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ABSTRACT 

In a social network, it is natural to have hot objects such as a 
celebrity’s Facebook page. Duplicating hot object data in each 
cluster provides quick cache access and avoids stressing a single 
server’s network or CPU resources. But duplicating cold data in 
each cache cluster consumes significant RAM. A more storage 
efficient way is to separate hot data from cold data and duplicate 
only hot data in each cache cluster within a data center. The cold 
data, or the long tail data, which is accessed much less 
frequently, has only one copy at a regional cache cluster.  

In this paper, a new sampling technique to capture all accesses 
to the same sampled keys is created. We then calculate the 
working set size for each key family for estimating the memory 
footprint. We introduce an important metric, duplication factor, 
as the ratio between the sum of each individual cluster’s 
working set size and the regional working set size. We analyze 
why some key families have a higher duplication factor. 

It is important to separate hot keys and cold keys from the same 
key family with minimal overhead. We present a novel cache 
promotion algorithm based on key access probability. We also 
proposed a probability model based on the binomial distribution 
to predict the promotion probability with various promotion 
thresholds. 

Our experiment shows by shrinking the cluster level cache layer 
and having a fat regional level cache for cold data, we are able 
to achieve a higher combined cache hit ratio.  

Categories and Subject Descriptors 
C.2.4 [Distributed Systems]: Distributed Databases; B.3.2 
[Design Styles]: Cache memories; D.4.2 [Storage Management]: 
Distributed Memories 
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Cache Optimization, Workload Analysis, Key-Value Store 

 

 

 

 

 

 

 

 

1.  INTRODUCTION 
Memcached is a well-known open source in-memory key-value 
caching solution. Facebook has the largest Memcached 
installation in the world, which scales to process billions of 
users requests per second. To serve 1 billion+ active users, 
Facebook has improved the open source version of Memcached 
with an adaptive slab allocator, the transient item cache, and 
leases[16].  

To support the scale of a billion users, we organize our machines 
into various types of clusters[16]. Frontend clusters hold web 
servers that serve user requests and query databases. Storage 

clusters hold database instances. Memcached servers within 
frontend clusters cache the results of database requests issued by 
web servers. This is defined as cluster layer caching or L1 

caching. Many frontend clusters form a region. In any region of 
clusters, there is exactly one storage cluster whereas there are 
multiple frontend clusters.  

 

      
 

 

 

 

 

 

 

 

 

 

 

         

 

Figure 1: Data center infrastructure. 

Memcached servers at the regional level are shared by web 
servers from all clusters in the same region. In this paper, we 
define these regional Memcached caches as L2 caches. If a key-
value pair resides in an L2 cache, one copy can serve all web 
requests from N frontend clusters in the same region. For 
example, Derek in New York uploaded a photo into Facebook 
and shared it with his friends. Travis, one of Derek’s friends, 
immediately saw this photo in his News Feed. At that time, the 
metadata of this photo, such as creation time and tags, is loaded 
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into L1 caches for the hope this photo will be requested again in 
a short period of time. Later on, Justin, another friend of 
Derek’s, accessed this photo. This time, Justin’s request was 
served by another frontend cluster routed by a load balancer. 
Now the same content has 2 copies at L1 caches in the same 
region. Assuming we have N frontend clusters in a region, we 
would soon have N copies of the same cache item for this photo. 
If this photo object stays at L2 cache, only one copy is required 
to serve both Travis’s and Justin’s request. This works as long as 
this photo is not hot. If this photo happens to be hot, too many 
concurrent requests to the L2 cache will exceed the capacity of a 
single host in the L2 cache tier and thus deteriorate the user 
experience. For most users, the average number of photos 
viewed by their friends is bound by the number of friends. But 
for a small number of celebrities, their photos are usually hot as 
they could have millions of fans. This long tail access pattern is 
the de facto characterization for a social network. Only one copy 
will be stored if we separate the long tail cold data into L2 and 
promote only hot data to L1.  

In the rest of this paper, we will discuss the proposed long tail 
access pattern which enables the efficiency savings. We will 
also present the mathematics model for the probability 
promotion algorithm.  Experiment results are demonstrated in 
the end. 

 

2. ACCESS PATTERN ANALYSIS 

2.1 Concepts  
Each key-value pair has a key ID, which is a string. A 
normalized version of key-id is defined as a normalized key. For 
example, key ID photos:foobar:{12345}:c{1} has photos:-
foobar:{N}:c{N} as its normalized key where N stands for an 
integer value. For this particular example, ‘12345’ is a user ID 
and the second N = 1 is for version number. A key family is a 
set for all cache key-value pairs which have the same 
normalized key.  

The keys are organized as key families and this provides 
flexibility to 1) assign dedicated Memcached pools, 2) add TTL 
(time to live) parameters, and 3) migrate processes as we can 
manage the whole key family as a whole. The prefix of 
normalized key is used to detect which pool the key belongs to. 
For example, all keys starting with prefix ‘photo’ go to the photo 
tier which has its dedicated Memcached machines.  

To increase memory efficiency, we look to the working set size 

for each key family. We define working set size as the aggregate 
key and value sizes for all unique keys for a given time interval. 
Conceptually, if the same key is accessed multiple times to the 
same cache host, it is counted only once in calculating the 
working set because only one copy of the key-value pair is 
needed to serve the subsequent requests.  
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Where k is the number of unique keys and t is the time duration 
for calculating the working set. For example, we can calculate 
weekly, daily and hourly working sets. 

 

2.2 Key-Based Sampling  
For hotness analysis, we need to figure out how many times a 
key is accessed. This implies the same key always needs to be 

sampled. We choose a key-based sampling method by using a 
cheap hash function, as follows: 

hash(key_id) % sample_rate == 0 

Where sample_rate = 1,000,000 to reduce sampling overhead. 

This sampling technique has many advantages compared with 
user- or request-based sampling. Because keys are not sampled 
by user requests, key-based sampling can capture all cache 
accesses including ones not associated with user activities. As 
we capture all accesses to the same key once it is sampled, it can 
also be used for capacity miss, consistency miss analysis where 
other sampling techniques do not fit. 

In this experiment, each web server in a frontend cluster 
continuously logs sampled cache key accesses to local disk. The 
log data is then pushed to a data warehouse by scribeH[1]. We 
use Hive[2] to analyze it as Hive provides SQL-like queries to 
allow aggregated size calculations grouped by key family.  

 

2.3 Long Tail Access Pattern 
Facebook has the largest social network in the world. It is 
natural to have hot objects such as a celebrity’s Page, photos and 
News Feed stories. Figure 2 demonstrates the long tail access 
pattern CDF (Cumulative Distribution Function) for photos. 

  

Figure 2: Hotness CDF distribution. 

The intersection of the vertical line and top curve illustrates that 
90% of unique photo keys are accessed for no more than 32 
(log32 = 1.5) times per day. This also means that only 10% of 
unique keys are accessed more than 32 times. The intersection 
of the vertical line and red curve demonstrates that 90% of cold 
keys contribute only 20% for the total photo cache traffic and 
that 10% of hot keys contribute 80% of the total requests. Each 
Facebook user has about 100 friends on average. If 1/3 of those 
friends (100/3 = 33) are active users, this explains how 90% of 
photos are accessed for up to 32 times per day. On the other 
hand, there are users who have significantly more friends or fans 
such as celebrities. A photo from a celebrity with 7 million fans 
is accessed much more times than the ones from an average 
user.  

A long tail access pattern applies not only to key families that 
are shared across users, but also to the ones that are associated 
with a single user. For example, key families associated with 
News Feed are among the most frequently accessed keys, as 
users spend considerable time consuming News Feed. We have 
found the same long tail access pattern as some users are more 
active than others.  



 

2.4 Duplication Factor 
The long tail access pattern in section 2.3 demonstrates that 90% 
of the working set is contributed by cold keys, which are 
accessed for no more than 32 times a day. If these cold keys 
reside in the cluster level (L1) cache, we will have N copies 
assuming we have N frontend clusters in the same region. It 
makes perfect sense to move these cold keys to the regional 
level (L2) cache especially because the network traffic caused 
by cold keys is only 20%. This new architecture makes the L1 
cache thin and the L2 cache fat in terms of consumed memory. 
The L1 cache layer serves as cache replicas only for hot keys. 

To further simplify detecting key families suitable for L1/L2 
architect, we introduced a new metric, duplication factor. It is 
defined as the ratio between the sums of each cluster’s working 
set size and the regional working set size.  
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When we have k frontend clusters in the same region, the 
duplication factor value ranges between 1 and k. Its maximum 
value k is obtained if all key-value pairs for the same key family 
have been duplicated in all k frontend clusters. Its minimum 
value is obtained when each cluster has zero overlap of the same 
key family. The regional_ws can be considered as the memory 
footprint required if the whole key family is served in L2 cache.  

Duplication factor is correlated to the number of average unique 
users, which is the total count of different users who have 
accessed a key family. When a key family is shared across more 
unique users, it has a higher probability of being accessed from 
more frontend clusters.  

 

3. PROMOTION ALGORITHM 

3.1 L1/L2 Architecture 
We use photo L1 and L2 caches to demonstrate the proposed 
algorithm workflow. Photo L1 cache is the front cache for 
photo-related keys; L2 cache is the second level cache. The 
cache client resides in the WWW tier or PHP code. The 
workflow acts as follows: 

1. Cache client requests a key k from L1 cache. 
2. L1 cache does not have this key, it returns a cache 

miss to the web server. 
3. The web server sends a get request to the L2 cache 

upon receiving the L1 cache miss. 
4. Assuming the L2 cache has its key, it returns the value 

of this key to the web server. 
5. The web server generates the random number and 

does the following check:if(mt_rand(1,N)%N==1), if 
true, it sends a set request to the L1 cache to promote 
this key to L1. 

6. Assuming at step 4 the L2 cache does not have its key, 
it returns miss.  

7. The web server then sends a request to the backend 
database layer and fetches the value for key k. 

8. The web server sends a set request to the L2 cache 
upon receiving the value from the database. 
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Figure 3: Promote algorithm workflow. 

Step 5 is the main innovative idea of separating the hot key from 
the cold key. Intuitively, hot keys have a higher probability to be 
promoted simply because they have more trials to pass the 
check. N is a crucial number which controls the cache traffic 
between L1 and L2. When N has a larger value, a key in L2 has 
less chance to be promoted. And, thus, less cache traffic goes to 
the L1 cache. As in Figure 3, in case of a cache miss in L2, the 
web server sets the value to only L2. This step prevents keys 
from polluting L1 if they are accessed only once. In section 3.2, 
we will discuss more details on how to tune this number. 

 

3.2 Probability Modeling 
Assume N is the promotion threshold value. -�. � � is the 
probability a key is promoted when it gets accessed at kth time. -�� � � is the probability a key is not promoted when it gets 
accessed at kth time. 

As the total number of keys is extremely large, we can assume 
the probability is independent of each trial. 

So for each individual trial:   
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For example, if N=32, to calculate the probability a key can be 
promoted with 10, 32 and 100 trials: 

L1 - Cluster 

Backing 
store 

Web Server 

L2 - Region 



 

-�. ≤ 10 �    1 − BF@:;F@ C;G:; � 27.2024% 

-�. ≤ 32 �    1 − BF@:;F@ CF@:; � 63.7945% 

-�. ≤ 100 �    1 − BF@:;F@ C;GG:; � 95.482% 

It means a key has 27.2024% probability to be promoted with 10 
trials; 63.794% probability to be promoted with 32 gets; and 
95.482% probability to be promoted for no more than 100 gets. 

 

Figure 4 demonstrates the relationship between the number of 
gets and its promoted probability. When the number of trials is 
73, a key has a 90% chance of being promoted. Based on this 
figure, it shows that if a key is hot, it is almost guaranteed that it 
will be promoted to L1. 

 

3.3 Tuning Promotion Threshold 
Promotion threshold is the N value we choose for our promotion 
algorithm. This value plays an important role for multiple layer 
cache performance. On one hand, a hot key needs to be able to 
be promoted to L1 after a reasonable number of gets; on the 
other hand, a cold key promotion should be avoided as much as 
possible so the L1 cache would not be polluted with falsely 
promoted cold keys from L2.  

The following chart shows the probability curve for various 
threshold values of 8, 16, 32, 64 and 128. We choose threshold 
value T=32 out of the 5 curves presented from Figure 5 because 
when the number of trials is 100, the promoted probability is 
high at 95.82%. And when the number of trials is 10, the 
promoted probability is low at 27.20%. This ensures hot keys 
will be prompted and cold keys will not. 

 

4. EXPERIMENT RESULTS 
We selected the photo tier for the L1/L2 experiment. A photo 
tier includes dedicated physical hosts forming a pool of 
Memcached cache hosts. This tier serves cache queries for only 
photo-related objects at Facebook. Before this experiment, photo 
had its own dedicated tier in each frontend cluster. This photo 
tier is an L1 cache tier and no photo cache traffic went to the L2 
cache layer before this experiment.  

 

 

 

 

 

 

 

  

 

 

Figure 6: Photo L1/L2 experiment architecture 

For this experiment shown in Figure 6, we added a new L2 
photo tier and directed all L1 cache misses to this new L2 tier. A 
L1 miss will be served from L2 first before it goes to database 
layer. There are multiple frontend clusters in this setup. They are 
all backed by the same L2 tier. When this tier was added 
originally, the overall cache hit ratio jumped as we essentially 
added more hardware to serve the same traffic. We then started 
shrinking each individual L1 cache layer to the point where it 
has just sufficient memory to hold hot objects but not cold 
objects. 

 

4.1 Cache Hit Ratio 
Cache hit ratio is an important metric to measure cache 
performance and efficiency. As in Figure 7, before the L2 cache 
is enabled, two frontend clusters have hit ratios of 86% at peak; 
the third frontend cluster has a hit ratio of 89% at peak.  

When L2 is enabled with promotion threshold = 1 on 
Wednesday in Figure 8, the third cluster has a hit ratio of 88% 
and L2 has a hit ratio of 51.7%. The aggregated hit ratio is 
calculated as follows: 

                    88%+(1-88%)*51.7% = 94.2% 
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In terms of cache miss, it was 1-89%=11% compared with 1-
94.2%=5.8%. This is a 56.36% miss reduction by adding the L2 
cache. 

Because the promotion threshold = 1, it means a newly fetched 
key from the database to L2 will be always set to the L1 cache. 
And, thus, the hot keys are not separated from cold keys. We set 
the promotion threshold to 32. In Figure 9 as shown in the 
rectangle, the L1 cache hit ratio starts to decrease while the L2 
cache hit ratio jumps. This can be explained because cold keys 
are removed from the L1 cache and they are served only from 
the L2 cache. So any cache gets to these cold keys becomes a 
cache miss in L1 compared with a possible cache hit before the 
threshold = 32 is set. Consequently there are more cache 
requests to L2 cache as a direct result of L1 cache misses for 
cold keys, these requests to L2 increase the L2 cache hit ratio. 

 

In Figure 10, the overall hit ratio is as follows: 

 66%+(1-66%)*80%= 93.2% 

This is 4.2% hit ratio increase with a less number of machines in 
L1.  

 

4.2 Eviction Age with Promotion Algorithm 

Enabled  

 

Eviction age is the age for the last item evicted from the 
Memcached LRU queue. A longer eviction age means more 
cache items can be stored. The promotion algorithm plays a 
crucial role in reducing the number of L1 hosts. In Figure 11, 
right after the promotion algorithm was enabled for the frontend 
cluster, the eviction age started to climb up.  

When the promotion algorithm is enabled, cold keys have a very 
low probability of being promoted from L2 to L1. Only hot keys 
will be promoted and set to L1. This simple algorithm 
significantly reduced the eviction pressure at L1 as there are 
fewer items to be set. Figure 11 demonstrates that our promotion 
algorithm successfully separated hot keys and cold keys. 

 

4.3 Network Traffic Distribution 
Our promotion algorithm controls where a key will be stored 
depending on the hotness of a key and the promotion threshold 
value. Consequently, it also controls where a cache key is 
served. This effect has great implications on network traffic 
distribution for both the cluster and regional levels. A higher 
promotion threshold value results in fewer keys being promoted 
to the L1 cache; thus, more cache traffic is served from L2.  

In Figure 12, network traffic in the L2 cluster in the red line 
sharply increased while the three L1 caches had a relatively 
small decrease in network traffic. Depending on the network 
bandwidth availability, we can shift traffic between L1 and L2 
so that network management becomes more flexible.  

 

 

5. RELATED WORK 
Workload analysis is crucial for storage and caching system 
optimization. Accordingly, there is more research work[3,4,5,7,-
8,9,10,11] on the sampling, analysis and characterization of the 

 

Figure 8: Hit ratio after promotion algorithm enabled 

Figure 9: Hit Ratio with reduced L1 size 

Figure 10: Hit Ratio change for all FE clusters 

Figure 11: Eviction age increase by promotion algorithm 

Figure 12: Network traffic distribution 



 

workloads on storage and caching system. Atikoglu et. al. 
implemented a network sniffer to capture traces from the 
Memcached server. Cache hit rates over time and access locality 
were studied in great detail[4]. Ahmad I. proposed a disk I/O 
workload characterization system using online histograms in a 
virtual machine environment[7]. 

The long tail access pattern has been studied in many recent 
research papers[4,6]. For example, Atikoglu et. al. found that 
50% of keys occur in only 1% of all requests. These keys do not 
repeat many times but a few popular keys or hot keys repeat in 
millions of requests per day[4]. 

Cache allocation and placement algorithms have been discussed 
in many research papers[14,15,16]. Yadgar G. proposed a local 
management scheme, Karma, which uses readily available 
information about the client’s future access profile to save the 
most valuable blocks and to choose the best replacement 
policy[14]. Performance and efficiency improvements based on 
workload analysis are discussed in [6,12,13]. Traverso et. al. 
implemented a system to selectively distribute long-tail content 
across PoPs. This system exploits social network relationships 
and achieved as much as 80% cost savings for WAN 
bandwidth[6].  

 

6. CONCLUSION AND FUTURE WORK 
This paper presented a novel idea to optimize cache keys with a 
long tail access pattern by separating hot items to the L1 cache 
and cold items to the L2 cache. This approach reduces the data 
duplication in frontend cluster and thus fewer cache servers are 
required to maintain the same cache hit ratio. To our knowledge, 
the promotion algorithm based on access frequency probability 
is a novel idea, which nicely filters out long tail cold items with 
minimal overhead. Our Memcached prototype with real 
Facebook production traffic demonstrated better hit ratio and 
user experience.  

 

ACKNOWLEDGMENTS 
We are grateful for the valuable feedbacks provided by Goranka 
Bjedov, Yee Jiun Song, Yu Chen, Min Ni, Harry Li, Venkat 
Venkataramani, Frank Frankovsky, and Jay Parikh. We would 
like to thank Pete Bratach for his help reviewing and editing this 
paper.  

 

7. REFERENCES 
[1] http://wiki.github.com/facebook/scribe 
[2] http://wiki.apache.org/hadoop/Hive 
[3] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P. 

Finding a needle in haystack: Facebook's photo storage. 

In Proceedings of the 10th USENIX Symposium on 

Operating Systems Design and Implementation (Oct. 

2010).  
[4] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and 

Paleczny, M. Workload analysis of a large-scale key-

value store. In SIGMETRICS ’12: Proceedings of the 12th 

ACM SIGMET-RICS/PERFORMANCE joint international 

confe-rence on Measurement and Modeling of Computer 

Systems, pages 53–64, New York, NY, USA, 2012. ACM. 

[5] Feitelson, D. G. Workload modeling for Perform-ance 
evaluation. In Performance Evaluation of Complex 

Systems: Techniques and Tools, M. C. Calzarossa and S. 

Tucci, Eds., vol. 2459 of Lecture Notes in Computer 

Science. Springer-Verlag, Sept. 2002, pp. 114{141. 

www.cs.huji.ac.il/~feit/papers/WorkloadModel02chap.

ps.gz.  
[6] Traverso, S., Huguenin, K., Trestian, I., Erramilli, 

V.,Laiutaris, N., Papagiannaki, K.: TailGate: Handling 
Long-Tail Content with a Little Help from Friends. WWW 
2012, April 16-20, 2012, Lyon, France. 

[7] Ahmad, I. Easy and e_cient disk I/O workload 

characterization in VMware ESX server. In Proceedings 

of IEEE International Symposium on Workload 

Characterization (Sept. 2007). 
[8] Kavalanekar, S., Worthington, B., Zhang, Q., and Sharda, 

V. Characterization of storage workload traces from 

production windows servers. In Proceedings of IEEE 

International Symposium on Workload Characterization 

(Sept. 2008). 

[9] Keeton, K., Alistair Veitch, D. O., and Wilkes, J. I/O 

characterization of commercial workloads. In 

Proceedings of the 3rd Workshop on Computer 

Architecture Evaluation using Commercial Workloads 

(Jan. 2000). 

[10] Breslau, L., CAO, P., FAN, L., PHILIPS, G., and SHENKER, 

S. Web caching and zipf-like distributions: evidence and 

implications. In Proceedings of the 18th Annual IEEE 

International Conference on Computer Communications 

(1999). 

[11] Lublin, U., and Feitelson, D.G. The workload on parallel 

supercomputers: Modeling the characteristics of rigid 

jobs. Journal of Parallel and Distributed Computing 63, 

11 (Nov. 2003), 1105-1122.  

[12] Sastry, N.,  Yoneki, E., Crowcroft. Buzztraq, J. Predicting 

Geographical Access Patterns of Social cascades Using 

Social Netowkrs. In SNS, 2009.  

[13] Scellato, S., Mascolo, C., Musolesi, M. and Crowcroft. 

Track Globally, Deliver Locally: Improving Content 

Delivery Networks by Tracking Geographic Social 

Cascades. In WWW, 2011.  

[14] Jiang, S., Zhang, X. LIRS: An Efficient Low Inter-reference 

Recency Set Replacement Policy to Improve Buffer 

Cache Performance. In Proceedings of the 2002 ACM 

SIGMETRICS international conference on Measurement 

and modeling of computer systems (2002), 

SIGMETRICS’02, ACM, pp. 31-42. 

[15] Megiddo, N., Modha, D. S. ARC: A self-tuning, low 

overhead replacement cache. In Proceedings of the 2nd 

USENIX Conference on File and Storage Technologies, 

2003, pp. 115-130. 

[16] Nishtala R., Fugal H., Grimm S., Kwiatkowski M., Lee H., 

Li C.,Mcelroy R., Paleczny M., Peek D., Saab P., Stafford 

D., Tung T., and Venkataramani V.: Scaling Memcache at 

Facebook. NSDI 2013 (to appear). 

 


