars. There are, however,
numerous problems with the quality of the appearance of the eyes
in these models: novel combinations of gaze and expression produce
an uncanny appearance of the face, the fixation of the eyes cannot be
explicitly controlled, and where it can be controlled it cannot verge
to novel depths. All of these factors lead to a poor gaze representa-
tion and eye appearance, making eye contact impossible. We will
propose and evaluate a number of potential improvements to this
model’s generalization behavior, but on their own, each improve-
ment in generalization comes at the cost of poorer reconstruction
quality.
To achieve the best of both worlds, we propose a novel model

for joint eye and face appearance that leverages the strengths of
machine learning while drawing inspiration from conventional com-
puter graphics models of the eye to improve generalization and
reconstruction quality. Our model combines an improved geometric
representation of the eye with the losses described above to ensure
that the surrounding facial mesh matches the eye’s behavior. In
order to ensure a seamless transition between this new eyeball ge-
ometry and the rest of the face, we jointly optimize the full facial
appearance using differentiable rendering to match observed images.
The result is a model with precise and direct control over apparent
gaze, and improved fidelity of eye appearance.
Not only can we render eyes and faces with higher quality, we

can also drive them in real-time using VR headset-mounted cam-
eras (HMC). As Wei et al. [2019] showed, obtaining high-quality
correspondences between the capture stage and real-time driving
domains is important if we are to drive our avatar. One of our contri-
butions in this work is to provide a novel avenue for cross-domain
correspondence, in the form of face state and explicit gaze direc-
tions. We show that if we have gaze information in the capture stage
domain, and likewise in the real-time domain, we may use these
corresponding gaze directions to ensure that the driven avatar re-
spects the driver’s eye orientation far more precisely than previous
methods. This is one condition required to provide a sense of eye
contact.

2 RELATED WORK

2.1 Modeling Human Face and Eyes
There is a long history in computer graphics of creating high-fidelity
rigs of human faces [Alexander et al. 2009; Bergeron and Lachapelle
1985; Porter 1997] although few approaches focus primarily on the
eyes [Francois et al. 2009]. Recently, however, Bérard et al. [2014]
developed a high-quality capture system and model for human eyes.
This work was the first major attempt to model all parts of the
eye from an image-based capture system. Bérard et al. [2016] later
extended this work by enabling fitting of the eye model from a
less-constrained capture setup. The approach in this work is similar
to ours as both methods use multi-view data to estimate an eye
model. Rather than fitting just to features extracted from the images,
however, our method learns a face and eyemodel bymatching image
data pixel-for-pixel using differentiable rendering to better achieve
realism [Kato et al. 2018; Liu et al. 2019; Loper and Black 2014].
Wen et al. [2017]; Wood et al. [2016] do optimize their gaze-focused
models using pixel losses, but do not aim for both photorealism and
realtime applications.

Many recent approaches inmachine learning attempt tomodel the
face and eyes in image-space [Karras et al. 2018], some with explicit
controls on the output images [Chen et al. 2016; Radford et al. 2016].
Although these approaches generate extremely realistic images, they
do not model the 3D geometry of the face and therefore it is difficult
to explicitly produce smooth, realistic changes in viewpoint.
Some methods incorporate additional 3D geometry to alleviate

this. Cao et al. [2016] produce an image-based avatar with a mor-
phable head and hair model with billboards to represent the eyes
and inner mouth. Though they explicitly model eyes, they are not
full 3D models, nor are they learned from images, which limits the
realism of their appearance.
Lombardi et al. [2018] proposed a data-driven model of the face

learned from multi-view image data with tracked mesh. The main
idea is to use a variational autoencoder [Kingma and Welling 2013]
to jointly model geometry and view-dependent texture, similar to
active appearance models [Cootes et al. 1998]. A main feature of the
work is that it is heavily data-driven, and therefore can reproduce
realistic facial appearance and motion. We improve upon this model
by addressing many of its shortcomings with respect to the eyes.
While doing so, we develop a simple gaze tracking approach to en-
able explicit control of the eyeball model. Compared to approaches
that attempt to track gaze in the wild using a limited set of cameras
[Fischer et al. 2018; Park et al. 2019; Ranjan et al. 2018], our ap-
proach is more specialized and simplified because the environment
is controlled.

2.2 Face and Eye Tracking for VR Animation
Tracking human faces and eyes in VR is challenging as they are
largely occluded by the headset itself. This makes it difficult to find
correspondences between images captured from the headset renders
of the avatar.
Olszewski et al. [2016] regress from mouth and eye images cap-

tured by headset-mounted cameras to animation parameters whose
correspondence is learned by performing dynamic time-warping
between headset training data and non-headset training data. This
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(a) Expression with Unseen Gaze (b) Unseen Vergence Depth (c) Missing Geometry (d) Rare Expression

Fig. 2. Failure Cases of Deep Appearance Models. (a) Rendering expressions with novel gaze directions not observed during training may produce
uncanny distortions and blurring. (b) The model may fail to converge the eyes at distances other than those observed during training (lines represent the gaze
vectors given as input). (c) As their model lacks geometry on the eyeball surface, it fails to generalize to novel views (missing geometry in blue). (d) For rare
expressions, the eye fidelity is lower than for more common expressions, particularly in the sharpness of glints (or lack thereof). Any one of these failures can
result in a model which fails to evoke a feeling of eye contact.

method produces non-photorealistic avatars. FaceVR [Thies et al.
2016] builds a personalized avatar model from images, and a cam-
era outside the headset is used to track a blendshape model of the
face. The eyes are represented using an image retrieval approach,
whereby an appropriate exemplar is found in the training database
based on expression and gaze direction.

Wei et al. [2019] presented a method to find correspondences be-
tween HMC images and the latent state of photoreal avatars based
on the idea of analysis-by-synthesis andmultiview image style trans-
fer. By minimizing a self-supervised reconstruction loss in the image
domain through differentiable rendering, avatar animation quality
and realism is greatly improved. Their use of generative adversar-
ial networks (GANs), however, requires complicated distribution
matching schemes, and slight mismatches between distributions
can cause gaze directions in the image to be altered during style
transfer. This is hard to fix because the avatar does not allow any
explicit eye control.

In this work, we improve this method by performing style transfer
in texture space instead of image space, andwe estimate explicit gaze
directions from HMC images for driving the proposed eyeball model.
While this component is similar to many eye tracking systems in
VR, such as Tobii VR [2018], in this work we present a model that
jointly predicts personalized gaze and facial expression in realtime.

3 THE PATH TO EYE CONTACT
Our goal is to build a system to enable virtual telepresence, using
photorealistic avatars, at scale, with a level of fidelity sufficient to
achieve eye-contact. Physically inspired representations [Seymour
et al. 2017], can generate renderings with high realism, but heavily
depend on accurate estimates of geometry and reflectance properties
of the eye and periocular region that are challenging to acquire
automatically in practice.
Recent data-driven representations [Lombardi et al. 2018] ob-

viate the need for highly accurate geometry by simulating view-
dependent effects on imperfect geometry using neural networks.
As shown in Fig. 2, however, these approaches generalize poorly
to viewpoints, gaze directions and gaze-expression combinations

not seen during training. As a result, this approach fails to capture
real gaze and eye contact necessary for achieving a sense of social
presence during during telepresence.
Despite its aforementioned shortcomings, the method proposed

by Lombardi et al. [2018] can offer simple scalability if we can
address its shortcomings regarding generalization. Their method
accurately reproduces conditions seen during training, but cannot
do the same for unseen or rare conditions, such as novel vergence
combinations. This range of eye motion, while rare in their capture
process, is common in natural situations. A failure to reproduce it
can lead to uncanny interactions.
We address this limitation in a two-fold approach. First, we

separate the facial model into spatially disjoint regions such that
the eyes can be controlled independently. To increase the preci-
sion with which we may control the eyes, we replace the wholly-
uninterpretable latent space with one where gaze information is
treated as a separate signal which we may provide directly. This
gives us more precise gaze control, and also introduces an addi-
tional avenue for correspondence between the capture system and
realtime headset domains.

These improvements, applied on their own, allow the avatar rep-
resentation to better represent novel vergence and gaze/expression
combinations at the cost of overall reconstruction quality. To coun-
teract this, we employ an explicit eyeball model (EEM) that bet-
ter captures eye geometry and motion. Simply applying existing
methods to learn this new representation results in artifacts where
the eye meets the coarse face mesh. We optimize our model using
differentiable inverse rendering to allow the mesh and texture to
best-explain observed images beyond the available geometric super-
vision. The full process is described in Fig. 3 and in more detail in
§4 and §5.
To drive this joint eye and face model in realtime, we build on

the method of Wei et al. [2019]. We take advantage of our newly-
introduced gaze signals as an additional avenue for correspondence
between headset images and rendered avatars, allowing us to mea-
sure how well the avatar’s gaze is matching the user’s appearance.
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Fig. 3. Joint Eye and Face Appearance Model. Given an encoding of gaze-independent facial expression z (§4.2, §5.2.1), along with estimated left/right
gaze vectors g (§4.1), and viewpoint v, we produce geometry and view-dependent texture for the face with independent left/right eye control (§4.3), as well as
a separate texture for the eyeball (§5.1). We orient a simple geometric model for the eyeball (§4.1) based on gaze estimates, and render the entire eye and face
model differentiably. We optimize the system with inverse rendering to match captured images. In §6, we show that we may drive this model in real-time from
a VR headset.

We simplify their approach, which relied image-space style transla-
tion, with a texture-space conversion from color avatar textures to
IR headset textures. Thanks to our improvements, the avatar’s gaze
can be controlled independently and, by predicting independent
gaze signals from left and right eye cameras in the headset, we can
ensure the model generalizes well to novel fixation directions.

4 AVATAR GAZE CONTROL
We start by proposing a series of modifications to deep appearance
models allowing them to reconstruct new vergence conditions that
are unseen in the training data but are crucial for real social inter-
actions. Each of the proposed steps will improve generalization at
the cost of fidelity, but in §5, we introduce a model that more than
counteracts this degradation. To support these investigations, we
will first augment an existing training dataset with gaze tracking.

4.1 Multi-View Gaze Estimation
In this work, wewould like to provide gaze as a conditioning variable
for the decoder to enable explicit gaze control and also to use it
for cross-domain correspondence in later sections. To do so, we
must first estimate it from multi-view training images by tracking
the subject’s eyes. For each frame, we detect 8 keypoints along the
limbus in 12 different input views using a detector similar to Li
et al. [2019]. We then fit a geometrical eye model to each sequence,
including a per-frame estimate of each eye’s orientation.
Fig. 4a illustrates the simplified eye model we use to track gaze.

The model represents an eye using two spheres: an eyeball sphere to
represent the sclera and center of rotation, and an offsetted sphere
to represent the corneal surface. The model consists of five per-
sequence parameters: eyeball sphere center ce ∈ R3 relative to the
head, iris depth di , iris radius ri , corneal sphere depth dc , and angle
κ ∈ R3. κ represents the angle between the optical axis and the
visual axis (i.e., the direction a person looks in when they fixate on
a point in space), which we parameterize as an axis-angle rotation
vector. Additionally, for each frame, we parameterize gaze direction
as the unit vector parallel to the visual axis, and we concatenate left
and right eye gaze directions into a single vector g ∈ R6. To build a

Iris

Eyeball Center
of Rotation

Iris Radius

Cornea

Optical Axis

Visual
Axis

Mesh Vertices

Corneal Depth

Iris Depth

Limbus

Fig. 4. Eyeball Geometry Model. The geometry is defined as the surface
formed by the union of two spheres, linearly blended around the boundary.
The model parameters, shown above, fully define the shape and are fit
using multi-view iris keypoint detections. For later use as cross-domain
correspondence, we estimate the visual axis using LED fixation targets.

3D triangle mesh of the eye, we blend the corresponding vertices of
each sphere together based on the signed angle from sphere center
to the iris contour using a smoothstep function (see A for details).
To fit this model to the data, we project 3D points on the iris

contour into the image andminimize the distance to the 2D keypoint
detections. We estimate the visual axis using 9 LED fixation targets
with known positions. Fig. 5 shows an example of the quality of the
fitting process and corresponding keypoint detections. Note that
this fitting only works when keypoints are detected in the image.We
will discuss in §5.2.2 how we automatically deal with cases where
the keypoint detector fails, including when the iris is occluded by
the eyelids.

Although the true geometry andmotion of the eye is very complex
(as shown in Bérard et al. [2014]), we use the simple model described
in Fig. 4a for two important reasons. First, the geometry is fully
parametric and can be produced in a differentiable fashion. This is
important for learning, as we will eventually refine these estimates
using differentiable rendering (§5.2.2). Second, the geometry can
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Fig. 5. Eyeball Fitting Results. Shown are iris keypoints used for fitting,
along with the reprojected limbus contour (the circle formed by the intersec-
tion of the eyeball and cornea sphere surface) and the center of the eyeball
sphere (blue/red points). Given sufficient views, orientation estimates are
robust to noise in keypoint predictions.

be produced using only simple operations and has relatively few
polygons. This is important if we are to render the eyes in a real-
time system, especially if we need to render at the high framerates
used in modern VR displays.

4.2 Gaze-Conditioning in Deep Appearance Models
A straightforward approach to allow independent control of gaze
and expression in a deep appearance model would be to provide gaze
direction as an explicit gaze conditioning input g, to the decoder
network (in addition to the expression code), with g ∈ R6 the
concatenated left and right gaze directions.

Simply using gaze direction estimates as an additional condition-
ing input, however, is not sufficient to create a model that offers
direct gaze control. It has been shown that merely providing addi-
tional inputs to a VAE-based model does not guarantee that they
will be used [Higgins et al. 2017]. If the VAE encoder is able to infer
the content of the conditioning input, it may place that content in
the latent code z and the conditioning input may be ignored by the
decoder. This process of entangling signals in the latent space has
been studied in the past, and various methods have been proposed
to learn disentangled representations (e.g., FaderNets [Lample et al.
2017] and MINE [Belghazi et al. 2018]).

We use an approach inspired by FaderNets, wherein we generalize
their adversarial discriminator and classifier to the continuous case,

ℓdis = ∥g −C(z|θdis)∥
2
2 (1)

z ∼ Ef

(
Ḡf , T̄af |θf

)
, (2)

where C is a 2-layer MLP with input z, trained adversarially to
minimize ℓdis w.r.t. parameters θdis, while maximizing ℓdis w.r.t. the
VAE encoder Ef with parameters θf , which takes tracked geometry
Ḡf and average texture T̄af as inputs and samples z (see Fig. 3).

Adding a disentangling loss allows us to drive the apparent gaze
of the model independent from the expression, but unfortunately,
this control comes at the cost of reconstruction quality as we see in
Fig. 2a and quantitatively in §7.1. Furthermore, and perhaps more
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Fig. 6. Latent Space Partitioning. To ensure proper control of the model’s
apparent gaze directions at all vergence distances, the model must allow for
independent control of each eye. With no additional losses, however, the
model will take advantage of correlations in the training data to minimize
the capacity dedicated to independent eye appearance. We avoid this by
breaking the latent space into segments for the left eye, right eye, and face,
and penalizing the gradient of unrelated facial areas w.r.t. each segment
(i.e., changing the left eye latent code or gaze does not change the right side
of the face).

important for eye-contact, Fig.2b highlights a particular form of
overfitting present in the model: the eyes cannot converge at any
other distance than the one in the training data. To be precise, the
model’s eyes converge roughly at 1 meter from the face, which
corresponds to the radius of the capture system used in Lombardi
et al. [2018]—indeed, everything in the subject’s field of view during
a data capture lies at this distance. To achieve eye contact, or indeed
vergence at any other distance, we must therefore overcome an
important limitation of deep appearance models: they tend not to
generalize to situations that do not occur in the training data.

4.3 Region Separation
As we saw in Fig. 2b, even with direct gaze control, if we provide
a novel combination of previously-seen left/right gaze directions
(such as a new vergence depth), the model is unable to reproduce
it. Since we only provide training examples at a fixed vergence
depth, the left and right gaze signals are highly redundant. We could
remedy this by collecting training examples at multiple vergence
depths but this would add yet another axis to the already large data
collection space.
For maximum generalization ability, we want a model that re-

spects the causal independence of the left and right eyes. While
they are naturally correlated, their movements are physically in-
dependent [Dell’Osso 1994]: when we give a signal to move one
eye, the other should not move. We can conceive of a model that
achieves this property by behaving in the following way: the left
eye region changes only if the left eye gaze signal changes, and
likewise for the right. Formally, we do this by adding an additional
loss term that minimizes the gradient of the output of the model ev-
erywhere but the left eye region with respect to the left gaze signal
(and likewise for the right). Assume a decoder for facial appearance
Df with parameters θf , inputs g ∈ R6 containing left and right gaze
orientation vectors, view vector v ∈ R3, and latent code z ∈ R256

describing the state of the face, and producing a face texture Tf and
geometry Gf :

Df

(
z, v, g|θf

)
→ Gf ,Tf , (3)
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and we have a binary indicator mask Ml̃eft that is 1 everywhere
except for the left eye region, conceptually we’d like to enforce

∂
(
Ml̃eft ⊙ Df

(
z, v, g|θf

))
∂{gleft, zleft}

≊ 0, (4)

in the case of the left eye and likewise for the right eye. Note
that, although the explicit gaze signals g encode eye orientation, the
latent code z still contains the orientation-independent eye state
(e.g., blinking, general eyelid-openness). Therefore, we apply the
same penalty to gradients w.r.t. z, but since the latent space is not
semantically divided like the geometry, texture, and gaze, we assign
fixed-size blocks of the latent code to correspond to orientation-
independent left eye state zleft and right eye state zright.1 Fig. 6
shows the regions of geometry and texture corresponding to each
eye.
For the sake of completeness, we should theoretically also mini-

mize the complement of the above loss, namely, minimize the gra-
dient of the left-eye-specific outputs w.r.t. everything that doesn’t
control the left eye region, but in practice one of these two losses
is sufficient. For efficiency, rather than directly computing this gra-
dient loss with an additional backward pass, we approximate it
with finite differences by scrambling the other blocks of the latent
space and minimizing the difference between the non-scrambled
and scrambled output in the region of interest:

ℓleft =
Ml̃eft ⊙

(
Df

(
z, v, g|θf

)
− Df

(
zper, v, gper |θf

))2

2
(5)

zper =
[
zleft, s(zright), s(zface)

]
(6)

gper =
[
gleft, s(gright)

]
, (7)

where s(z) is a function which scrambles its inputs2.
Following the above process, we can indeed (as shown in §7.2)

build a model that offers direct control over the apparent gaze via
gaze-conditioning and disentangling, as well as independent left
and right eye control for novel vergence. Unfortunately the trend
of trading generalization for reconstruction error continues, and, as
we show in §7.1, this model has the worst training reconstruction
error so far. Additionally, we have been working so far with the
facial geometry model used in Lombardi et al. [2018], which covers
the eyelids with flat polygons since they did not track eyes. If the
face geometry does not model the eyeball surface then, from side
views, the eyeball appears truncated (Fig. 2c). The model could
potentially draw the remainder of the eyeball on the skin behind it,
but generalization to new viewpoints is poor when the geometry is
incorrect, as originally shown in Lombardi et al. [2018].

5 JOINT EYEBALL AND FACE MODEL
Many of the failure cases discussed above stem from the low-
resolution geometry used by previous methods. This geometry was
chosen due to the ease with which it can be tracked and registered.

1In our experiments, the first 32 components control the left eye, the second 32
components the right, and the remaining 192 control the rest of the face, for a latent
space with 256 dimensions.

2Similar to MINE, we simply permute entries along the batch axis.

The downside is that when this geometry is inaccurate, large dis-
tortions in texture are required to match observed views. These
distortions do not generalize, as we have seen above.
We will show that, even if we cannot track and reconstruct the

periocular region as precisely as the rest of the face, a rough tracking,
combined with geometry and texture which are both generated
differentiably, can greatly improve fidelity. The model of Bérard
et al. [2016] would be a promising candidate, but as-proposed, it is
not amenable to the gradient-based optimization we would like to
perform. We could also consider even more complex models such as
a full eye rig with wetness layers and refraction. Our goal, however,
is to learn facial appearance models in a fully autonomous, scalable
fashion.

5.1 Learning-Amenable Eyeball Model
We instead propose a process, described in Fig. 3, to jointly learn
a model of facial and periocular appearance, represented by ge-
ometry and view-dependent texture. One important component in
this process is a model for eyeball appearance that is amenable to
image-based learning while still respecting the underlying geomet-
ric properties of the human eye as much as possible. Conveniently,
the simple geometric model used for gaze tracking in §4.1 is well-
suited for the task of rendering eye appearance, when paired with
an appropriate view-dependent texture.
Rather than take a VAE-based approach, as in Lombardi et al.

[2018], we produce view-dependent, gaze-dependent eyeball tex-
tures using a minimal amount of inputs, all of which have semantic
meaning. Specifically, we produce the textures using a decoder-only
architecture (Fig. 7) which takes gaze, viewpoint, and eyelid shape
(represented as vertex positions along the eyelid boundary) as in-
puts. Gaze and view are necessary to model specular reflection and
refraction. The eyelid shape is necessary to model all of the chal-
lenging effects that appear along the interface between the eyeball
and the face, including wetness and ambient occlusion. Formally,
the full eyeball geometry Ge and texture Te are formed by a single

Fig. 7. Eyeball Texture Decoder.We produce per-eyeball view-dependent
textures via a decoder architecture that takes gaze direction, eyelid shape,
and viewpoint as inputs. Gaze direction and viewpoint are required to model
specular effects such as glints and refraction. Eyelid shape defines shading
and occlusion effects. The decoder is a series of transposed convolutions
producing a final texture and associated warp field [Shu et al. 2018]. For all
experiments,W = 256.
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model,

De

(
g, v, e(Gf )|θe

)
→ Te ,Ge , (8)

where e(Gf ) extracts the vertex positions of the eyelids using a
pre-defined mask.

To better model details like glints, we decode both a texture and
a warp field similar to that of Shu et al. [2018]. The warp field is
applied to the decoded texture to produce the final view-dependent
texture. We also add a similar warp field as a component of the face
texture decoder.
Unfortunately, the process described in §4.1 does not estimate

cornea geometry, since it relies only on iris keypoints. In Bérard
et al. [2016], they fit a model derived from an existing database of
eyeball geometries and iris textures ([Bérard et al. 2014]) to the sclera
segment of 3D facial reconstructions, using texture synthesis to
produce an iris texture. Such a method produces accurate fits when
the 3D reconstruction is of high quality. In a fully autonomous large-
scale pipeline, however, we cannot rely on having a high-quality
3D reconstruction of the sclera at all times and for all subjects.

We address the issue of model fitting, as well as other challenges
that arise in the process, using a joint eye and face learning frame-
work based on differentiable rendering.

5.2 Eye-and-Face Learning Pipeline
The eyeball model described in §4.1 can provide a rough initial
estimate for eyeball geometry, but we must refine those estimates
and also produce textures if we are to render the eyeballs in a face.
Given a multi-view facial performance capture, we estimate eyeball
orientations for each frame, along with initial shape parameters
for the model described in §4.1. Using these estimates, we learn
a set of latent codes describing the gaze-independent state of the
face (§4.2, §4.3). From these fixed per-frame codes, we decode face
geometry and texture using a model based on the deep appearance
model of Lombardi et al. [2018], decode eye texture using the model
described in §5.1, render the result, and optimize all decoders to
match images. In the following sections, we refer to this model
as an Explicit Eyeball Model (EEM) to highlight the fact that
the eyeball is a separate, directly-controlled geometric component
rather than an implicit component modeled entirely by view-and-
expression-dependent texture.

5.2.1 Defining a Latent Space. We showed various failure cases
of deep appearance models in §3 when modeling the periocular
region, but we still need a facial mesh whose shape agrees with the
current eye state, and the losses in §4.2 and §4.3 do produce a latent
space with independent control over the left and right eye regions
of the face (despite reducing fidelity). Since we are improving the
geometry and texture in these regions, however, we incorporate the
losses of §3 into a preprocessing step that produces a latent space
as a byproduct. We can use this latent space later to control the face
that surrounds the added eye geometry, and improve said geometry
via differentiable rendering.

This latent space step consists of training a Deep Appearance
Model VAE following the method of Lombardi et al. [2018], with
gaze conditioning, a disentangling loss, and a region separation loss.
For a given frame and camera viewpoint, the full loss we optimize

in the latent space creation step is:

L =

T̄f − Tf
2

2
+

Ḡf − Gf

2

2
+ (9)

ℓleft + ℓright + ℓdis + ℓKL,

where ℓKL is the standard KL-divergence loss in a variational au-
toencoder, and Ḡf , T̄f are tracked geometry and texture. After this
learning step, we have low-dimensional encoding vectors z for all
frames in our training dataset. We drop the learned encoder Ef and
use these encodings as a fixed representation of facial state from
which we may decode the various geometries and textures we will
need later.
While we separate latent space creation and facial appearance

modeling into two stages, it is conceivable that such a process could
be performed in a single end-to-end step. Such a process would
likely bring many additional challenges, however, and we leave this
optimization for future work.

5.2.2 The Eye-Face Interface. Given a simple eyeball model and
associated orientation estimates, a straightforward approach would
be to simply train a deep appearance model by unwrapping eye
textures along with face textures, as in Lombardi et al. [2018]). Un-
fortunately, our gaze estimates are not always correct. Furthermore,
there are situations where estimating gaze is difficult or impossi-
ble, such as blinking or closed eyes. If we simply discard samples
where we failed to estimate gaze, which we must do if we follow
the straightforward approach, we will be unable to reproduce cer-
tain gaze directions or expressions which cause missing gaze (e.g.,
blinking), as we show in Fig 8.

Existing models for facial appearance, particularly in the perioc-
ular region, model the appearance in one of two ways: a machine-
learning-based model with implicit controls (i.e., a latent space), or
a set of textured surfaces (skin, eyeball, wetness, iris state, etc.) with
explicit controls (i.e., a traditional facial rig). Our proposed method
lies somewhere between these two extremes. We have a rough esti-
mate for eyeball and face geometry, but the estimates are not precise

(a) Missing Gaze (b) Incorrect Cornea

Fig. 8. TheNeed forDifferentiable Rendering. In (a), all blinking frames
had no gaze estimates, thus blinking was effectively removed from the
training set and the decoder cannot produce a blinking expression. With
differentiable rendering, we can jointly optimize eye geometry and texture
for these frames to match images without initial gaze estimates. In (b), we
see the initial position of the cornea in red vs. the true position in blue. We
do not estimate this during the gaze estimation process, but differentiable
rendering allows us to optimize this parameter to match images.
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enough to act as a traditional facial rig, and are not complete enough
to be used as a straightforward replacement for a deep appearance
model. If we simply combined a facial mesh obtained from 3D recon-
struction with the tracked eyeball, the resulting appearance would
be incomplete and difficult to correct.
To handle cases where we have missing or imprecise gaze es-

timates, and simultaneously solve the issues that arise when in-
tegrating an explicit eyeball with the face, we propose to replace
reconstruction losses on tracked geometry and texture with an
image-based loss which we optimize via differentiable rendering.
This allows the mesh and texture of the face and eyeball to deviate
from tracked results where necessary to fully explain the observed
images. In particular, this allows us to model expressions where eyes
are partially or fully occluded, and the resulting interface between
eyes and face is no longer visible.

Using decoders for the eyes and face, we produce corresponding
textures and geometry. For the face, its geometry is also produced
by the face decoder. We remove the triangles covering the eyeball
in the original model since we now have proper geometry to fill
that region. For the eyeball geometry, we simply rotate the eyeball
model to the orientation specified by the gaze input3. We then
rasterize the two meshes and render the result differentiably to get
an image. We optimize the difference between rendered and ground-
truth images w.r.t. decoder parameters. Formally, given face and eye
decoders Df

(
z, v, g|θf

)
,De

(
g, v, e(Gf |θe )

)
, ground-truth image

I and a differentiable renderer R (G,T, p) rendering from camera
parameters p, we optimize the following:

arg min
θf ,θe

∑
i

Ii − Îi
2

2 (10)

Îi = R
( [
Gi
e ,G

i
f

]
,
[
Tie ,T

i
f

]
, pi

)
,

where i ∈ I denotes the set of training images from the multiview
capture system.

There are a number of existing methods for differentiably render-
ing a textured triangle mesh, each with different tradeoffs and opti-
mization properties. In this work we use a simple strategy whereby
for each rendered triangle, we extrapolate the barycentric coordi-
nates outside the edges and use these as blending weights to average
shifted versions of the render. Since these blending weights are dif-
ferentiable functions of the input vertices, they allow gradients to
propagate back to the vertices across silhouette edges and depth
discontinuities. This is similar to the approach of Liu et al. [2019],
however, we are not concerned with soft occlusions or other trans-
parency effects.
Ideally, we would produce the exact “ground-truth” geometry

with ourmodel, and view-dependent texture would only explain true
view-dependent effects like specularity rather than inconsistencies
in the geometry. Unfortunately, we do not have and cannot expect
perfect 3D reconstruction for the entire face. If we simply leave
geometry and texture unconstrained so that they can best explain
the images, however, the initial geometry is so far from the true
shape that image-based losses cannot provide useful signal. To solve
this issue, we regularize the decoded geometry to match the coarse

3We also estimate torsion during training, but not when driving an avatar in
real-time.

tracked facial mesh of Lombardi et al. [2018] with a weight that
decays over the course of training4.

5.2.3 Handling Missing Gaze Data. Learning a facial appearance
model using differentiable rendering as described above introduces
an ambiguity: any given image of the eye can be explained by an
eyeball mesh oriented properly, drawn with the correct texture, or
it could be explained by an eyeball with the wrong orientation, with
a texture that has been shifted to compensate. For frames where
we have accurate gaze estimates, this is not an issue as the eyeball
is properly oriented and will thus receive the correct texture. On
frames where we have missing or inaccurate gaze estimates, how-
ever, the texture will simply compensate by drawing the iris in the
wrong place. This will require large distortions in the texture which
we saw in §4 do not generalize. This ambiguity between dynamic
geometry and dynamic texture is similar to ones seen in shape-from-
shading and photometric stereo methods where multiple possible
combinations of albedo and surface geometry must be resolved via
regularization or other techniques.

To address this, we impute missing gaze estimates using a regres-
sor network which maps from the ground-truth texture to a gaze
direction. For frames where we have gaze estimates, we penalize
the difference between the regressor output and the gaze estimate.
Otherwise, the only signal is the image loss. This regressor quickly
learns to predict gaze directions for frames with no estimate, allow-
ing the texture to model only what it needs to. This regressor is
only used to fill in gaps during training, after which we discard it.

6 DRIVING EEMS IN REAL-TIME
By introducing an eyeball model that is well-suited for differentiable
rendering, and carefully balancing the learning process for unknown
or inaccurate gaze directions, we are able to produce a factorized
eye and face model that reproduces the eye appearance with high
fidelity. The challenge now is driving such a model in real-time.
Wei et al. [2019] demonstrated that it is possible to drive avatar

models in real-time only from headset-mounted cameras (HMC).
In our case, however, we now require the encoder to predict gaze
directions as an additional input to our face model with explicit
eyeballs. In the following, we first introduce an additional gaze data
collection in HMCs to provide additional gaze labels (§6.1), a novel
algorithm for establishing correspondences between HMC images
and avatar facial expression and gaze direction (§6.2), and finally,
the real-time architecture for driving avatars (§6.3).

6.1 HMC Gaze Data Collection
To establish precise correspondences, Wei et al. [2019] introduced
the idea of first using a “training headset” with 9 additional cameras
to provide additional multi-view supervision, and then building a
real-time model that uses only images from a subset of 3 cameras.
Later, a “tracking headset” with only those 3 cameras can be used
for real-time animation. We follow this approach and their data
collection process to collect facial expression data. To drive our
EEM with better precision, however, we add explicit labels for a

4Specifically, with a schedule of initial_weight · (1 − t )2 + final_weight where
t = max

(
1 − iter

full_decay_iter , 0
)
.
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Fig. 9. HMCGazeDataCollection: (a) The target is locked on a horizontal
line s.t. the vertical level is fixed relative to the headset, while the horizontal
position is fixed in virtual space. This means that rotating the subject’s
head while fixating on the target causes their eye to rotate only horizontally.
Subjects are instructed to rotate their head to produce continuous horizontal
gaze variation. The process is repeated with lines at different vertical levels.
(b) Same as (a) but subjects are instructed to make expressions such as
widely-open eyes and squinting. The background intensity in the VR scene
is also changing, so that we can collect variations in pupil size. (c) Targets
are fixed relative to the head and appear at various directions and depth,
so resulted data are suitable for evaluation. (d) To simulate different HMC
wearing positions, subjects are instructed to move the headset around while
staring at the target like (c).

number of gaze directions. Using analysis-by-synthesis alone, the
domain gap between HMC images and rendered avatars hinders
precise alignment of the eyeball geometry (see §7.3.2).

In practice, it is difficult to collect data spanning multiple expres-
sions while also getting clean gaze direction labels for every frame.
In this work, we separately collect two sessions of HMC data: one
with various expressions (with no constraints on gaze direction),
and another where the user is asked to strictly stare at targets at
different positions while changing eye expressions (but with almost
no lower face variation). Figure 9 illustrates our design of 4 different
sections of gaze data collection, which aims to cover the full span of
gaze directions, fixation depths, eye expressions, and HMC wearing
positions, while being consistent in the distribution of collected gaze
labels across different subjects. Our design is driven by the observa-
tion that gaze label noise is much lower if the relative movement of
the target to the subject’s head is controlled by the subject’s head
movement, rather than have the subject follow a moving target (in
this way, we take advantage of the vestibulo-ocular reflex [Fetter
2007]).

6.2 Establishing Correspondences
To drive our EEM in real-time using a virtual reality headset, we
propose a method inspired by the analysis-by-synthesis pipeline
presented in Wei et al. [2019]. The overall system is illustrated
in Fig. 10. Given synchronized multiview images H = {Hc }c ∈C
captured from a set of headset-mounted cameras C, our goal is to
estimate facial expression, and additionally, gaze directions in the
virtual space with respect to the headset (“headset space”).

Specifically, we estimate the parameters ϕ of a regressor Eϕ that
extracts {zt , pt , gt }, the latent code, the avatar’s pose with respect
to HMC, and gaze directions for frame t ∈ T , by jointly considering
data from all cameras:

Eϕ (H
t ) → zt , pt , gt0, ∀t ∈ T . (11)

Here, g0 ∈ R4 is in the headset space used during capture, and
parameterized as horizontal and vertical angles of both eyes. To con-
vert it into g ∈ R6 in the avatar’s coordinate frame, we additionally
estimate 6 parameters for the unknown rigid transformationW from
headset space to the HMC camera space, before using predicted pt

to transform from reference HMC camera’s space to avatar’s space:

gt = pt (W(gt0)). (12)

Unlike Wei et al. [2019] relying on training separate generative
adversarial networks (GANs) to mitigate the domain gap between
HMC images and avatars, we instead jointly train shallow fully con-
volutional networksGψ that transform the avatar’s view-dependent
face texture Tf and eyeball textures Te to HMC-like texturesUf and
Ue before we render them from the perspective of HMC cameras
(for brevity we hide all t superscripts from now on). Specifically, we
decode geometry G and view-dependent textures, and convert their
style |C| times, once for every HMC view.

It is important to note thatGψ is a shallow network, with a small
receptive field, operating on high resolution textures. It primarily
changes the style of the texture, with almost no ability to alter spatial
structures. Because of this property, we can jointly learn Eϕ andGψ ,
without them compensating the error each other makes to minimize
the reconstruction loss but generating incorrect correspondences.
We render these HMC-like textures using the differentiable ren-

derer R to obtain reconstructed images Ĥc ,

R
(
G,Ucf ,U

c
e ,Ac (p)

)
→ Ĥc , ∀c ∈ C. (13)

We also learn a per-camera per-pixel linear transform lc (·) to account
for the fixed structures in image space, such as the headset itself
and constant shading on the face:

H̃c = lc
(
Ĥc

)
, ∀c ∈ C. (14)

Finally, we define the full image loss function as:

Limage(ϕ,ψ ,W, lc ) =
∑
t ∈T

(∑
c ∈C

Ht
c − H̃t

c


1 + λδ (z
t )

)
, (15)

where δ is a regularization term over the latent codes z, and λ
weights its contribution against the reconstruction term. Note that
θ of the decoder D is fixed in this process.

Simply optimizing all parameters in an end-to-end fashion with
Eq. 15 alone results in two major issues. First, even though Gψ has
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Fig. 10. HMC↔Avatar Correspondence System.We jointly train networks Eϕ ,Gψ , unknown rigid transformationW, and per-view linear transformations
lc (·) (not shown in the figure) to minimize reconstructed image loss, eye segmentation (shown in red and yellow) loss, and gaze loss (only for partial dataset
with gaze labels).

limited ability to alter spatial structures, small changes in eyeball
textures can cause significant gaze error in the correspondence.
Even if the eye images appear to be aligned reasonably well from
the oblique viewpoints of the HMC cameras, there can still be a
high gaze error both numerically and perceptually from the frontal
view (not seen by the HMC).

A similar issue caused by small changes in the texture results in
the corresponding avatar not fully closing its eyes. Once they are
mostly closed, Gψ may “cheat” and slightly adjust the texture to
make them look closed from the view of the HMC.
We introduce two additional losses to prevent the model from

making improper changes to the texture during domain transfer. We
use 2D eye segmentation, in the form of eyeball and iris segments,
S(Hc), formed by detected landmarks:

Lseg(ϕ,ψ ,W, lc ) =
∑
t ∈T

∑
c ∈Ceye

S(Ht
c ) − S(Rtc )


1 , (16)

where Ceye is the set of eye cameras and Rc = R(G,Tcf ,T
c
e ,Ac (v))

is the rendering of the avatar viewed from HMC camera c . The eye
segments S(Rtc ) can be rendered differentiably by drawing them
on our explicit eyeball model. By matching eye segments across
domains, correspondences in eye openness and gaze directions are
improved.
To further improve accuracy in gaze directions which are not

precisely described by 2D segmentation in oblique views, we utilize
gaze labels ggt ∈ R4 collected by the process described in §6.1:

Lgaze(ϕ) =
∑
t ∈Tд

gt0 − gtgt
2

2
+ δд(gt0), (17)

where Tд ⊂ T is the set of frames with gaze labels, and δд is a
regularization term enforcing the vertical gaze angle of the eyes to
be the same, and preventing from fixating at a point too close to the
eyes or even behind the eyeballs. Overall the system is trained with

L = Limage + λ1Lseg + λ2Lgaze, (18)

where λ1 and λ2 are weights adjusted heuristically. In §7.3.2 we will
show the individual effects of these loss terms.

6.3 Real-time Expression Encoding and Gaze Estimation
After minimizing the loss in Eq. (18), we can apply Eϕ to allH t to
obtain per-frame correspondences {(H t , zt , gt )}t ∈T .

Following Wei et al. [2019], we drop all auxiliary views inH t , re-
tain the 3 views available in a tracking headset H̃ t = {Ht

i }i ∈C′ , and
build another encoder Ẽϕ̃ to convert H̃ t to target (zt , gt ). Instead
of simply regressing from 3 images directly, we build an end-to-end
trainable, R-CNN [Girshick 2015] inspired network architecture.
From a shared image feature, we predict landmarks for eyes as a
supervised side task, and only predict gt from a tight crop of the
shared feature. This design makes the network generalize better
to unseen combinations of gaze directions and expressions. Note
that we also separately estimate gaze directions for left and right
eyes from individual crops of features. This enables our model to
generalize better to different depths of fixation, such as crossed eyes,
that are not captured in the dataset.
Specifically, dataset T = (Tд,Te ) has two parts where Tд has

gaze labels {(H t , zt , gt , gtgt)}t ∈Tд and Te only has estimated gaze
{(H t , zt , gt }t ∈Te through §6.2. We use 10K frames with gaze labels.
Additionally, we prepare another landmark dataset {(H t , yt )}t ∈Tk
where y is heatmaps with Gaussian peaks centered at annotated
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Fig. 11. Realtime Encoder Architecture. From 3-view inputs captured
by tracking headsets, we first convert them into a shared feature, which is
further converted into heatmaps of landmarks. We make tight crops around
each pupil center on the shared feature for separate left and right gaze
prediction. The expression code is estimated using whole shared feature.

landmarks as learning target, like common landmark detectionmeth-
ods [Wei et al. 2016]. Overall, the loss function for the regressor is a
sum of five terms:

Lenc(ϕ̃) = Llatent + Lgaze + Lgeo + Ltex + Lkpt. (19)

The first term is simply L2 error between predicted and target latent
codes:

Llatent =
∑
t ∈T

z̃t − zt
2

2 . (20)

The second term is an L2 error on gaze prediction:

Lgaze =
∑
t ∈Tд

g̃t − gtgt
2

2
+

∑
t ∈Te

max
(
0,

g̃t − gt
2

2 − ∆2
)
, (21)

where ∆ is a constant margin such that we don’t punish gaze esti-
mation g̃t if it’s close enough (around 5◦, see §7.3.2) to gt since for
t ∈ Te there is no ground truth gaze. We also penalize the differ-
ence between the geometry and texture decoded from our estimated
codes vs. the ones decoded from codes obtained in §10. This ensures
that even where we cannot precisely match the code via Equation 20,
the appearance should still match.

Lgeo =
∑
t ∈T

G̃t
f − Gt

f

2

2
+

∑
t ∈Tд

G̃t
e − Gt

e
2

2 (22)

(and likewise for textures Ltex). Notice that we don’t supervise the
geometry and texture of the eyeball for frames without gaze labels,
for the same reason as in Eq. (21). Finally, we include a landmark
matching loss for annotated iris keypoints:

Lkpt =
∑
t ∈Tk

ỹt − yt
2

2 . (23)

Our architecture design balances inference speed with almost no
obvious quality drop (from 9-view input to 3-view input) on both
training data and validation data, at an inference speed of 50fps on
an NVIDIA GTX 1080Ti with 3 views of 192 × 192 inputs.

7 EXPERIMENTS
We evaluate our full system as well as individual components qual-
itatively and quantitatively, using the dataset of Lombardi et al.
[2018]. For gaze estimation, we additionally train a keypoint detec-
tor to predict iris keypoints from annotations, both in images from
the headset and images in their capture system.

7.1 Decoder: Quantitative Evaluation
In Table 1, we evaluate the L2 image reconstruction loss in the
eye region for a set of models, averaged across 6 diverse subjects.
We report losses relative to the baseline model, the deep appear-
ance model of Lombardi et al. [2018], so that they are comparable
across subjects. We also compare against the same model with gaze-
conditioning (GC), with gaze-conditioning and region separation
losses, and finally our full proposed EEM.
As we add losses to improve generalization, the reconstruction

error increases for all models except our final proposed method.
The addition of gaze-conditioning to the baseline deep appearance
model results in increased error likely due to the fact that the model
can no longer heavily compress gaze information into the few gaze /
expression pairs seen during training. When we add the region loss,
the same model must now also disentangle left and right eyes, fur-
ther reducing its ability to take advantages of spurious correlations
in the data. The EEM provides the full benefits of a disentangled
representation along with better reconstructions.

Regarding the choice to compare loss within the eye region only:
since we learn the EEM eyes and face jointly with differentiable ren-
dering, the result naturally (and perhaps unfairly) matches images
better than the indirect geometry and unwrapped texture losses
of the baseline methods. Since our primary contributions are eye-
centric, we evaluate losses only in the eye region, though a similar
comparison on the full face does also show that the full EEM has
lower reconstruction error than any baseline.

7.2 Decoder: Qualitative Comparisons
In Fig. 12, we show significant qualitative improvement of the EEM
over the baselines, particularly for unseen combinations of expres-
sion and gaze. When we provide inputs corresponding to a rare
expression (wide-open eyes) and a new gaze direction for that ex-
pression (anything besides straight ahead), the baseline degrades
significantly. The iris no longer appears circular, the pupil is heavily
distorted, and, as can be seen much more clearly in our supplemen-
tal video, the perceived gaze direction has been altered. Note that
both models in these comparisons receive the same z and g inputs.

Fig. 13, shows further novel combinations of expression and gaze,
including expressions that modify the face beyond the eyes. Again
all are novel combinations of gaze and expression never seen in the
training data. As can be seen in our associated videos, the expression
can be seamlessly driven independently of the eyes, maintaining
quality across all eye poses.

7.3 HMC Correspondences for Realtime Encoding
7.3.1 Comparisons andQualitative Results of Correspondence. In
Fig. 14, we compare established correspondences with the method
described in §6.2 with EEMs against Wei et al. [2019] which used
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EEM

Baseline + Gaze-
Conditioning + Regions

Fig. 12. Improvements from Explicit Eyeball Modeling on Unseen Input Combinations. These images show the ability of our model to generalize to
novel inputs. The first two columns show an unseen combination of a rare expression and new gaze direction. The baseline (regions + gaze-conditioning)
distorts the iris and pupil in very uncanny ways. Though the region loss of §4.3 enables independent control, the model generalizes poorly to the unseen
inputs in the second two columns. In the inset, we show a difference image between our final model and the baseline. The limbus edge is clearly in the wrong
location. It is difficult to see in a static image, but in our supplemental video we show this produces a significant difference in perceived gaze direction. Both
models exhibit artifacts under these novel conditions, but our proposed method better-preserves the underlying geometry and perceived gaze signal.

Fig. 13. Further Explicit Eyeball Model Examples. All of these images show novel combinations of gaze and expression not present in the training data.
Expressions have been seen during training, but all with a single straight-ahead gaze. For examples of completely novel gaze and expression, in real-time, see
our supplemental video.

deep appearance models [Lombardi et al. 2018]. In the first and
third example, the subjects’ extreme eye gaze directions in HMC
are rare and often get modified in gaze directions by GANs during
image style transfer, leading to misaligned and inaccurate corre-
spondences in Wei et al. [2019]. Also, deep appearance models do
not have explicit eyeball geometry for applying further constraints
to improve it. Our method, on the contrary, does not suffer from
the difficult distribution matching with end-to-end training since

there is no discriminator involved. Furthermore, we can improve
the alignments by matching eye segments through differentiably
rendering them with explicit eyeball models. The second and the
third example shows a novel combination in input HMC images
between eye expression and mouth expression that is not seen in
avatar-building data. Deep appearance model is not able to general-
ize, giving blurry, shrunk, and lightened irises. On the contrary, our
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EEM

EEM

[Lombardi et al. 2018] + 
[Wei et al. 2019]

[Lombardi et al. 2018] + 
[Wei et al. 2019]

Fig. 14. Comparison of Established Correspondences. On the left we show our estimated correspondences between EEM and HMC images. On the right
we compare against the method of Wei et al. [2019] applied to deep appearance models [Lombardi et al. 2018]. To the right of each avatar we show, from top
to bottom: input HMC images (overlaid with eye segments on the left), the avatar rendered using discovered correspondences from the viewpoint of the
headset cameras, and a tiling of the images above to show alignment. Our method aligns eyeballs much better, especially for extreme gaze directions, and it
generalizes better to rare combinations of gaze direction and facial expression.

Fig. 15. Qualitative Correspondences. Our method generalizes well on various amounts of eye openness, different identities, and combinations of eye and
lower face expressions.

method still finds an avatar state that gives realistic irises through
EEMs.
Fig. 15 shows more examples of correspondences in different fa-

cial expressions, subjects with different eye sizes and shapes, and
various eye openness. Our method is able to generalize well on these

variations without losing expressivity, thanks to good disentangle-
ment between eye region and other region of the decoder, and the
segmentation loss that helps to match eye openness.
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Table 1. L2 Eye Region Reconstruction Loss. Values are L2 image recon-
struction error relative to the baseline deep appearance model, averaged
over 6 subjects. These results show that not only is our full EEM perceptually
sharper and more consistent, it is also able to better-reconstruct the training
data. The addition of gaze-conditioning and region losses to the baseline re-
sult in a better-disentangled model at the expense of overall accuracy. EEM
provides the full benefit of disentangling as well as improved performance.
We should stress that while the reduction in L2 loss may seem subtle, the
perceptual improvement is significant.

Model Rel. L2 Error
Baseline 1.0
+GC 1.085 ± 0.129

+GC +Region 1.097 ± 0.174
EEM 0.890 ± 0.045

7.3.2 Correspondence Loss Ablation. We introduced three loss
terms in Eq. (18), but the individual impact of each loss is not obvi-
ous. Table 2 shows an ablation study across two subjects comparing
all meaningful combinations of losses. The full system is shown in
row A. First, we remove gaze loss5 in row B and find that there is a
significant accuracy drop in gaze in both subjects without obvious
change in the other terms. This result shows that image-based fea-
tures can only provide up to 5◦ precision in gaze under the oblique
views of HMC across the domain gap (and hence the setting of ∆
in Eq. (21)). In row C, we further remove segmentation loss and
observe a greater drop in gaze accuracy and higher Lseg, showing
that matching eye segments is indeed preventingGψ from changing
the structure of the eye texture. In row D, adding the gaze term back
leads to low gaze error with higher Lseg than row A. This shows
that removing Lseg leads to overfitting to {Hi }i ∈Tд . Row E shows
the gaze accuracy of a held out set, as a point of reference. We chose
to focus on two of the six subjects for this ablation as they had the
worst (1) and best (2) validation gaze accuracies in row E.

8 CONCLUSION
In this paper, we investigated the problem of rendering and driving
photorealistic models of the human eye and face. While our model
offers many improvements over previous methods, there are some
known limitations. Our eye appearance generalizes well to novel
gaze directions, but if we move away from the space of plausible
inputs for a given avatar (i.e. if the gaze input is not physically-
realizable), we see artifacts in the resulting rendering. Though we
optimize the texture and geometry of our model to match images,
this optimization process is not perfect and does rely on good initial-
ization. In cases where the keypoint-based eyeball fitting produces
a significantly incorrect shape, it is difficult to recover with differ-
entiable rendering alone. As with any real-time communication
system, there is system and network delay. In our supplemental
video, there is a ∼130ms delay which includes the computation time
of the encoder and decoder (∼30ms total) and a simulated network
delay of 100ms. Finally, our method is only applicable to a single
subject and does not yet generalize to multiple identities. While we

5To be fair, we still use ggt to optimize the unknown transformationW.

Table 2. Ablation of Correspondence Losses. In the losses column, G
means the presence of Lgaze, S for Lseg, and I for Limage. Numbers in rows
A-D are training errors, while row E shows errors on a held out test set.

Losses Errors (subject 1) Errors (subject 2)
G S I Gaze Limage Lseg Gaze Limage Lseg

A ✓ ✓ ✓ 0.99◦ 0.017 0.013 0.69◦ 0.012 0.007
B ✓ ✓ 7.76◦ 0.017 0.013 4.94◦ 0.013 0.008
C ✓ 8.06◦ 0.017 0.015 9.73◦ 0.013 0.011
D ✓ ✓ 0.85◦ 0.017 0.015 0.75◦ 0.014 0.009
E ✓ 4.08◦ - - 1.10◦ - -

plan to address this with future work, currently each avatar must
be created from captured data for that person.
Our primary contribution is a model for the photorealistic ap-

pearance of eyes and face that can be driven in real-time. We did
this by systematically addressing each of the failure cases discussed
in §3. We can obtain direct control over the avatar’s apparent gaze
direction by introducing gaze-conditioning as an explicit input sig-
nal to our model. Introducing disentangling and region separation
losses enables the generation of novel combinations of gaze and ex-
pression. These novel combinations are unseen in the training data
but common in real-world interactions. Our EEM uses these novel
gaze / expression combinations, along with tracked eye geometry,
optimized jointly via differentiable rendering, to obtain a model that
generalizes very well to common face and gaze configurations seen
in real interactions. Differentiable rendering minimizes the appear-
ance of artifacts at the boundary of the two surfaces we control.
This work represents an important step forward towards creating
truly immersive social experiences over any distance, which has the
potential to change the way people interact across the world.
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A DIFFERENTIABLE COMPUTATION OF EYEBALL
GEOMETRY

In this work, we learn physical parameters of the eye, such as eyeball
center and radius, by comparing the final rendered output with
ground truth images. In order to learn these physical parameters,
they must be differentiable with respect to the mesh vertices of the
explicit eyeball model. To do this, we construct the mesh vertices
in a differentiable way. First, we compute the radius of the eyeball
sphere and cornea sphere given the learnable parameters of the
model (iris radius, iris depth, and cornea depth):

re =
√
r2
i + d

2
i ,

rc =
√
r2
i + (di − dc)2.

Let s be the vertices of a triangle mesh of the unit sphere. Next, we
compute the angle between the z axis and the edge of the iris,

θi = arcsin ri/re,

so that we can compute the signed difference between the angle of
the edge of the iris and each vertex s,

θdiff = arccos sz − θi.

This angle difference allows us to form a blending function to blend
between the vertices of the eyeball sphere and the cornea sphere.
First, we compute the blending factor using a smoothstep function:

α = smoothstep(2θdiff + 0.5).

Next, we form the eyeball vertices by scaling the vertices of the
sphere mesh by the eyeball radius,

ve = sre,

and form the cornea sphere vertices by scaling and translating the
sphere mesh,

vc = src + (0 0 1) Tdc.

We blend the vertices of the two spheres using a smoothstep func-
tion,

v = αve + (1 − α)vc.
Then, we rotate the entire eyeball model so that the visual axis
points down the z axis:

vfinal = Rotate(v,κ).

Now the eyeball mesh is ready to be rotated by the gaze direction
and placed inside the head.
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