

Storage and Performance Optimization of Long Tail Key
Access in a Social Network

John Liang James Luo Mark Drayton Rajesh Nishtala

Richard Liu Nick Hammer Jason Taylor Bill Jia

Facebook

Menlo Park, CA

{johnl, jamesluo,mbd,rajesh.nishtala,richxliu,hammer,jasont,billjia@fb.com}

ABSTRACT

In a social network, it is natural to have hot objects such as a
celebrity’s Facebook page. Duplicating hot object data in each
cluster provides quick cache access and avoids stressing a single
server’s network or CPU resources. But duplicating cold data in
each cache cluster consumes significant RAM. A more storage
efficient way is to separate hot data from cold data and duplicate
only hot data in each cache cluster within a data center. The cold
data, or the long tail data, which is accessed much less
frequently, has only one copy at a regional cache cluster.

In this paper, a new sampling technique to capture all accesses
to the same sampled keys is created. We then calculate the
working set size for each key family for estimating the memory
footprint. We introduce an important metric, duplication factor,
as the ratio between the sum of each individual cluster’s
working set size and the regional working set size. We analyze
why some key families have a higher duplication factor.

It is important to separate hot keys and cold keys from the same
key family with minimal overhead. We present a novel cache
promotion algorithm based on key access probability. We also
proposed a probability model based on the binomial distribution
to predict the promotion probability with various promotion
thresholds.

Our experiment shows by shrinking the cluster level cache layer
and having a fat regional level cache for cold data, we are able
to achieve a higher combined cache hit ratio.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Databases; B.3.2
[Design Styles]: Cache memories; D.4.2 [Storage Management]:
Distributed Memories

Keywords
Cache Optimization, Workload Analysis, Key-Value Store

1. INTRODUCTION
Memcached is a well-known open source in-memory key-value
caching solution. Facebook has the largest Memcached
installation in the world, which scales to process billions of
users requests per second. To serve 1 billion+ active users,
Facebook has improved the open source version of Memcached
with an adaptive slab allocator, the transient item cache, and
leases[16].

To support the scale of a billion users, we organize our machines
into various types of clusters[16]. Frontend clusters hold web
servers that serve user requests and query databases. Storage

clusters hold database instances. Memcached servers within
frontend clusters cache the results of database requests issued by
web servers. This is defined as cluster layer caching or L1

caching. Many frontend clusters form a region. In any region of
clusters, there is exactly one storage cluster whereas there are
multiple frontend clusters.

Figure 1: Data center infrastructure.

Memcached servers at the regional level are shared by web
servers from all clusters in the same region. In this paper, we
define these regional Memcached caches as L2 caches. If a key-
value pair resides in an L2 cache, one copy can serve all web
requests from N frontend clusters in the same region. For
example, Derek in New York uploaded a photo into Facebook
and shared it with his friends. Travis, one of Derek’s friends,
immediately saw this photo in his News Feed. At that time, the
metadata of this photo, such as creation time and tags, is loaded

Frontend cluster

L1 cache

Web Server

Memcached

Storage Cluster

(master)

Frontend cluster

L1 Cache

Web Server

Memcached

Storage Cluster

(master)

Memcached(L2) Memcached(L2)

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CloudDP’13, April 14, 2013, Prague, Czech Republic.
Copyright 2013 ACM 978-1-4503-2075-7 …$15.00.

into L1 caches for the hope this photo will be requested again in
a short period of time. Later on, Justin, another friend of
Derek’s, accessed this photo. This time, Justin’s request was
served by another frontend cluster routed by a load balancer.
Now the same content has 2 copies at L1 caches in the same
region. Assuming we have N frontend clusters in a region, we
would soon have N copies of the same cache item for this photo.
If this photo object stays at L2 cache, only one copy is required
to serve both Travis’s and Justin’s request. This works as long as
this photo is not hot. If this photo happens to be hot, too many
concurrent requests to the L2 cache will exceed the capacity of a
single host in the L2 cache tier and thus deteriorate the user
experience. For most users, the average number of photos
viewed by their friends is bound by the number of friends. But
for a small number of celebrities, their photos are usually hot as
they could have millions of fans. This long tail access pattern is
the de facto characterization for a social network. Only one copy
will be stored if we separate the long tail cold data into L2 and
promote only hot data to L1.

In the rest of this paper, we will discuss the proposed long tail
access pattern which enables the efficiency savings. We will
also present the mathematics model for the probability
promotion algorithm. Experiment results are demonstrated in
the end.

2. ACCESS PATTERN ANALYSIS

2.1 Concepts
Each key-value pair has a key ID, which is a string. A
normalized version of key-id is defined as a normalized key. For
example, key ID photos:foobar:{12345}:c{1} has photos:-
foobar:{N}:c{N} as its normalized key where N stands for an
integer value. For this particular example, ‘12345’ is a user ID
and the second N = 1 is for version number. A key family is a
set for all cache key-value pairs which have the same
normalized key.

The keys are organized as key families and this provides
flexibility to 1) assign dedicated Memcached pools, 2) add TTL
(time to live) parameters, and 3) migrate processes as we can
manage the whole key family as a whole. The prefix of
normalized key is used to detect which pool the key belongs to.
For example, all keys starting with prefix ‘photo’ go to the photo
tier which has its dedicated Memcached machines.

To increase memory efficiency, we look to the working set size

for each key family. We define working set size as the aggregate
key and value sizes for all unique keys for a given time interval.
Conceptually, if the same key is accessed multiple times to the
same cache host, it is counted only once in calculating the
working set because only one copy of the key-value pair is
needed to serve the subsequent requests.

 ��� � 	∑ ∑ ���	�
 ��� � ��	�������))

Where k is the number of unique keys and t is the time duration
for calculating the working set. For example, we can calculate
weekly, daily and hourly working sets.

2.2 Key-Based Sampling
For hotness analysis, we need to figure out how many times a
key is accessed. This implies the same key always needs to be

sampled. We choose a key-based sampling method by using a
cheap hash function, as follows:

hash(key_id) % sample_rate == 0

Where sample_rate = 1,000,000 to reduce sampling overhead.

This sampling technique has many advantages compared with
user- or request-based sampling. Because keys are not sampled
by user requests, key-based sampling can capture all cache
accesses including ones not associated with user activities. As
we capture all accesses to the same key once it is sampled, it can
also be used for capacity miss, consistency miss analysis where
other sampling techniques do not fit.

In this experiment, each web server in a frontend cluster
continuously logs sampled cache key accesses to local disk. The
log data is then pushed to a data warehouse by scribeH[1]. We
use Hive[2] to analyze it as Hive provides SQL-like queries to
allow aggregated size calculations grouped by key family.

2.3 Long Tail Access Pattern
Facebook has the largest social network in the world. It is
natural to have hot objects such as a celebrity’s Page, photos and
News Feed stories. Figure 2 demonstrates the long tail access
pattern CDF (Cumulative Distribution Function) for photos.

Figure 2: Hotness CDF distribution.

The intersection of the vertical line and top curve illustrates that
90% of unique photo keys are accessed for no more than 32
(log32 = 1.5) times per day. This also means that only 10% of
unique keys are accessed more than 32 times. The intersection
of the vertical line and red curve demonstrates that 90% of cold
keys contribute only 20% for the total photo cache traffic and
that 10% of hot keys contribute 80% of the total requests. Each
Facebook user has about 100 friends on average. If 1/3 of those
friends (100/3 = 33) are active users, this explains how 90% of
photos are accessed for up to 32 times per day. On the other
hand, there are users who have significantly more friends or fans
such as celebrities. A photo from a celebrity with 7 million fans
is accessed much more times than the ones from an average
user.

A long tail access pattern applies not only to key families that
are shared across users, but also to the ones that are associated
with a single user. For example, key families associated with
News Feed are among the most frequently accessed keys, as
users spend considerable time consuming News Feed. We have
found the same long tail access pattern as some users are more
active than others.

2.4 Duplication Factor
The long tail access pattern in section 2.3 demonstrates that 90%
of the working set is contributed by cold keys, which are
accessed for no more than 32 times a day. If these cold keys
reside in the cluster level (L1) cache, we will have N copies
assuming we have N frontend clusters in the same region. It
makes perfect sense to move these cold keys to the regional
level (L2) cache especially because the network traffic caused
by cold keys is only 20%. This new architecture makes the L1
cache thin and the L2 cache fat in terms of consumed memory.
The L1 cache layer serves as cache replicas only for hot keys.

To further simplify detecting key families suitable for L1/L2
architect, we introduced a new metric, duplication factor. It is
defined as the ratio between the sums of each cluster’s working
set size and the regional working set size.

 ����������		������ � 	∑ ������ _"��#$%&'() �*#+,_"�

When we have k frontend clusters in the same region, the
duplication factor value ranges between 1 and k. Its maximum
value k is obtained if all key-value pairs for the same key family
have been duplicated in all k frontend clusters. Its minimum
value is obtained when each cluster has zero overlap of the same
key family. The regional_ws can be considered as the memory
footprint required if the whole key family is served in L2 cache.

Duplication factor is correlated to the number of average unique
users, which is the total count of different users who have
accessed a key family. When a key family is shared across more
unique users, it has a higher probability of being accessed from
more frontend clusters.

3. PROMOTION ALGORITHM

3.1 L1/L2 Architecture
We use photo L1 and L2 caches to demonstrate the proposed
algorithm workflow. Photo L1 cache is the front cache for
photo-related keys; L2 cache is the second level cache. The
cache client resides in the WWW tier or PHP code. The
workflow acts as follows:

1. Cache client requests a key k from L1 cache.
2. L1 cache does not have this key, it returns a cache

miss to the web server.
3. The web server sends a get request to the L2 cache

upon receiving the L1 cache miss.
4. Assuming the L2 cache has its key, it returns the value

of this key to the web server.
5. The web server generates the random number and

does the following check:if(mt_rand(1,N)%N==1), if
true, it sends a set request to the L1 cache to promote
this key to L1.

6. Assuming at step 4 the L2 cache does not have its key,
it returns miss.

7. The web server then sends a request to the backend
database layer and fetches the value for key k.

8. The web server sends a set request to the L2 cache
upon receiving the value from the database.

 1.get k 2.miss 3.get k 4.hit

 5.set(k,v) if 6.miss 8. set

 mt_rand(1,N)%N

 == 1
a. 7.Select …

Figure 3: Promote algorithm workflow.

Step 5 is the main innovative idea of separating the hot key from
the cold key. Intuitively, hot keys have a higher probability to be
promoted simply because they have more trials to pass the
check. N is a crucial number which controls the cache traffic
between L1 and L2. When N has a larger value, a key in L2 has
less chance to be promoted. And, thus, less cache traffic goes to
the L1 cache. As in Figure 3, in case of a cache miss in L2, the
web server sets the value to only L2. This step prevents keys
from polluting L1 if they are accessed only once. In section 3.2,
we will discuss more details on how to tune this number.

3.2 Probability Modeling
Assume N is the promotion threshold value. -�. � � is the
probability a key is promoted when it gets accessed at kth time. -�� � � is the probability a key is not promoted when it gets
accessed at kth time.

As the total number of keys is extremely large, we can assume
the probability is independent of each trial.

So for each individual trial:

-� � 1
0 	�ℎ���	-�	��	�ℎ�	�������	���2�2�����

-3 � 0 − 1
0 	�ℎ���	-3	��	�ℎ�	5������	���2�����

-�. � � � -�� � � − 1 ∗ -�
																		� 1

0 ∗ -3 ∗ -�� � � − 2
																	� 1

0 ∗ 8-39
:; � 1
0 ∗ <0 − 1

0 =
:;

For cumulative probability:

-�. ≤ � � -�. � 1 � -�. � 2 � ⋯� -�. � �	
																			� 1

0 � 1
0 ∗ 0 − 1

0 � 1
0 ∗ <0 − 1

0 =@ �⋯� 1
0

∗ <0 − 1
0 =
:;	

																			�
10 ∗ A1 − B0 − 10 C
:;D

1 − B0 − 10 C 		

																			� 	 1 − <0 − 1
0 =
:;

For example, if N=32, to calculate the probability a key can be
promoted with 10, 32 and 100 trials:

L1 - Cluster

Backing
store

Web Server

L2 - Region

-�. ≤ 10 � 1 − BF@:;F@ C;G:; � 27.2024%

-�. ≤ 32 � 1 − BF@:;F@ CF@:; � 63.7945%

-�. ≤ 100 � 1 − BF@:;F@ C;GG:; � 95.482%

It means a key has 27.2024% probability to be promoted with 10
trials; 63.794% probability to be promoted with 32 gets; and
95.482% probability to be promoted for no more than 100 gets.

Figure 4 demonstrates the relationship between the number of
gets and its promoted probability. When the number of trials is
73, a key has a 90% chance of being promoted. Based on this
figure, it shows that if a key is hot, it is almost guaranteed that it
will be promoted to L1.

3.3 Tuning Promotion Threshold
Promotion threshold is the N value we choose for our promotion
algorithm. This value plays an important role for multiple layer
cache performance. On one hand, a hot key needs to be able to
be promoted to L1 after a reasonable number of gets; on the
other hand, a cold key promotion should be avoided as much as
possible so the L1 cache would not be polluted with falsely
promoted cold keys from L2.

The following chart shows the probability curve for various
threshold values of 8, 16, 32, 64 and 128. We choose threshold
value T=32 out of the 5 curves presented from Figure 5 because
when the number of trials is 100, the promoted probability is
high at 95.82%. And when the number of trials is 10, the
promoted probability is low at 27.20%. This ensures hot keys
will be prompted and cold keys will not.

4. EXPERIMENT RESULTS
We selected the photo tier for the L1/L2 experiment. A photo
tier includes dedicated physical hosts forming a pool of
Memcached cache hosts. This tier serves cache queries for only
photo-related objects at Facebook. Before this experiment, photo
had its own dedicated tier in each frontend cluster. This photo
tier is an L1 cache tier and no photo cache traffic went to the L2
cache layer before this experiment.

Figure 6: Photo L1/L2 experiment architecture

For this experiment shown in Figure 6, we added a new L2
photo tier and directed all L1 cache misses to this new L2 tier. A
L1 miss will be served from L2 first before it goes to database
layer. There are multiple frontend clusters in this setup. They are
all backed by the same L2 tier. When this tier was added
originally, the overall cache hit ratio jumped as we essentially
added more hardware to serve the same traffic. We then started
shrinking each individual L1 cache layer to the point where it
has just sufficient memory to hold hot objects but not cold
objects.

4.1 Cache Hit Ratio
Cache hit ratio is an important metric to measure cache
performance and efficiency. As in Figure 7, before the L2 cache
is enabled, two frontend clusters have hit ratios of 86% at peak;
the third frontend cluster has a hit ratio of 89% at peak.

When L2 is enabled with promotion threshold = 1 on
Wednesday in Figure 8, the third cluster has a hit ratio of 88%
and L2 has a hit ratio of 51.7%. The aggregated hit ratio is
calculated as follows:

 88%+(1-88%)*51.7% = 94.2%

0%

50%

100%

1 9

1
7

2
5

3
3

4
1

4
9

5
7

6
5

7
3

8
1

8
9

9
7

P
ro

m
o

te
d

 P
ro

b
a

b
il

it
y

Number of gets

Promoted Probability by number of gets

0%

50%

100%

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

Probablity by number of gets with various threshold values

T=8 T=16 T=32 T=64 T=128

Frontend cluster

L1 cache

Web Server

Memcached

Frontend cluster

L1 cache

Web Server

Memcached

Memcached(L2)

Figure 7: L1 Hit Ratio before adding L2

Figure 4: Promotion probability with threshold = 32

Figure 5: Promotion probability with various

threshold values = 8, 16, 32, 64, 128.

In terms of cache miss, it was 1-89%=11% compared with 1-
94.2%=5.8%. This is a 56.36% miss reduction by adding the L2
cache.

Because the promotion threshold = 1, it means a newly fetched
key from the database to L2 will be always set to the L1 cache.
And, thus, the hot keys are not separated from cold keys. We set
the promotion threshold to 32. In Figure 9 as shown in the
rectangle, the L1 cache hit ratio starts to decrease while the L2
cache hit ratio jumps. This can be explained because cold keys
are removed from the L1 cache and they are served only from
the L2 cache. So any cache gets to these cold keys becomes a
cache miss in L1 compared with a possible cache hit before the
threshold = 32 is set. Consequently there are more cache
requests to L2 cache as a direct result of L1 cache misses for
cold keys, these requests to L2 increase the L2 cache hit ratio.

In Figure 10, the overall hit ratio is as follows:

 66%+(1-66%)*80%= 93.2%

This is 4.2% hit ratio increase with a less number of machines in
L1.

4.2 Eviction Age with Promotion Algorithm

Enabled

Eviction age is the age for the last item evicted from the
Memcached LRU queue. A longer eviction age means more
cache items can be stored. The promotion algorithm plays a
crucial role in reducing the number of L1 hosts. In Figure 11,
right after the promotion algorithm was enabled for the frontend
cluster, the eviction age started to climb up.

When the promotion algorithm is enabled, cold keys have a very
low probability of being promoted from L2 to L1. Only hot keys
will be promoted and set to L1. This simple algorithm
significantly reduced the eviction pressure at L1 as there are
fewer items to be set. Figure 11 demonstrates that our promotion
algorithm successfully separated hot keys and cold keys.

4.3 Network Traffic Distribution
Our promotion algorithm controls where a key will be stored
depending on the hotness of a key and the promotion threshold
value. Consequently, it also controls where a cache key is
served. This effect has great implications on network traffic
distribution for both the cluster and regional levels. A higher
promotion threshold value results in fewer keys being promoted
to the L1 cache; thus, more cache traffic is served from L2.

In Figure 12, network traffic in the L2 cluster in the red line
sharply increased while the three L1 caches had a relatively
small decrease in network traffic. Depending on the network
bandwidth availability, we can shift traffic between L1 and L2
so that network management becomes more flexible.

5. RELATED WORK
Workload analysis is crucial for storage and caching system
optimization. Accordingly, there is more research work[3,4,5,7,-
8,9,10,11] on the sampling, analysis and characterization of the

Figure 8: Hit ratio after promotion algorithm enabled

Figure 9: Hit Ratio with reduced L1 size

Figure 10: Hit Ratio change for all FE clusters

Figure 11: Eviction age increase by promotion algorithm

Figure 12: Network traffic distribution

workloads on storage and caching system. Atikoglu et. al.
implemented a network sniffer to capture traces from the
Memcached server. Cache hit rates over time and access locality
were studied in great detail[4]. Ahmad I. proposed a disk I/O
workload characterization system using online histograms in a
virtual machine environment[7].

The long tail access pattern has been studied in many recent
research papers[4,6]. For example, Atikoglu et. al. found that
50% of keys occur in only 1% of all requests. These keys do not
repeat many times but a few popular keys or hot keys repeat in
millions of requests per day[4].

Cache allocation and placement algorithms have been discussed
in many research papers[14,15,16]. Yadgar G. proposed a local
management scheme, Karma, which uses readily available
information about the client’s future access profile to save the
most valuable blocks and to choose the best replacement
policy[14]. Performance and efficiency improvements based on
workload analysis are discussed in [6,12,13]. Traverso et. al.
implemented a system to selectively distribute long-tail content
across PoPs. This system exploits social network relationships
and achieved as much as 80% cost savings for WAN
bandwidth[6].

6. CONCLUSION AND FUTURE WORK
This paper presented a novel idea to optimize cache keys with a
long tail access pattern by separating hot items to the L1 cache
and cold items to the L2 cache. This approach reduces the data
duplication in frontend cluster and thus fewer cache servers are
required to maintain the same cache hit ratio. To our knowledge,
the promotion algorithm based on access frequency probability
is a novel idea, which nicely filters out long tail cold items with
minimal overhead. Our Memcached prototype with real
Facebook production traffic demonstrated better hit ratio and
user experience.

ACKNOWLEDGMENTS
We are grateful for the valuable feedbacks provided by Goranka
Bjedov, Yee Jiun Song, Yu Chen, Min Ni, Harry Li, Venkat
Venkataramani, Frank Frankovsky, and Jay Parikh. We would
like to thank Pete Bratach for his help reviewing and editing this
paper.

7. REFERENCES
[1] http://wiki.github.com/facebook/scribe
[2] http://wiki.apache.org/hadoop/Hive
[3] Beaver, D., Kumar, S., Li, H. C., Sobel, J., and Vajgel, P.

Finding a needle in haystack: Facebook's photo storage.

In Proceedings of the 10th USENIX Symposium on

Operating Systems Design and Implementation (Oct.

2010).
[4] Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., and

Paleczny, M. Workload analysis of a large-scale key-

value store. In SIGMETRICS ’12: Proceedings of the 12th

ACM SIGMET-RICS/PERFORMANCE joint international

confe-rence on Measurement and Modeling of Computer

Systems, pages 53–64, New York, NY, USA, 2012. ACM.

[5] Feitelson, D. G. Workload modeling for Perform-ance
evaluation. In Performance Evaluation of Complex

Systems: Techniques and Tools, M. C. Calzarossa and S.

Tucci, Eds., vol. 2459 of Lecture Notes in Computer

Science. Springer-Verlag, Sept. 2002, pp. 114{141.

www.cs.huji.ac.il/~feit/papers/WorkloadModel02chap.

ps.gz.
[6] Traverso, S., Huguenin, K., Trestian, I., Erramilli,

V.,Laiutaris, N., Papagiannaki, K.: TailGate: Handling
Long-Tail Content with a Little Help from Friends. WWW
2012, April 16-20, 2012, Lyon, France.

[7] Ahmad, I. Easy and e_cient disk I/O workload

characterization in VMware ESX server. In Proceedings

of IEEE International Symposium on Workload

Characterization (Sept. 2007).
[8] Kavalanekar, S., Worthington, B., Zhang, Q., and Sharda,

V. Characterization of storage workload traces from

production windows servers. In Proceedings of IEEE

International Symposium on Workload Characterization

(Sept. 2008).

[9] Keeton, K., Alistair Veitch, D. O., and Wilkes, J. I/O

characterization of commercial workloads. In

Proceedings of the 3rd Workshop on Computer

Architecture Evaluation using Commercial Workloads

(Jan. 2000).

[10] Breslau, L., CAO, P., FAN, L., PHILIPS, G., and SHENKER,

S. Web caching and zipf-like distributions: evidence and

implications. In Proceedings of the 18th Annual IEEE

International Conference on Computer Communications

(1999).

[11] Lublin, U., and Feitelson, D.G. The workload on parallel

supercomputers: Modeling the characteristics of rigid

jobs. Journal of Parallel and Distributed Computing 63,

11 (Nov. 2003), 1105-1122.

[12] Sastry, N., Yoneki, E., Crowcroft. Buzztraq, J. Predicting

Geographical Access Patterns of Social cascades Using

Social Netowkrs. In SNS, 2009.

[13] Scellato, S., Mascolo, C., Musolesi, M. and Crowcroft.

Track Globally, Deliver Locally: Improving Content

Delivery Networks by Tracking Geographic Social

Cascades. In WWW, 2011.

[14] Jiang, S., Zhang, X. LIRS: An Efficient Low Inter-reference

Recency Set Replacement Policy to Improve Buffer

Cache Performance. In Proceedings of the 2002 ACM

SIGMETRICS international conference on Measurement

and modeling of computer systems (2002),

SIGMETRICS’02, ACM, pp. 31-42.

[15] Megiddo, N., Modha, D. S. ARC: A self-tuning, low

overhead replacement cache. In Proceedings of the 2nd

USENIX Conference on File and Storage Technologies,

2003, pp. 115-130.

[16] Nishtala R., Fugal H., Grimm S., Kwiatkowski M., Lee H.,

Li C.,Mcelroy R., Paleczny M., Peek D., Saab P., Stafford

D., Tung T., and Venkataramani V.: Scaling Memcache at

Facebook. NSDI 2013 (to appear).

