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Abstract

We consider privacy in the context of streaming algorithms for cardinality estimation. We show that
a large class of algorithms all satisfy ε-differential privacy, so long as (a) the algorithm is combined with
a simple down-sampling procedure, and (b) the cardinality of the input stream is Ω(k/ε). Here, k is
a certain parameter of the sketch that is always at most the sketch size in bits, but is typically much
smaller. We also show that, even with no modification, algorithms in our class satisfy (ε, δ)-differential
privacy, where δ falls exponentially with the stream cardinality.

Our analysis applies to essentially all popular cardinality estimation algorithms, and substantially
generalizes and tightens privacy bounds from earlier works.

1 Introduction

Cardinality estimation, or the distinct counting problem, is a fundamental data analysis task. Typical
applications are found in network traffic monitoring [EVF03], query optimization [SAC+79], and counting
unique search engine queries [HNH13]. A key challenge is to perform this estimation in small space, say
at most logarithmic in the number of distinct items in the input, while processing each data item quickly
(ideally in constant time per item).

Typical approaches for solving this problem at scale are the Flajolet-Martin (FM85) sketch [FM85],
sometimes referred to as PCSA (short for Probabilistic Counting with Stochastic Averaging), and its more
practical variants such as HyperLogLog (HLL) [FFGM07] (we describe details of these algorithms later, in
Section 2). These algorithms fall into a class that we call hash-based, order-invariant cardinality estimators.
This class consists of all algorithms that satisfy the following two properties. The first is that the algorithm
utilizes no information about each input identifier xi other than a uniform random hash of xi. The second is
that the algorithm depends only on the set of observed hash values. This means the algorithm satisfies both
permutation- and duplication-invariance. That is, the produced sketch does not depend on the ordering of
the input stream, nor on the number of times any item is duplicated in the stream.

In addition to the FM and HLL sketches, other popular algorithms in this class include Bottom-k
[BYJK+02, CK07, BGH+09] (also called MinCount or k-minimum values (KMV for short)), and Adap-
tive Sampling [Fla90].1 For example, the Bottom-k sketch hashes each input item to a value in the interval
[0, 1], and stores the smallest k hash values observed.2

While research has historically focused on the accuracy, speed, and space usage of these sketches, recent
work has examined their privacy guarantees. These privacy-preserving properties have grown in importance
as companies have built tools that can grant an appropriate level of privacy to different people and scenarios.

∗This work was performed while the author was at Salesforce.
1Flajolet [Fla90] attributes the Adaptive Sampling algorithm to an unpublished 1984 communication of Wegman.
2In practice, hash values in a Bottom-k sketch consist of a finite number of bits (say, 32 or 64), which are then interpreted

as the binary representation of a number in the interval [0, 1].
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The tools may help satisfy users’ demand for better data stewardship, while also ensuring compliance with
regulatory requirements. For example, a database may offer a baseline guarantee that individual aggregates
are ε-differentially private to a set of trustworthy individuals (ε-DP for short), but a public release of data
may require all the statistics in the data to be jointly ε′-differentially private with a smaller privacy parameter
ε′ < ε.

One view, presented by Desfontaines, Lochbihler, and Basin [DLB19], is that cardinality estimators
cannot simultaneously have good utility and preserve privacy. More precisely, any accurate sketch would
allow an adversary to identify a user’s presence in the original data set. Hence, accurate sketches should be
considered as sensitive as raw data when guarding against privacy violations.

However, the impossibility result of [DLB19] applies only to a setting wherein an adversary knows the
hash functions used to generate the sketch and no additional noise unknown to the adversary is applied. In
fact, in the setting considered in [DLB19], differential privacy is trivially impossible to achieve, because from
the perspective of the adversary, the produced sketch is a deterministic function of the input. The main
result of [DLB19] is that even weaker notions of privacy cannot be achieved in this context.

Other works have studied more realistic models where either the hashes are public, but private noise
is added to the sketch [TS13, CDSKY20, MMNW11, vVT19], or the hashes are secret (i.e., not known to
the adversary who is trying to “break” privacy), a setting that turns out to permit less noisy cardinality
estimates. For example, Smith et al. [SSGT20] show that an HLL-type sketch is differentially private3

while [vVT19] modifies the Flajolet-Martin sketch using coordinated sampling, which is based on a private
hash. Variants of both models are analyzed by Choi et al. [CDSKY20], and they show (amongst other
contributions) a similar result to [SSGT20], establishing that an HLL-type sketch is differentially private.
As with these prior works, our focus is the setting when the hash functions are kept secret from the adversary.

A related problem, of differentially private estimation of cardinalities under set operations is studied by
[PS21], but they assume the inputs to each sketch are already de-duplicated.

Our contributions. We show that all hash-based, order-invariant cardinality estimators are ε-differentially
private so long as the algorithm is combined with a simple down-sampling procedure. A detailed overview
of specific sketches to which our results apply can be found in Section 4. As with earlier results, our analysis
holds provided that a mild lower bound on the number of distinct items in the stream is satisfied, roughly
Ω(k/ε), where k is a sketch parameter that can be thought of as the number of “buckets” used by the
sketch.4 For any hash-based, order-invariant algorithm, k is always upper bounded by the number of bits in
the sketch, but is typically significantly smaller. For example, the number of buckets used by a Bottom-k
sketch is k, while the number of bits in the sketch is larger by a factor equal to the number of bits in each
hash value.

The Ω(k/ε) stream cardinality lower bound needed to ensure privacy can be guaranteed to hold by
inserting sufficiently many “phantom elements” into the stream when initializing the sketch. One can then
subtract off the number of phantom elements from the estimate returned by the sketch, without violating
privacy. This padding technique guarantees that the sketch always satisfies ε-differential privacy, even when
run on inputs with very small cardinality. Of course, the insertion of “phantom elements” may increase
the error of the sketch on such small-cardinality inputs. But such an increase in error is inherent, as these
sketches are clearly non-private (e.g., by virtue of returning the exact answer) on small enough input streams.

We also show that, even with no modification, algorithms in our class satisfy (ε, δ)-differential privacy,
where δ falls exponentially with the stream cardinality.

Our novel analysis has significant benefits. First, prior works on differentially private cardinality esti-
mation have analyzed only specific sketches [TS13, vVT19, CDSKY20, SSGT20]. Moreover, many of the
sketches analyzed (e.g., [TS13, SSGT20]), while reminiscent of sketches used in practice, in fact differ from
practical sketches in important ways. For example, as we explain in detail later (Section 4.3), Smith et al.
[SSGT20] analyze a variant of HLL that has much slower update time (by a factor of k) than HLL itself.

3Despite the title of [SSGT20] referencing Flajolet and Martin, they actually study an algorithm more closely related to
LogLog and HyperLogLog (HLL) sketches, rather than the Flajolet-Martin (FM85) sketch. The former sketches can be thought
of as lossy compressions of the latter.

4More precisely, the cardinality lower bound we require is (k − 1)/(1 − e−ε), which is Θ(k/ε) if ε ≤ 1 and Θ(k) if ε > 1.
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In contrast to the literature, we analyze an entire class of sketches at once. Even when specialized to
specific sketches, our error analysis improves upon prior work in many cases. For example, our analysis
yields tighter privacy bounds for HLL than the one given in [CDSKY20], yielding an ε-DP guarantee rather
than an (ε, δ)-DP guarantee—see Section 4.3 for details. Crucially, the class of sketches we analyze captures
many (in fact, almost all) of the sketches that, to our knowledge, are actually used in practice. This means
that existing systems can be used in contexts requiring privacy either without modification (if streams are
guaranteed to satisfy the mild cardinality lower bound we require), or via the simple pre-processing step
described above if such cardinality lower bounds may not hold. Thus, existing data infrastructure can be
easily modified to provide DP guarantees, and in fact existing data (and, as we show, sketches thereof) can
be easily migrated to DP summaries.

There is one standard caveat: following prior works [SSGT20, CDSKY20] our privacy analysis assumes
a perfectly random hash function. One can remove this assumption both in theory and practice by using
a cryptographic hash function. This will yield a sketch that satisfies either a computational variant of
differential privacy called SIM-CDP, or standard information-theoretic notions of differential privacy under
the assumption that the hash function fools space-bounded computations. See [SSGT20, Section 2.3] for
details.

2 Problem Definition

Let D = {x1, . . . , xn} denote a stream of samples with each identifier xi coming from a large universe U ,
e.g., of size 264 (or larger). The objective is to estimate the cardinality of D using an algorithm S which is
given privacy parameters ε, δ ≥ 0 and a space bound b.

Definition 1 (Differential Privacy [DMNS06]). A randomized algorithm S is (ε, δ)-differentially private (or
(ε, δ)-DP for short) if for any pair of data sets D,D′ that differ in one record and for all S in the range of
S,

Pr(S(D′) ∈ S) ≤ eε Pr(S(D) ∈ S) + δ (1)

In Equation (1), the probability is over the internal randomness of the algorithm S. For brevity, (ε, 0)-DP
is referred to simply as ε-DP, or sometimes as pure ε-differential privacy.

Rather than analyzing any specific sketching algorithm, we analyze a natural class of randomized distinct
counting sketches. Algorithms in this class operate in the following manner: each time a new stream item i
arrives, i is hashed using some uniform random hash function h, and then h(i) is used to update the sketch,
i.e., the update procedure depends only on h(i), and is otherwise independent of i. Our analysis applies to
any such algorithm that depends only on the set of observed hash values. Equivalently, the sketch state is
invariant both to the order in which stream items arrive, and to item duplication.5 We call this class of
algorithms hash-based, order-invariant cardinality estimators.

All distinct counting sketches of which we are aware that are invariant to permutations of the input data
are included in this class. As we explain in Section 4, this includes MinCount, HLL, LPCA, and probabilistic
counting. Note that for any hash-based, order-invariant cardinality estimator, the distribution of the sketch
depends only on the cardinality of the stream.

Definition 2 (Hash-Based, Order-invariant Cardinality Estimators). Any sketching algorithm that depends
only on the set of hash values of stream items using a uniform random hash function is a hash-based
order-invariant cardinality estimator. We denote this class of algorithms by C.

We denote a sketching algorithm over data D with internal randomness r by Sr(D) (for hash-based
algorithms, r will specify the hash function used by the algorithm). The state of the sketch, referred to as
the sketch for short, is denoted by s and is the representation of the data structure defined by algorithm
Sr(D). The sample space Ω from which the sketch is drawn varies upon the specific sketching algorithm

5By duplication-invariance, we mean that the state of the sketch when run on any stream σ is identical to its state when
run on the “de-duplicated” stream σ′ in which each item appearing one or more times in σ appears exactly once in σ′.
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being used. Sketches are first initialized and then items are inserted into the sketch through an add operation
which may or may not change the state of the sketch.

The size of the sketch is a crucial constraint, and we denote the space consumption in bits by b. For
example, FM85 is a sketching algorithm whose state consists of k bitmaps, each of length `. Thus, its state
s ∈ Ω = {0, 1}k×`. A common value is ` = 32, so that b = 32k. Further such examples are given in Section
4.

3 Hash-Based Order-Invariant Estimators are Private

3.1 Conditions Guaranteeing Privacy

Given a collection of n distinct identifiers D and sketching algorithm S with internal randomness r, denote
the resulting sketch by Sr(D). For i ∈ D denote the set D\{i} by D−i. For all hash-based, order-invariant
cardinality estimators, the distribution of the sketch depends only on the number of distinct elements in the
input stream, and so without loss of generality we assume henceforth that D = {1, . . . , n}.

By definition, for an ε-differential privacy guarantee, we must show

e−ε <
Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
< eε ∀s ∈ Ω, i ∈ D. (2)

Overview of the privacy results. The main result in our analysis bounds the privacy loss of a hash-
based, order-invariant sketch in terms of just two sketch-specific quantities. Both quantities intuitively
capture how sensitive the sketch is to the removal or insertion of a single item from the data stream.

The first quantity is kmax := suprKr, where Kr denotes the number of items from D that would change
the sketch if removed from the stream, when the internal randomness used by the sketch is r (see Equation
(4) for details). As we show later, kmax is always bounded above by the number of bits in the sketch, but for
most sketches is much smaller. The second quantity is π∗ := sups∈Ω π(s), where π(s) denotes the probability
over the algorithm’s internal randomness r that adding one more item to the stream would change the sketch,
conditioned on the sketch’s state prior to the addition being s (see Equation (10) for details).

The main sub-result in our analysis (Theorem 7) roughly states that the sketch is ε-DP so long as (a) π∗

is not too close to 1 (specifically, so long as π∗ < 1 − e−ε), and (b) the stream cardinality n is larger than
kmax−1
eε−1 , which for small values of ε is Θ(kmax/ε).

We actually show that Property (a) must be satisfied by any ε-DP algorithm, if the algorithm works over
data universes of unbounded size. Unfortunately, Property (a) does not directly hold for natural sketching
algorithms. But we show (Section 3.2.2) that Property (a) can be generically satisfied by combining any
hash-based, order-invariant sketching algorithm with a simple down-sampling procedure.

Overview of the analysis. To establish the main result outlined above (Theorem 7) our basic strategy
proceeds in two steps. First, as indicated above, we bound the quantity Kr, i.e., we show that for any fixed
value of the sketching procedure’s internal randomness r, very few items i ∈ D actually affect in the sketch.
That is, there are very few items i ∈ D whose removal from D would change the resulting sketch, in the
sense that Sr(D) 6= Sr(D−i). In particular, we show that the number Kr of such items is always at most
the size b of the sketch in bits (and typically is significantly smaller). Second, the order-invariance of the
sketch generates a great deal of symmetry that we can exploit. Effectively, we show that for any i ∈ D, the
probability that Sr(D) 6= Sr(D−i) is at most Kr/n, or more precisely, at most the probability that a random
subset of D of size Kr contains i. This is enough to establish Equation (2), provided that n is sufficiently
larger than Kr (roughly by a factor of 1/ε).

The above two-step description is, however, a significant simplification of the full argument. A more
detailed overview follows.

Intuitively, the first step of our analysis works as follows. Since a distinct counting sketch must perform
a deduplication operation to ensure only distinct items are counted, it also allows for approximate set
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membership queries, albeit with very high error. In order to remain small (at most b bits), only information
about a few items can be stored in the sketch at any given time (certainly at most b items, but for many
sketches of interest, information about even fewer than b items is stored). Other than these at most b items,
all remaining items from D do not affect the final state of the sketch. Thus, for any sketch outcome s ∈ Ω,

Pr
r

(Sr(D) = s|S(D−i) = s) ≈ 1. (3)

While the definition of the conditional probability on the left hand side of Equation (3) is tantalizingly

close to the Bayes ratio we wish to bound, namely Prr(Sr(D)=s)
Prr(Sr(D−i)=s)

, the above reasoning only provides a lower

bound on the ratio. It does not rule out the possibility that adding item i changes the sketch to s with high
probability. That is, Prr(Sr(D) = s) ≥ Prr(Sr(D) = s ∧ Sr(D−i) 6= s), and the right hand side may still be
large.

In order to convert the Bayes ratio into a form where we can explicitly compute the relevant probabilities,
we find some other item j 6= i whose inclusion does not change the sketch. Using symmetry we can change
the item i in the denominator to j and obtain a probability conditional on Sr(D−j) = s. A combinatorial
argument further exploiting symmetry gives our final bound.

Details of the Analysis. Let

Kr := {i ∈ D : Sr(D−i) 6= Sr(D)} (4)

denote the set of items which, when removed from the data set, change the sketch and denote its cardinality
by Kr := |Kr|. Also, let

Jr := min{i : Sr(D−i) = Sr(D)}

denote the smallest index amongst the remaining n − Kr items in D that do not change the sketch. If
removing any item changes the sketch, i.e., if Sr(D−i) 6= Sr(D) for all i ∈ D, then Kr = n. For this case, we
define Jr to be a special symbol ⊥.

The following lemmas relate the state of a sketch over data D, Sr(D), to the states of the sketch when
an item is omitted, Sr(D−i).

Lemma 3. Suppose n > suprKr. Then Prr(Kr = n) = 0, and

Prr(Sr(D) = s)

Prr(Sr(D−i) = s)
=
∑
j∈D

Pr
r

(Jr = j |Sr(D−j) = s). (5)

Proof. First, let us rewrite Prr(Sr(D) = s) as a sum over all possible values of Jr:

Pr
r

(Sr(D) = s) =
∑

j∈D∪{⊥}

Pr
r

(Jr = j ∧ Sr(D) = s). (6)

Next, we split the right hand side of Equation (6) into the distinct cases wherein Jr =⊥ and j ∈ D, as we
will ultimately deal with each case separately: ∑

j∈D∪{⊥}

Pr
r

(Jr = j ∧ Sr(D) = s) =

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑
j∈D

Pr
r

(Jr = j ∧ Sr(D−j) = s). (7)

Next, the summands over j ∈ D are decomposed via conditional probabilities. Specifically, the right
hand side of Equation (7) equals:

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑
j∈D

Pr
r

(Jr = j |Sr(D−j) = s) Pr
r

(Sr(D−j) = s). (8)
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For any hash-based, order-invariant sketch, the distribution of S(D) depends only on the number of
distinct elements in D, and hence the factor Prr(Sr(D−j) = s) appearing in the jth summand of Equation
(8) equals Prr(Sr(D−i) = s), where i is the element of D referred to in the statement of the lemma.
Accordingly, we can rewrite Expression (8) as:

Pr
r

(Jr =⊥ ∧Sr(D) = s) +
∑
j∈D

Pr
r

(Jr = j |Sr(D−j) = s) Pr
r

(Sr(D−i) = s). (9)

Clearly, Jr 6=⊥ whenever the number of items in the data set, n, exceeds Kr. Hence, if n > suprKr,
Prr(Jr =⊥ ∧Sr(D) = s) = 0. We obtain Equation (5) as desired.

Lemma 4 states that suprKr is always at most b, the size of the sketch Sr(D) in bits, though as explained
in Section 4, suprKr is much smaller than b for popular sketching algorithms.

Lemma 4. For any distinct counting sketch with size in bits bounded by b, suprKr ≤ b.

Proof. Consider some data set D and sketch s = Sr(D). Recall that we denote the set of items whose
removal would change the sketch by Kr(D) := {i ∈ D : Sr(D−i) 6= Sr(D)}. Consider any subset Λ ⊂ Kr(D).
Then we claim that, for any x ∈ Kr, adding x to the sketch Sr(Λ) will change it if and only if x ∈ Kr(D)\Λ.
That is, if Λ ◦ x denotes the stream consisting of one occurrence of each item in Λ, followed by x, then
Sr(Λ) 6= Sr(Λ ◦ x) if and only if x ∈ Kr(D) \ Λ.

To see this, first observe that duplication-invariance of the sketching algorithm implies that if x ∈ Λ
then Sr(Λ) = Sr(Λ ◦ x). Second if x 6∈ Λ, suppose by way of contradiction that Sr(Λ) = Sr(Λ ◦ x), and let
T = D \ (Λ ∪ {x}). Since Sr(Λ) = Sr(Λ ◦ x), it holds that Sr(Λ ◦ x ◦ T ) = Sr(Λ ◦ T ) = Sr(D−x). Yet by
order-invariance of the sketching algorithm, Sr(Λ ◦ x ◦ T ) = Sr(D). We conclude that Sr(D−x) = Sr(D),
contradicting the assumption that x ∈ Kr(D).

The above means that for any fixed r, the sketch Sr(Λ) losslessly encodes the arbitrary subset Λ of Kr.
Hence, the sketch requires at least log2(2|Kr|) = |Kr| bits to represent. Thus, any sketch with size bounded
by m bits can have at most m items that affect the sketch.

Comparing Equations (2) and (5), we see that to establish (ε, 0)-DP we must show the right hand side
of Equation (5) lies in the interval [e−ε, eε]. To do so, we define

π(s) := Pr
r

(Sr(D) 6= Sr(D−i)|Sr(D−i) = s) (10)

to be the probability that adding item i to a sketch in state s will change the sketch. Conceptually, it can
be helpful to think of π(s) as the probability that, when processing an as-yet-unseen item i when the sketch
is in state s, i gets “sampled” by the sketch. For a sketch such as Bottom-k, which computes a sample of
(hashes of) stream items, π(s) is literally the probability that i is sampled by the sketch. Accordingly, we
refer to π(s) later in this manuscript as a “sampling probability”.

Lemma 5. Under the same assumptions as Lemmas 3 and 4,∑
j∈D

Pr
r

(Jr = j |Sr(D−j) = s) = (1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (11)

Proof. We begin by writing

Pr
r

(Jr = j |Sr(D−j) = s) =

n∑
k=1

Pr
r

(Jr = j |Kr = k, Sr(D−j) = s) Pr
r

(Kr = k|Sr(D−j) = s). (12)
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To analyze Expression (12), we first focus on the Prr(Jr = j |Kr = k, Sr(D−j) = s) term. Given that
Kr = k and Sr(D−j) = s, we know that Jr = j if and only if the items {1, . . . , j − 1} are all in Kr and

item j is not in Kr. The first condition occurs with probability
(n−(j−1)
k−(j−1))

(nk)
=

( k
j−1)

( n
j−1)

. This is because there

are
(
n−(j−1)
k−(j−1)

)
subsets Kr of {1, . . . , n} of size k that contain items 1, . . . , j − 1, out of

(
n
k

)
subsets of Kr of

size k. Meanwhile, j /∈ Kr means that Sr(D−j) = Sr(D), which occurs with probability that is exactly the
complement of the sampling probability π(s) (see Equation (10)).

By the above reasoning, the left hand side of Expression (11) equals:

∑
j∈D

n∑
k=1

Pr
r

(Jr = j |Kr = k, Sr(D−j) = s) Pr
r

(Kr = k|Sr(D−j) = s)

=

n∑
k=1

∑
j∈D

(
k
j−1

)(
n
j−1

) (1− π(s)) Pr
r

(Kr = k|Sr(D−1) = s)

= (1− π(s))

n∑
k=1

(
1 +

k

n− k + 1

)
Pr
r

(Kr = k|Sr(D−1) = s)

= (1− π(s))Er
(

1 +
Kr

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (13)

Having established Lemma 5, we are finally in a position to derive a result showing that a hash-based,
order-invariant sketch is ε-DP so long as the stream cardinality is large enough and sups∈Ω π(s) is not too
close to 1.

Corollary 6. Let
π0 := 1− e−ε (14)

and let Ω denote the set of all possible states of a hash-based order-invariant distinct counting sketching
algorithm. When run on a stream of cardinality n > suprKr, the sketch output by the algorithm satisfies
ε-DP if

π0 = 1− e−ε > sup
s∈Ω

π(s) (15)

and, for all sketch states s ∈ Ω,

eε > Er
(

n

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
. (16)

Furthermore, if the data stream D consists of items from a universe U of unbounded size, Condition 15 is
necessarily satisfied by any sketching algorithm satisfying ε-DP.

Proof. Since 1− π(s) ≤ 1 for all s and n
n−Kr+1 = 1 + Kr−1

n−Kr+1 ≥ 1, it follows from Lemma 5, (15) and (16)

that the right hand side of Equation (5) lies in the interval [e−ε, eε], as required for an ε-DP guarantee.
For the necessity of Condition 15, note that if the universe of possible items is infinite, then for any

possible sketch state s, there exists an arbitrarily long sequence of distinct items that results in state s if
π(s) < 1. One simply needs to search for a sequence of items which do not change the sketch. Combining
Lemma 3 with Equation (11) in Lemma 5 therefore implies that

e−ε < inf
s

(1− π(s)) (17)

and hence sups π(s) < 1− e−ε as claimed.
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The above corollary may be difficult to apply directly since the expectation in Condition (16) is often
difficult to compute and depends on the unknown cardinality n. Our main result provides sufficient criteria
to ensure that Condition (16) holds. The criteria is expressed in terms of a minimum cardinality n0 and
sketch-dependent constant kmax. This constant kmax is a bound on the maximum number of items which
change the sketch when removed. That is, for all input streams D and all r, kmax ≥ |Kr|, where recall from
Equation (4) that for a given input stream D, Kr = {i ∈ D : Sr(D−i) 6= Sr(D)} denotes the set of items
whose absence changes the sketch. We derive kmax for a number of popular sketch algorithms in Section 4.

Theorem 7. For a hash-based, order-invariant distinct counting sketch, let kmax = suprKr (recall that Kr

is defined in Equation (4)). The sketch output by the algorithm satisfies an ε-DP guarantee if

sup
s∈Ω

π(s) < π0 := 1− e−ε (18)

and the number of unique items in the input stream is strictly greater than

n0 :=
kmax − 1

1− e−ε
. (19)

Proof. We can upper bound the expectation on the right hand side of Condition (16) using kmax and n0.
Corollary 6 and solving for n0 then gives the desired result. Specifically, by Corollary 6, the sketch satisfies
ε-DP if:

eε > sup
n≥n0

Er
(

1 +
Kr − 1

n−Kr + 1

∣∣∣∣Sr(D−1) = s

)
≥ sup
n≥n0

(
1 +

kmax − 1

n− kmax + 1

)
= 1 +

kmax − 1

n0 − kmax + 1
. (20)

Hence, the sketch satisfies ε-DP when run on a stream of cardinality n so long as:

n > n0 = kmax − 1 +
kmax − 1

eε − 1
=
kmax − 1

1− e−ε
. (21)

Later, we explain how to modify existing sketching algorithms in a black-box way to ensure that Condi-
tions (18) and (19) are satisfied. But for most sketching algorithms used in practice, if left unmodified there
will be some sketch values s ∈ Ω for which Condition 18 is not satisfied, i.e, π(s) > 1− e−ε. Let us call such
sketch values s “privacy-violating”. Fortunately, for practical sketching algorithms, privacy-violating sketch
values s only arise with tiny probability. The next theorem states that, so long as this probability is smaller
than δ, the sketch satisfies (ε, δ)-DP without modification.

Theorem 8. Let n0 be as in Theorem 7. Given a hash-based, order-invariant distinct counting sketch with
bounded size, let Ω′ be the set of sketch states such that π(s) ≥ π0. If the cardinality n of the input stream
D is greater than n0, then the sketch is (ε, δ) differentially private where δ = Prr(Sr(D) ∈ Ω′).

Proof. This trivially follows from Theorem 7.

3.2 Constructing Private Sketches

3.2.1 Approximate Differential Privacy

Theorem 8 states that, when run on a stream with n > n0 distinct items, any hash-based order-invariant
algorithm directly (see Algorithm 1a) satisfies (ε, δ)-differential privacy where δ denotes the probability that
the final sketch state s is “privacy-violating”, i.e., π(s) > 1− e−ε. Concrete bounds on δ as a function of the
input cardinality n for specific practical sketching algorithms are given in Section 4; in all cases considered,
δ falls exponentially quickly with n. In the remainder of this subsection, we provide intuition for why this is
true and how we later establish the concrete bounds for specific sketches.
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If st denotes the state of the sketch after processing the first t input items, we show that π(st) is
monotonically decreasing with t (see, for example, the proof of Corollary 11). We can prove the desired
bound on δ by analyzing sketches in a manner similar to the coupon collector problem. Assuming a perfect,
random hash function, the hash values of a universe of items defines a probability space. For each sketch
considered in Section 4, we identify v ≤ kmax events or coupons, C1, . . . , Cv, such that π(s) is guaranteed to
be less than π0 after all events have occurred. A simple union bound then guarantees that the probability δ
that a sketch fails to satisfy an ε-DP guarantee decreases exponentially as the cardinality grows.

As additional intuition for why unmodified sketches satisfy an (ε, δ)-DP guarantee when the cardinality is
large, we note that the inclusion probability π(s) is closely tied to the cardinality estimate in most sketching
algorithms. For example, the cardinality estimators used in HLL and KMV are inversely proportional to
the sampling probability π(s), i.e., N̂(s) ∝ 1/π(s), while for LPCA and Adaptive Sampling, the cardinality
estimators are monotonically decreasing with respect to π(s). Thus, for most sketching algorithms, when run
on a stream of sufficiently large cardinality, the resulting sketch is privacy-violating only when the cardinality
estimate is also inaccurate. The following theorem is useful when analyzing the privacy of such sketching
algorithms, as it characterizes the probability δ of a “privacy violation” in terms of the probability the sketch
returns an estimate N̂(Sr(D)) lower than some threshold Ñ(π0).

Theorem 9. Recall from Equation (19) that n0 = kmax−1
1−e−ε . Let Sr be a sketching algorithm with esti-

mator N̂(Sr). Suppose the estimate returned on sketch s is a strictly decreasing function of π(s), so that
N̂(s) = Ñ(π(s)) for some function Ñ . Then, if n > n0, the sketching algorithm Sr is (ε, δ)-DP where
δ = P (N̂(Sr(D)) < Ñ(π0)).

Proof. Since Ñ is invertible and decreasing, P (N̂(Sr(D)) < Ñ(π0)) = P (π(Sr(D)) > π0) = δ.

3.2.2 Pure Differential Privacy

Theorem 7 guarantees that a sketch satisfies ε-DP if two conditions hold (Conditions (18) and (19)). The
first condition requires that factor sups∈Ω π(s) be smaller than 1 − e−ε, i.e., requiring that the “sampling
probability” of the sketching algorithm be sufficiently small regardless of the sketch’s state s (smaller than
1− e−ε). Meanwhile, Condition (19) requires that the number of distinct items in the input stream must be
sufficiently large.

We observe that one can take any hash-based, order-invariant distinct counting sketching algorithm and
turn it into one that satisfies these two conditions by adding a simple pre-processing step, which does two
things. First, it “downsamples” the input stream by hashing each input (using a different hash function
than the one used by the algorithm being pre-processed), interpreting the hash values as numbers in [0, 1],
and simply ignoring numbers whose hashes are larger than π0. This ensures that Condition (18) is satisfied,
by simply discarding each input item with probability π0. Second, it artificially adds n0 items to the input
stream to ensure that Condition (19) is satisfied (these n0 items should also be downsampled as per the
first modification). An unbiased estimate of the cardinality of the unmodified stream can then be easily
recovered from the sketch via a post-processing correction. Note that for this estimate to be unbiased, these
n0 artificial items must be distinct from any items that appear in the “real” stream. Pseudocode for the
modified algorithm, which is guaranteed to satisfy ε-DP, is given in Algorithm 1c.

In settings where there is an a priori guarantee that the number of distinct stream items n is greater than
n0 = kmax−1

1−e−ε , the addition of artificial items is not necessary to ensure ε-DP. Pseudocode for the resulting
ε-DP algorithm is given in Algorithm 1b.

Corollary 10. The functions DPSketchLargeSet (Algorithm 1b) and DPSketchAnySet (Algorithm 1c) yield
ε-DP distinct counting sketches provided that n ≥ n0 and n ≥ 1, respectively.

Proof. Under their respective assumptions, DPSketchLargeSet and DPSketchAnySet satisfy Conditions (18)
and (19) of Theorem 7.
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function Base(items, ε)

S ← InitSketch()

for x ∈ items do

S.add(x)

return N̂(S)

(a) Provides (ε, δ)-DP guarantee
for sufficiently large n.

function DPSketchLarge-
Set(items, ε)

S ← InitSketch()
π0 ← 1− e−ε
for x ∈ items do

if hash(x) < π0 then
S.add(x)

return N̂(S)/π0

(b) Provides ε-DP guarantee for
n > n0.

function DPSketchAny-
Set(items, ε)

S, n0 ← DPInitSketch(ε)
π0 ← 1− e−ε
for x ∈ items do

if hash(x) < π0 then
S.add(x)

return N̂(S)/π0 − n0

(c) Provides ε-DP guarantee for
any n.

Algorithms 1: Differentially private cardinality estimation algorithms from black box sketches. The function
InitSketch() initializes a sketch in a black-box fashion. The output of the uniform random hash function
is interpreted as a number in [0, 1]. Note that this hash function is chosen independently of the internal
randomness of the black-box sketching procedure S (in particular, the hash function used in pre-processing
is independent of any hash function used by S). The cardinality estimate returned by sketch S is denoted
N̂(S). DPInitSketch is given in Algorithm 2a.

function DPInitSketch(ε)
S ← InitSketch()
π0 ← 1− e−ε

n0 ←
⌈
kmax−1
π0

⌉
M ∼ Binomial(n0, π0)
for i = 1→M do

x← NewItem()
if hash(x) < π0 then

S.add(x)

return S, n0

(a)

function DPInitSketchForMerge(ε)
S ← InitSketch()
π0 ← 1− e−ε

n0 ←
⌈
kmax−1
π0

⌉
v ← 0
repeat

x← NewItem()
S.add(x)
v ← v + 1

until π(S) ≤ π0 and v ≥ n0

return S, v

(b)

Algorithms 2: Initialization routines for generating ε-DP sketches. The function NewItem() returns an item
that is guaranteed to come from a data universe disjoint from the universe over which stream items are
drawn. In DPInitSketch, the binomial draw M simulates inserting n0 unique items into the sketch, with
downsampling probability π0.
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3.2.3 Constructing ε-DP Sketches from Existing Sketches: Algorithm 3

As regulations change and new ones are added, existing data may need to be appropriately anonymized.
However, if the data has already been sketched, the underlying data may no longer be available, and even
if it is retained, it may be too costly to reprocess it all. Our theory allows these sketches to be directly
converted into differentially private sketches when the sketch has a merge procedure.

That is, the algorithm assumes that it is possible to take a sketch Sr(D1) of a stream D1 and a sketch
Sr(D2) of a streamD2, and “merge” them to get a sketch of the concatenation of the two streamsD1◦D2. This
is the case for most practical hash-based order-invariant discount count sketches. Denote a merge operation
between sketches Sr(D1) and Sr(D2) by Sr(D1)∪Sr(D2). Since merging requires the same randomness r to
be used, we will often suppress the dependency on r in the notation. The merge step is a property of the
specific sketching algorithm used and operates on the sketch states s and s′ so we also overload the notation
to denote the merge over states by s ∪ s′.

In this setting, we think of the existing non-private sketch s being converted to a sketch that satisfies
ε-DP by Algorithm 3. Since sketch s is already constructed, items cannot be first downsampled in the
building phase the way they are in Algorithms 1b and 1c. To achieve the stated privacy, Algorithm 3
constructs a noisily initialized sketch, t, which satisfies both the downsampling condition (Condition (18))
and the minimum stream cardinality requirement (Condition (19)) and returns the merged sketch s ∪ t. As
formalized in Corollary 11 below, the merged sketch is guaranteed to satisfy both requirements needed for a
privacy guarantee.

Algorithm 3 Turn an existing sketch into one with an ε-DP guarantee.

function MakeDP(S, ε)
T, v ← DPInitSketchForMerge(ε) . Algorithm 2b
return S ∪ T, N̂(S ∪ T )− v

. return private sketch and associated cardinality estimate for stream S is a sketch of.

Corollary 11. Regardless of the sketch s provided as input to the function MakeDP (Algorithm 3), MakeDP
yields an ε-DP distinct counting sketch.

Proof. Given sketches S, T with states s and t, respectively, we claim that any item that does not modify
T also cannot modify the merged sketch S ∪ T by the order-invariance of S, T . To see this, let DS and DT
respectively denote the streams that were processed by sketches S and T , and consider an item i that does
not appear in DS or DT and whose insertion into DT would not change the sketch T . Since the state of
the sketch T is the same after processing DT ◦ i as it was after processing DT , S ∪ T is also the sketch of
DT ◦ i◦DS , where ◦ denotes stream concatenation. By order-invariance, S∪T is also a sketch for DT ◦DS ◦ i.
Also by order-invariance, S ∪ T is a sketch for DT ◦ DS . Hence, we have shown that the insertion of i into
DT ◦ DS does not change the resulting sketch.

It follows that π(s∪ t) ≤ π(t) ≤ π0, where the last inequality holds by the stopping condition of the loop
in DPInitSketchForMerge (Algorithm 2b). Hence, MakeDP also satisfies Condition (18). The requirement
that v ≥ n0 in DPInitSketchForMerge also ensures that S ∪ T is a sketch of a stream satisfying Condition
(19). Hence, Theorem 7 implies that the sketch S∪T returned by MakeDP satisfies ε-DP. Since the additional
value v that affects the estimate returned by MakeDP does not depend on the data, there is no additional
privacy loss incurred by returning it.

3.3 Utility

When processing a data set with n unique items, denote the expectation and variance of a sketch and its
estimator by En(N̂) and Varn(N̂) respectively. We show that our algorithms all yield unbiased estimates.
Furthermore, we show that for Algorithms 1a-1c, if the base sketch satisfies a relative error guarantee (defined
below), the DP sketches add no additional error asymptotically.
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Establishing unbiasedness. To analyze the expectation and variance of each algorithm’s estimator,
N̂(S(D)), note that each estimator uses a ‘base estimate’ N̂base from the base sketch S and has the form

N̂(S(D)) =
N̂base
p
− V, (22)

where V is the number of artificial items added and p is the downsampling probability. This allows us to
express expectations and variance in terms of the variance of the base estimator.

Theorem 12. Consider a base sketching algorithm S ∈ C with an unbiased estimator N̂base for the cardinality
of items added to the base sketch. All three algorithms 1 (a)-(c) and Algorithm 3 yield unbiased estimators.

Proof. Trivially, Algorithm 1a is unbiased by assumption, as it does not modify the base sketch. Given
V , there are Z ∼ Binomial(n + V, p) items added to the base sketch. Since the base sketch’s estimator is
unbiased, E(N̂base|Z) = Z. Algorithms 1b, 1c, and Algorithm 3 all have expectation:

E (N̂(Sr(D))|V ) = E

(
E

(
N̂base
p
− V

∣∣∣∣V,Z
))

= E
(
Z

p
− V

∣∣∣∣V ) = n+ V − V = n.

Bounding the variance. First, observe that Theorem 12 yields a clean expression for the variance of our
private algorithms.

Corollary 13. The variance of the estimates produced by Algorithms 1a-1c and Algorithm 3 is given by

Var
(
N̂(Sr(D))

)
= E

(
Var

(
N̂base
p

∣∣∣∣V
))

. (23)

Proof. This follows from the law of total variance and the fact that the estimators are unbiased.

Let us say that the base sketch satisfies a relative-error guarantee if with high probability, the estimate
returned by the sketching algorithm when run on a stream of cardinality n is (1± 1/

√
c)n for some constant

c > 0. Let N̂base,n denote the cardinality estimate when the base algorithm is run on a stream of cardinality

n, as opposed to N̂base denoting the cardinality estimate produced by the base sketch on the sub-sampled
stream used in our private sketches DPSketchLargeSet (Algorithm 1b) and DPSketchAnySet (Algorithm
1c). The relative error guarantee is satisfied when Varn(N̂base,n) < n2/c; this is an immediate consequence
of Chebyshev’s inequality.

When the number of artificially added items V is constant as in Algorithms 1b and 1c, Corollary 13
provides a precise expression for the variance of the differentially private sketch. In Theorem 14 below,
we use this expression to establish that the modification of the base algorithm to an ε-DP sketch as per
Algorithms 1b and 1c satisfy the exact same relative error guarantee asymptotically. In other words, the
additional error due to any pre-processing (down-sampling and possibly adding artificial items) is insignificant
for large cardinalities n.

Theorem 14. Recall from Equation (19) that n0 = kmax−1
1−e−ε . Suppose N̂base,n satisfies a relative error

guarantee Varn(N̂base,n) < n2/c for all n and for some constant c. Then Algorithms 1b and 1c satisfy

Varn(N̂) ≤ (n+ v)2

c
+

(n+ v)(v + π−1
0 )

kmax
=

(n+ v)2

c
+O(n) (24)

Varn(N̂)

Varn(N̂base,n)
→ 1 as n→∞. (25)

where v = 0 for Algorithm 1b and v = n0 for Algorithm 1c.
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Proof. Let Z ∼ Binomial(n+ v, π0) denote the actual number of items inserted into the base sketch. From
Corollary 13 and since V is constant, the variance is

Var N̂(Sr(D)) =

(
Var

(
N̂base
π0

∣∣∣∣V = v

))

=

(
EVar(N̂base|Z) + VarE(N̂base|Z)

π2
0

)

≤
(
EZ2/c+ Var(Z)

π2
0

)
=

(EZ)2

cπ2
0

+
Var(Z)(c+ 1)

c π2
0

=
(n+ v)2

c
+

(n+ v)(1− π0)

cπ0
.

Trivially, Varn(N̂)

Varn(N̂base,n)
= (n+v)2

n2 +O(1/n)→ 1 as n→∞.

In Algorithm 3, the number of artificial items added V is a random variable. We can ensure that the
algorithm satisfies a utility guarantee if we can bound V with high probability. This is equivalent to showing
that the base sketching algorithm satisfies an (ε, δ)-DP guarantee since for any n∗ ≥ n0 and data set D∗
with |D∗| = n∗, an (ε, δn∗)-DP guarantee ensures δn∗ > P (π(Sr(D∗)) > π0) = P (V > n∗) where the last
equality follows from the definition of V for Algorithm 2b.

We provide (ε, δ)-DP results for all the specific sketching algorithms considered in Section 4.

Corollary 15. Assume that the conditions of Theorem 14 hold. Further assume the base sketching algorithm
satisfies an (ε, δn) privacy guarantee where δn → 0 as n → ∞. For any given n∗ > n0, we say Algorithm 3
succeeded if V < n∗. Then with probability at least 1− δn∗

Varn(N̂ |Success) ≤ (n+ n∗)2

c
+

(n+ n∗)(n0 + π−1
0 )

kmax

and

Varn(N̂ |V )

Varn(N̂base,n)

p→ 1 as n→∞,

where the notation Xn
p→ 1 denotes convergence in probability: P (|Xn − 1| < ∆) → 1 as n → ∞ for any

∆ > 0.

4 Example Hash-based, Order-Invariant Cardinality Estimators

Recall that the quantities of interest are the number of bins used in the sketch k, the size of the sketch in bits
b and the number of items whose absence changes the sketch kmax. From Section 3, Lemma 4 we know that
kmax ≤ b but for several common sketches delineated in this section, we can give a stronger bound showing
that kmax = k. The relationship between these parameters for various sketching algorithms is summarized
in Table 1.

We remind the reader that, per Equation (14), π0 = 1− e−ε, and per Equation (19)

n0 =
kmax − 1

1− e−ε
.
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Sketch b: size (bits) standard error kmax log δ reference

PCSA / FM85 32k 0.649n /
√
k 32k −π0

2kn+ o(1) [Lan17]

MinCount/KMV 64k n/
√
k k − 1

2
π0

1−π0
n+ o(1) [Gir09]

HLL 5k 1.04n/
√
k k −π0

k n+ o(1) [FFGM07]

LPCA k n/
√
k
†

k − π0

Ñ(π0)
n+O(log n) [WVZT90]

Table 1: Properties of each sketch with k “buckets” (see each sketch’s respective section for details of what
this parameter means for the sketch). Each sketch provides an (ε, δ)-DP guarantee, where the column log δ
provides an upper bound on the natural logarithm of δ established in the relevant subsection of Section 4.
The † symbol denotes an approximation that holds for n < k. A better approximation of the standard error
is
√
k(exp(n/k)− n/k − 1).

Furthermore, recall that once we bound the parameter kmax for any given hash-based order-invariant
sketching algorithm, Corollary 10 states that the derived algorithms DPSketchLargeSet (Algorithm 1b) and
DPSketchAnySet (Algorithm 1c) satisfy ε-DP provided that n ≥ n0 and n ≥ 1, respectively. Moreover, if the
original sketch returns an unbiased estimate, so too does the derived private sketch. Additionally, Theorem
14 bounds the variance of the estimate returned by the derived private sketch in terms of the variance of the
original sketch’s estimate. Accordingly, in the rest of this section, we bound kmax for each example sketch
of interest, which has the consequences for pure ε-differential privacy delineated above.

4.1 Probabilistic Counting / Flajolet-Martin 85

The Probabilistic Counting with Stochastic Averaging (PCSA) or Flajolet-Martin ’85 (Flajolet-Martin
(FM85)) sketch consists of k bitmaps Bi of length `. Each item is hashed into a bitmap and index (Bi, Gi)
and sets the indexed bit in the bitmap to 1. The chosen bitmap is uniform amongst the k bitmaps and the
index Gi ∼ Geometric(1/2). If ` is the length of each bitmap, then the total number of bits used by the
sketch is b = k` and kmax = k` for all seeds r. A typical value for ` is 32 bits, as used in Table 1.

Past work [vVT19] proposed an ε differentially private version of PCSA using a similar subsampling idea
but combined it with random bit flips.

Theorem 16. Let v = d− log2 π0e and π̃0 := 2−v ∈ (π0/2, π0]. If n ≥ n0, then the FM85 sketch is (ε, δ)-DP
with δ ≤ kv exp

(
−π̃0

n
k

)
.

Proof. To obtain an (ε, δ) guarantee, note that bit sij in the sketch has probability 2−i/k of being selected
by any item. If v = d− log2 π0e and all bits sij with j ≤ v are flipped, then π(s) < π0. The proba-
bility Prr(sij = 0) = (1 − 2−i/k)n ≤ exp(−2−in/k). A union bound gives that Prr(π(Sr(D)) ≥ π0) ≤
k
∑v
i=1 exp(−2−in/k) ≤ kv exp(−2−vn/k) = kv exp

(
−π̃0

n
k

)
where π̃0 = 2−v ≤ π0.

Relative to the sketches discussed in the coming sections, for any given value of k, a larger number
of minimum items n0 is needed to ensure this sketch is differentially private, because the constant factor
kmax ∈ {32k, 64k} is worse than that for the later sketches we study (all of which have kmax = k). However,
the sketch is highly compressible as, for large n, each bitmap has entropy of approximately 4.7 bits [Lan17].
More recent works have placed this numerical result on firmer theoretical footing [PW21], and in fact shown
that the resulting space-vs.-error tradeoff is essentially optimal amongst a large class of sketching algorithms.
A practical implementation of the compressed sketch can be found in the Apache DataSketches library [dat],
where it is referred to as CPC, short for compressed probabilistic counting. It achieves close to constant
update time by buffering stream elements and only decompressing the sketch when the buffer is full.

Our results imply the above compressed sketches can yield a relaxed (ε, δn)-differential privacy guarantee
when the number of inserted items is n < n0 (Equation (21)). If the size of the sketch in bits is b, the
sketch is ε-differentially private if n > b−1

1−exp(−ε) or equivalently b < n(1− exp(−ε)) + 1. Thus, δn = Prr(b ≥
n(1− exp(−ε) + 1).
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4.2 MinCount/KMV/Bottom-k

The KMV sketch stores the k smallest hash values. Removing an item changes one of these values if and only
if 1) the item’s hash value is one of these k and 2) it does not collide with another item’s hash value. Thus,
kmax = k. Typically, the output size of the hash function is large enough to ensure that the probability of
collision is negligible, and for all practical purposes Kr = k exactly.

For an (ε, δ)-DP guarantee, the generic coupon collecting strategy yields a loose bound for δ. We provide
a tighter analysis here.

Theorem 17. Consider KMV with k minimum values. Given ε > 0, let π0, n0 be the corresponding sub-
sampling and minimum cardinality to ensure the modified KMV sketch is (ε, 0)-DP. When run on streams
of cardinality n ≥ n0, then the unmodified sketch is (ε, δ)-DP, where δ = P (X ≤ k) < exp(−nαn) where

X ∼ Binomial(n, π0) and αn = 1
2

(π0−k/n)2

π0(1−π0)+1/3n2 → 1
2

π0

1−π0
as n→∞.

Proof. The value π(s) is equal to the kth minimum value. If X > k, then the kth minimum value is < π0

and Condition 18 is satisfied. Thus, δ is the failure probability. The bound follows directly from Bernstein’s
inequality:

P (X ≤ k) = P (n−X > n− k) = P ((n−X)− n(1− π0) > nπ0 − k) (26)

≤ 1

2

(nπ0 − k)2

nπ0(1− π0) + 1/3
(27)

=
1

2

(π0 − k/n)2

π0(1− π0) + 1/3n2
n (28)

Since the KMV estimator N̂(s) = (k − 1)/π(s) is a function of the update probability π(s), Theorem 9
gives an (ε, δ)-DP guarantee in terms of the cardinality estimate.

4.3 HyperLogLog

HyperLogLog hashes each item to a bin and value (Bi, Gi). Within each bin, it takes the maximum value.
Thus, each bin can be regarded as a form of bottom-1 sketch. If there are k bins, then kmax = k.

Our results uniformly improve upon existing DP results on the HLL sketch and its variants. Choi et
al. [CDSKY20] provide an (ε, δ) guarantee for streams of cardinality n ≥ n′0, for an n′0 that is larger than
our n0 by a factor of roughly (at least) 8, with δ falling exponentially with n. In contrast, for streams with
cardinality n > n0, we provide a pure ε-DP guarantee.

A variation of the HLL sketch was studied by [SSGT20] and was also shown to provide an ε-DP guarantee.
However, the variant analyzed is far slower than HLL itself, as it requires every item to be independently
hashed k times, once for each of the k bins, rather than just one time. In other words, [SSGT20] needs O(k)
update time compared to O(1) for our algorithms.

HLL also has the following (ε, δ) guarantee.

Theorem 18. If n > n0, then HLL satisfies an (ε, δ)-DP guarantee where δ ≤ k exp(−π0n/k)

Proof. In HLL, the sampling probability π(s) = k−1
∑k
i=1 2−si here si is the value in each bin. Thus,

if all bins have value si > − log2 π0, then π(s) < π0. Let Ci be the event that si > − log2 π0. Then
P (¬Ci|n) ≤ (1− π0/k)n ≤ exp(−π0n/k). A union bound gives Prr(π(Sr(D)) ≥ π0) ≤ k exp(−π0n/k).

HLL’s estimator is only a function of the sampling probability π(s) for medium to large cardinalities.
That is, the estimator has the form N̂(s) = Ñ(π(s)) when Ñ(π(s)) > 5k/2. Thus, if π0 is sufficiently small
so that Ñ(π0(s)) > 5k/2, then Theorem 9 can still be applied, and HLL satisfies an (ε, δ) guarantee with
δ = P (N̂(Sr(D)) < Ñ(π0)).
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4.4 Linear Probabilistic Counting

The Linear Probabilistic Counting Algorithm (LPCA) is equivalent to a Bloom filter where the number of
hashes is 1. Thus, the sketch is a length-k bitmap. Each item is hashed to an index and sets the corresponding
bit to 1. If B is the number of bits set to 1, the LPCA cardinality estimate is N̂LPCA = −k log(1 − B/k) =
k log π(Sr(D)). Trivially, kmax = k.

Since all bits are expected to be set to 1 after processing roughly k log k distinct items, the capacity of the
sketch is bounded. To estimate larger cardinalities, typically one first downsamples the distinct items with
some sampling probability p. To ensure the sketch satisfies an ε-DP guarantee, one simply ensures p ≥ π0.
In this case, our analysis shows that LPCA is differentially private with no modifications. Otherwise, since
the estimator N̂(s) is a function of the sampling probability π(s), Theorem 9 provides an (ε, δ) guarantee in
terms of N̂ .

We also provide a guarantee in terms of the true cardinality n.

Theorem 19. Consider an LPCA sketch with k bits and downsampling probability p, and assume that
n > k−1

1−e−ε so that Condition 19 is satisfied. If p < π0 then LPCA is ε-DP. Otherwise, let b0 = dk(1−π0/p)e,
π̃0 = b0/k, and µ0 be the expected number of items inserted to fill b0 bits in the sketch. Then, if n > µ0,
LPCA is (ε, δ)-DP with

δ = P (B < b0) (29)

<
µ0

n
exp

(
− π̃0

µ0
n

)
exp(−π̃0) (30)

where B is the number of filled bits in the sketch. Furthermore,

µ0 < Ñ(π̃0)

where Ñ(π̃) = −kp log(1− π̃) is the cardinality estimate of the sketch when the sampling probability is π̃.

Proof. Sr(D) is not privacy violating (i.e., π(s) < π0) if π(Sr(D)) = p(1 − B/k) < π0 or, equivalently,
B > k(1− π0/p). Note that Gi ∼ Geometric(p(1− i/k)) items must be added for the number of filled bits
to go from i to i+ 1.

We can use a tail bound for the sum of geometric random variables [Jan18]. Assume that n ≥ k−1
1−exp(−ε) ≥

n0 so that Condition 19 is satisfied. If n > µ0 then

δ ≤ P

(
b0∑
i=0

Gi > n

)
(31)

≤ exp (−π̃0(n/µ0 − 1− log(n/µ0))) (32)

=
µ0

n
exp (−π̃0(n/µ0 − 1)) . (33)

(34)
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The number of expected items needed to fill b0 bits if b0 ≥ 1 is

µ0 :=

b0−1∑
i=0

1

p

1

1− i/k
(35)

<
k

p

(
log

(
k

k − b0

)
+ 1/(2k)− 1/(2(k − b0)) +

1

12(k − b0)2

)
(36)

=
k

p
log

(
k

k − b0

)
− 1

p

b0
2(k − b0)

+
1

p

k

12(k − b0)2
(37)

=
k

p
log

(
k

k − b0

)
− 1

p

6b0(k − b0)− k
12(k − b0)2

(38)

<
k

p
log

(
k

k − b0

)
. (39)

(40)

4.5 Adaptive Sampling

Wegman’s adaptive sampling is similar to the bottom-k sketch but does not require the sketch to store
exactly k hashes. Instead, it maintains a threshold p and stores all hash values less than p. Whenever the
sketch size exceeds k, then the threshold is cut in half and only values under the threshold are retained.
This ensures that processing a stream of length n takes expected O(n) time rather than O(n log k) as in a
max-heap-based implementation of Bottom-k.

It is order invariant since the sketch only depends on the number of hash values under each of the potential
thresholds and not the insertion order. Since at most k hashes are stored, and the sketch is modified only if
one of these hashes is removed, like KMV a.k.a. Bottom-k, the maximum number of items that can modify
the sketch by removal is kmax = k.

Corollary 20. For any size k and cardinality n, if a size k KMV sketch is (ε, δ)-DP, then a maximum size
k adaptive sampling sketch is (ε, δ)-DP with the same ε and δ.

Proof. Consider sketches SATr (D), SKMV
r (D) using the same hash function. Since the threshold in adaptive

sampling is at most the kth minimum value, π(SATr (D)) ≤ π(SKMV
r (D)). So π(SKMV

r (D)) < π0 =⇒
π(SATr (D)) < π0.

5 Conclusion

We have studied the (differential) privacy of a class of cardinality estimation sketches that includes most
popular algorithms. Two examples are the HLL and KMV (bottom-k) sketches that have been deployed in
large systems [HNH13, dat]. We have shown that the sketches returned by these algorithms are ε-differentially
private when run on streams of cardinality greater than n0 = kmax−1

1−e−ε and when combined with a simple
downsampling procedure. Moreover, even without downsampling, these algorithms satisfy (ε, δ)-differential
privacy where δ falls exponentially with the stream cardinality n once n is larger than the threshold n0.
Our results are more general and yield better privacy guarantees than prior work for small space cardinality
estimators that preserve differential privacy. Future work will experimentally validate the accuracy of our
algorithms.
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