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Figure 1: Left: A reconstruction performed using all pixels from the input. Right: Our method produces a similar reconstruc-
tion using a fraction of the pixels (white regions in the input images are unused). This scan is from the DTU dataset [19, 1].

Abstract

We present an approach to accelerate multi-view stereo
(MVS) by prioritizing computation on image patches that
are likely to produce accurate 3D surface reconstructions.
Our key insight is that the accuracy of the surface recon-
struction from a given image patch can be predicted signif-
icantly faster than performing the actual stereo matching.
The intuition is that non-specular, fronto-parallel, in-focus
patches are more likely to produce accurate surface recon-
structions than highly specular, slanted, blurry patches —
and that these properties can be reliably predicted from the
image itself. By prioritizing stereo matching on a subset of
patches that are highly reconstructable and also cover the
3D surface, we are able to accelerate MVS with minimal
reduction in accuracy and completeness. To predict the re-
constructability score of an image patch from a single view,
we train an image-to-reconstructability neural network: the
I2RNet. This reconstructability score enables us to effi-
ciently identify image patches that are likely to provide the
most accurate surface estimates before performing stereo
matching. We demonstrate that the I2RNet, when trained
on the ScanNet dataset, generalizes to the DTU and Tanks
& Temples MVS datasets. By using our I2RNet with an ex-
isting MVS implementation, we show that our method can
achieve more than a 30× speed-up over the baseline with
only an minimal loss in completeness.

1. Introduction

Using a large number of calibrated high-resolution RGB
images, very high quality surface geometry can be re-
constructed using Multi-View Stereo (MVS) [31, 3, 19].
The high-level pipeline used by many state-of-the-art MVS
methods first estimates the surface, i.e., the depth and nor-
mal, for each pixel in each view and then fuses estimates
from all views together to create the final surface recon-
struction. To estimate the depth and normal of a pixel (the
reference pixel), MVS selects a window around the refer-
ence pixel, which we call the reference patch, and attempts
to find a matching patch in each neighboring image. Once
the reference patch has been matched, the match combined
with the known geometric calibration of the views enables
the MVS algorithm to compute the depth and normal of the
3D point.

Unfortunately, if this matching process is performed for
every pixel in the image against every neighboring image,
the running time scales with O(v2p) where v is the number
of images and p is the number of pixels per image, since ev-
ery pixel in every image (vp) must be matched against every
other image (v). This time complexity means that as we add
more images with higher resolution, the time required can
become prohibitively long. In order to leverage the increas-
ing resolution and proliferation of cameras, it is critical that
we develop scalable MVS algorithms that can still produce
highly accurate surfaces while avoiding performing match-
ing for every pixel against every image.
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Figure 2: Method overview: Given a scan, we first run a neural network (I2RNet) to predict the reconstructability score of
each image patch. Then, using these scores and coarse depth maps, the patch-wise view filtering framework will identify a
mask for each image indicating where stereo matching should be run. Finally, a coarse-to-fine reconstruction pipeline takes
images and their masks as input and generates the final point cloud.

Existing methods have attempted to scale MVS by using
two main techniques: view filtering, which only estimates
depth and normals for a subset of images [7], and neigh-
bor selection, which only looks at a limited set of neigh-
boring views when matching a patch instead of all of them
[15, 33, 28]. The challenge of employing these techniques
is ensuring that they do not significantly impact the accu-
racy or completeness of the reconstruction. For example,
view filtering has been exploited by discarding entire im-
ages which redundantly view the same area and selecting
the smallest set of images that still cover the surface be-
ing reconstructed [7]. However, filtering an entire view
based on redundancy might not be perfectly aligned with
our final goal: high quality 3D reconstructions, which we
have observed are highly dependent on the “reconstructabil-
ity” of local patches of an image. For example, diffuse
and in-focus patches usually produce more accurate sur-
face estimates than specular and blurry patches. Since each
image can contain a mixture of reconstructable and non-
reconstructable patches, coarsely filtering by entire images
may discard image patches which would produce highly ac-
curate surfaces.

Instead of image-wise view filtering, we propose a
method to perform patch-wise view filtering, which selects
patches that are more likely to produce high quality sur-
face reconstructions. Specifically, we first learn to iden-
tify highly reconstructable image patches directly from the
image content. Then, we identify the top N most recon-
structable image patches corresponding to each 3D surface
region we want to reconstruct and only compute surface es-
timates from those patches. Since we choose image patches
which provide highly accurate surface estimates, we pro-
cess only a fraction of the total pixels across a set of images
(on the order of 2-16%) and still produce highly accurate
and complete reconstructions, as shown by Figure 1. There
were several contributions required to make this feasible:

Learning Patch Reconstructability: Our key insight is
that the accuracy of the surface reconstruction from a given
image patch can be predicted significantly faster than per-

forming the actual stereo matching. The prediction is per-
formed by a fully convolutional deep neural network. Then,
when given an unseen multi-view scan, the deep network
takes each image as input and regresses for each region its
reconstructability, which serves as a proxy for the accuracy
of the surface estimate that would be produced by the patch.
For a given patch, its ground truth reconstructability score
is computed as the difference between the depth computed
from a single view and the ground truth depth, which if ab-
sent can be substituted by the result of a high quality MVS
algorithm. In our evaluations, we show that our deep regres-
sor, which is trained on a large database of scans (ScanNet
[5]), can generalize to other MVS datasets, such as DTU
[19, 1] and Tanks and Temples [22]. This demonstrates that
the reconstructability of a patch can be estimated to some
extent based on a single image alone. In terms of run time,
the prediction by the deep network for an entire image takes
on the order of 100 milliseconds, while the actual match-
ing might take tens of seconds, thus demonstrating that the
accuracy of surface reconstruction can be predicted signifi-
cantly faster than actual stereo matching.

Patch Filtering: Given the reconstructability scores for
each patch, only a subset of patches are selected as refer-
ence patches to reduce computation time. Choosing this
subset by simple methods such as thresholding by the re-
constructability score does not take into account coverage
of the imaged 3D surface, and can result in an incomplete
reconstruction. As a solution, we propose a patch selection
framework that ensures coverage of the 3D surface while
maximizing the scores of the selected patches.

Sparse Coarse-to-fine MVS: Unfortunately, sparsely
computing surface estimates in an image may have adverse
effects on MVS algorithms which rely on dense surface es-
timation to regularize and improve the accuracy of individ-
ual pixel estimates [24, 10, 28]. To combat this, we pro-
pose a coarse-to-fine surface estimation strategy which en-
sures that the surface estimates around a selected patch are
coarsely initialized by estimates from the previous scale.
This coarse-to-fine approach mitigates the sparsity issue and



also further accelerates the MVS algorithm up to 3x by re-
quiring less processing at the finest scale.

Combining these contributions together produces a
pipeline which can drastically accelerate high-quality MVS.
The pipeline is shown in Figure 2. Experiments on the DTU
Robot Image Dataset [19, 1] and Tanks and Temples [22]
show that using our combined method can accelerate the
reconstruction process by 10−30× for a small decrease in
completeness.

2. Related Work
Multi-View Stereo: We provide a high-level review of

MVS techniques here and direct the reader to the MVS
tutorial by Furukawa et al. [8] for a more detailed refer-
ence. Common MVS techniques include region growing
methods, volumetric methods and depth map based meth-
ods. Region growing methods, such as PMVS [9] and
MVE [6, 15], find a set of surface patches around dis-
criminative interest points and progressively grow a re-
gion of depth samples around these points. Volumetric ap-
proaches [30, 23] perform reconstruction directly in a 3D
representation, such as a voxel grid. Depth map based meth-
ods [10, 12] compute individual depth maps for each view
followed by a fusion step to merge the depth maps into a
final 3D representation. In the following paragraphs, we fo-
cus more on depth map based methods as our method falls
into this category.

View Selection for Scalable MVS: As mentioned in the
introduction, the core techniques for achieving scalability
in large-scale MVS are view filtering and neighbor selec-
tion. These techniques can reduce the problem from scal-
ing quadratically to linearly in the number of images. Fu-
rukawa et al. [7] perform simultaneous view filtering and
neighbor selection by structuring their image subsets as
small, potentially overlapping clusters of images where the
images in a cluster are chosen to maximize coverage and
minimize redundancy with other images. Goesele et al. [15]
performs neighbor selection by choosing the best neighbor-
ing views to match against for each image using a two-level
selection scheme: a global selection scheme selects a set of
neighbors with good triangulation angle and similar scale
and then a local selection scheme chooses views from this
set that are both diverse and match well against the refer-
ence image. Zheng et al. [33] also performs neighbor selec-
tion but does so by solving depth estimation and neighbor
selection as a joint problem. Schönberger et al. [28] extends
Zheng et al.’s work by performing neighbor selection at the
per-pixel level.

Learning Patch Fitness: At a more abstract level, learn-
ing the reconstructability of an image patch is an instance
of the more general idea that it is possible to predict the
“fitness” of an image patch for a specific task. This idea
has previously been employed in the context of interest

point matching for Structure-from-Motion by Hartmann et
al. [16]. Hartmann et al. learned to predict which interest
points will have a high chance of a successful match so that
they can discard points with a low probabiliy of matching.
Penate-Sanchez et al. [25] also used this idea in the context
of predicting the matchability of templates.

Learning for MVS: Several works have been proposed
which attempt to integrate learning into an MVS pipeline.
Galliani et al. [11] propose to learn to predict surfaces nor-
mals for “bad” image regions by learning from the image
regions which were well reconstructed. Ji et al. [20] pro-
pose an end-to-end neural network architecture for MVS,
though their performance does not exceed that of traditional
methods. In contrast, we propose to learn which portions of
an image are good for reconstruction. Our learned recon-
structability score could be used as a complementary signal
to these existing approaches since they do not attempt to
explicitly estimate reconstructability.

Faster Stereo Matching: A broad set of techniques
have been explored for accelerating the stereo match-
ing phase of MVS, motivated by the significant com-
pute required for finding precise stereo correspondences.
Geiger et al. [13, 14] propose using interest points to accel-
erate matching by constraining the disparity search space.
Bleyer et al. [24] propose PatchMatch Stereo, which de-
couples the runtime of their method from the disparity range
that must be sampled for locating stereo correspondence via
a randomized, iterative algorithm based on PatchMatch [2].
Galliani et al. [10] extend this approach to a multi-view
setting and propose a highly-parallel plane propagation
scheme which exploits modern parallel hardware. Our pro-
posed coarse-to-fine surface estimation scheme could be ap-
plied to several of these methods to provide further regular-
ization and reduce processing time.

3. Patch-wise View Filtering
In this section, we will first discuss how we define the re-

constructability score, how we can use ground truth data to
train a network that can predict the reconstructability score
from input images, and how we can generate training data
when we do not have the ground truth surface (Section 3.1,
Figure 2 top left). We then discuss how we use the scored
input images, along with a coarse reconstruction, to per-
form patch-wise view filtering, which both chooses highly
reconstructable image patches and ensures that the final re-
construction is complete (Section 3.2, Figure 2 middle).

3.1. Learning a Reconstructability Score

In order to filter image patches before performing stereo
matching with minimal effect on the accuracy of the recon-
struction, we would like to choose image patches that are
likely to produce the most accurate surface estimates. Many
factors reduce image quality and thus accurate normal/depth
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Figure 3: Reconstructability Score Learning Pipeline:
The labels, i.e., score maps, are produced by taking the per-
pixel difference between the computed depth for each view
and the true depth from the ground truth. We then use these
labels to train a CNN to predict score maps directly from
input images.

 - 15% APU Ours - 13% APUE(Ii,p) > 0.9

Figure 4: Comparison of two methods to reduce the aggre-
gate pixels used (APU). Left: A fixed threshold is used to
remove image patches. Notice the uneven distribution of
samples in the point cloud on the left (e.g. the high density
on the ground, the low density on parts of the bird). Right:
Our patch-wise filtering is used to remove patches, which
leads to a significantly more complete reconstruction.

estimation: focus blur from surfaces outside the camera’s
depth of field, imaging the surface at a highly oblique an-
gle to the imaging plane, depth discontinuities, motion blur,
and specular materials. Detecting and quantifying the in-
fluence of these factors on the accuracy of the reconstructed
surface is challenging. Therefore, instead of trying to model
each phenomenon explicitly with handcrafted features, we
train a convolutional neural network (CNN) to predict a
reconstructability score, which measures how accurate the
surface estimates produced by the patch will be. We re-
fer to this CNN as the Image-to-Reconstructability network
(I2RNet). Figure 3 shows the training process, which is
run offline – when reconstructing a new set of images, the
I2RNet does not need additional training.

Training Loss: To train our network, we first need to
define our reconstructability score. Let Ri be the surface

(normals and depth) estimated by an MVS method for view
Ii. Let G be the ground truth surface geometry. Since
MVS is primarily concerned with reconstructing accurate
3D points, we use the difference between the positions of
the surfaces as an error metric. Specifically, we draw in-
spiration from the error metric L2 discussed by Cohen-
Steiner et al. [4], which quantifies the error in position be-
tween two surfaces, to produce the reconstructability score,

E(Ii,p) = 1−min(1,
‖d(Ri, p)− d(G, p)‖

d(G, p)
) (1)

where Ii,p indicates pixel p in Ii, and d(Ri, p) is the depth
of the surfaceRi from the camera of image Ii at pixel p. We
normalize by d(G, p) so that the score does not depend on
the absolute positions of the surfaces and we cap the nor-
malized difference between the two surfaces to 1 since an
error near or larger than 1 suggests the predicted surface is
very inaccurate and it is of minimal utility to differentiate
between two very inaccurate predictions.

Since it is common to not have the ground truth surface
G, we propose to approximate the ground truth when un-
available by the output of a high-quality (expensive) 3D re-
construction pipeline. Since we are able to compute such
a surface without human annotation, this allows us to gen-
erate labeled images patches (Ii,p, E(Ii,p)) for training our
I2RNet from just multi-view input images.

Training Details: The architecture of our I2RNet for
learning E(Ii,p) is a fully-convolutional variant of U-
Net [26] augmented with residual connections [17] and is
pictured in Figure 3. As in U-Net, the architecture consists
of a series of encoding layers followed by a series of de-
coding layers with connections back to the encoding layers.
The final output is the same resolution as the input and rep-
resents the reconstructability score for each pixel. We hy-
pothesize that it is possible to predict the reconstructability
of a patch using a local support window, so we find a rela-
tively small network with 6 encoding and 6 decoding blocks
sufficient.

3.2. Patch-wise View Filtering Framework

Based on the predicted reconstructability scores, the pri-
mary challenge in selecting a subset of image patches for
MVS reconstruction is that the effect of not reconstructing
a single patch is not independent of the other image patches
involved in the reconstruction, since it could potentially
lead to an incomplete reconstruction if all patches viewing
the same surface region are removed. Figure 4 shows two
point clouds and the aggregate pixels used (APU) to pro-
duce them. We define APU as the percentage of pixels used
as reference pixels during stereo matching across all views.
For the point cloud on the left of Figure 4, we filtered im-
age patches by removing any patch with a reconstructabil-
ity score less than 0.9. The resulting point cloud suffers in



Input Image Estimated Normals N = All N = 12 N = 6 N = 3 N = 1
Figure 5: Normal maps produced by our method for a scene from DTU [19] as we vary N , the number of redundant views
of a surface region. N decreases from left to right, with the left most normal map being unmasked.

terms of completeness since some surface regions are chal-
lenging to reconstruct and never receive a score higher than
0.9. Therefore, we propose a new completeness constrained
patch-wise filtering framework, which ensures that the set
of patches we choose spans the surface, ensuring complete-
ness, and that the selected patches are of high quality, im-
proving accuracy. The core idea of the algorithm is to use
coarse depth estimation, which can be acquired quickly, to
group together image patches which observe the same sur-
face region and then select the top N views in each group
based on the reconstructability score. Using this approach,
which we describe next, the point cloud on the right of Fig-
ure 4 achieves a balance of both sparsity in pixels and com-
pleteness.

Coarse Depth Estimation: To compute coarse depth,
we leverage the MVS algorithm of Galliani et al. [10] since
it is very efficient (see Section 4). We downsize all input
images Ii by a scaling factor Sc and then perform depth
estimation to produce coarse depth maps Dc

i . If some of
the depth estimates are unreliable, we may falsely estab-
lish correspondence between patches which do not actually
correspond, so we perform a very conservative geometric
consistency check, as is performed by Galliani et al. [10],
to filter outlier correspondences.

Patch Filtering with a Coarse Voxel Grid: Given
coarse depthmaps Dc

i and score maps E(Ii,p) generated by
our I2RNet, we construct a coarse voxel grid with voxels
of size Wv to facilitate selection of image patches that pro-
vide both completeness and accuracy. The intuition is that
for each occupied voxel, we select the top N most recon-
structable views and run reconstruction only for the patches
from those views to estimate the surface in the voxel. Dc

i

determines which image patch falls into which voxel. If we
aggregate the selected patches for all voxels, we end up with
a mask for each image which indicates the image patches
where surface estimation should be performed. Specifically,
let Mi denote the mask for Ii, where Mi,p = 1 when patch
p is selected and 0 otherwise. Let Vj correspond to the set
of patches (i, p) which falls into voxel j. The loss func-
tion of patch-wise view filtering, which solves for Mi for
all images, is then:

maximize
Mi, ∀i

∑
i,p

E(Ii,p)Mi,p

subject to ∀j,
∑

(i,p)∈Vj

Mi,p = min(N, |Vj |).
(2)

where E(Ii,p) here is the min score over all pixels in the
patch. We observe that different Vj’s can be decoupled, so
we can solve Equation 2 optimally by greedily selecting the
N views with the highest E(Ii,p) for each voxel. Since we
only initialize a voxel if a patch intersects it, the memory re-
quirements are low and the speed is fast because the grid is
sparse. Figure 5 shows an example of masked normal maps
produced by our approach for varying N , from selecting all
patches in a voxel to just one.

4. Sparse Coarse-to-fine Surface Estimation
Sparsely computing surface estimates in an image (Fig-

ure 5) may have adverse effects on MVS algorithms which
rely on dense surface estimation to regularize and improve
the accuracy of individual pixel estimates. For example,
Galliani et al. [10] initialize each pixel p in the input im-
age I with a random plane parameterized in scene space
and these planes are then propagated to neighboring pix-
els based on a fixed, local propagation scheme over several
iterations. This approach performs well despite the large
parameter space of planes in 3D because even if only a sin-
gle pixel attains a roughly correct plane, this plane is then
propagated to neighboring pixels and refined for their posi-
tion on the surface. However, it can easily suffer from local
minima, especially when we apply the masks Mi computed
by our framework since introducing sparsity results in less
random samples for propagation (each pixel provides a sin-
gle random surface estimate).

We address this issue by introducing a Coarse-to-Fine
plane Diffusion strategy (CFD, Figure 6) inspired by Wu et
al. [32] and Hu et al. [18]. We construct an image pyra-
mid withH levels for the input images, normal maps, depth
maps, and masks. We iteratively initialize each level of the
input image pyramid by resampling the image to half the
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Figure 6: Intermediate outputs for a three level hierarchy of
CFD. Notice how the normal map captures finer and finer
detail as we move to higher resolutions.

resolution of the previous finest level. For the mask pyra-
mid, we keep the same patch size at each level and con-
servatively initialize patches by setting Mi,p = 1 whenever
any of the patches that project to the patch from the previous
finer level are also set, e.g. the mask of Level 1 is a subset
of Level 3 in Figure 6. After pyramid construction, we ini-
tialize the plane estimates at the coarsest level and perform
the plane propagation as Galliani et al. did. We then extract
a normal and depth map from the planes at each pixel and
upsample them to the resolution of the next, finer level. We
convert these upsampled depth and normal maps back into
planes and then resume propagation. We iterate this process
up to the finest resolution. At each level, we set the number
of PatchMatch iterations as max(K · 21−h, 2) where K is
a base number of iterations and h, 1 ≤ h ≤ H is the cur-
rent level, where h= 1 is the coarsest level. Figure 7 shows
an example of the normal maps produced by our approach
using varying hierarchy levels.

5. Evaluation

Our evaluation focuses on the accuracy of the I2RNet
and its ability to generalize across datasets, the accu-
racy/completeness/speed tradeoff of our patch-wise selec-
tion framework, and the implications of coarse-to-fine sur-
face estimation on the reconstruction results.

Machine Details. In all the following experiments, we
use a machine with a 24-core Intel Xeon E5-2680 CPU, a
M6000 NVIDIA GPU, and 256 GB of DRAM.

5.1. Datasets

To properly evaluate our method against the general
MVS setting, we selected datasets which contain diverse
scenes, objects, camera types, viewing angles, lighting con-
ditions, and view overlap:

ScanNet: ScanNet [5] is a RGB-D dataset with over
1500 scans of 707 indoor locations (2.5 million 1296× 968

Hierarchy Levels: 1 Hierarchy Levels: 2

Hierarchy Levels: 3 Hierarchy Levels: 4

Figure 7: Visualization of final normal maps produced for
increasing hierarchy levels H for CFD. Notice how no hier-
archy (top left) produces noisy normal maps where as sig-
nificant hierarchy (bottom right) produces smooth normals.
Some very small features, such as the lamps near the doors
in the middle, are missed at hierarchy level 4.

images). Camera calibration and ground truth 3D surface
reconstructions are provided. The large collection of im-
ages coupled with 3D surfaces make it an ideal dataset for
pre-training the I2RNet to produce generalizable features.

DTU: The DTU Dataset [19, 1] consists of 124 differ-
ent objects captured from the same 49 to 64 camera angles
under varying lighting conditions. The images are of mod-
erately high resolution, 1600 × 1200. Ground truth data
is provided via a structured light scanner. Following Gal-
liani et al. [10], we use the images with the most diffuse
lighting. For testing, the dataset uses 80 of the 124 scans.
For training, we use the other 44 scans.

Tanks and Temples (T2): Tanks and Temples [22] is
an end-to-end 3D reconstruction dataset that provides 4K
videos of various indoor and outdoor man-made scenes.
While T2 does provide training and testing datasets, we
use the training dataset as the test set since it provides
the ground truth point clouds, allowing us to evaluate the
performance of our method under various settings without
running into the submission limits of the online evaluation
server. For the training set, we use the test set by generating
ground truth data as described in Section 3.1.

5.2. I2RNet Accuracy and Generalization

We evaluated the I2RNet’s ability to generalize from one
dataset to another by training a model on one dataset and
testing that same model on another dataset. Since we are
interested in picking the top N views for a patch, we eval-
uate the I2RNet based on the ranking of different patches.
For each voxel in our coarse voxel grid (Section 3.2), we



Test Datasets
DTU T2 Mean

ScanNet 0.17 0.06 0.12
DTU 0.18 0.03 0.11

ScanNet + DTU 0.23 0.06 0.15
T2 0.08 0.09 0.09

ScanNet + T2 0.14 0.12 0.13

Table 1: I2RNet generalization performance on DTU and
Tanks and Temples (T2) when trained on the different
datasets listed in the first column. The score is the Kendall
tau rank correlation coefficient.

compute the ranking of camera views in that voxel based
on the ground truth scores and based on the I2RNet pre-
dicted scores. We then compare these two rankings by using
Kendall’s tau (τ ) ranking correlation coefficient [21] which
produces a value between 1 and −1 indicating the correla-
tion of rankings.

Table 1 shows the accuracy of models trained on Scan-
Net, DTU, or T2, and their performance on the test set of
each dataset. As seen in the first row, the I2RNet gener-
alizes when trained on ScanNet, achieving reasonable per-
formance on both DTU and T2. This shows that the re-
constructability of a patch can be estimated to some extent
directly from the image, and that the I2RNet can rank the re-
constructability of image patches in an unseen image. Note
that there are still cases where reconstructability is not pos-
sible to predict from a single image. For example, if a patch
is not observed by neighboring views, then it will be dif-
ficult to reconstruct the patch even if the patch itself ap-
pears to be highly textured and in-focus. When the ScanNet
model is fine-tuned for a specific dataset (ScanNet + X), the
I2RNet achieves its best performance on that dataset. This
shows that there are still some dataset specific aspects to
reconstructability which were not captured by ScanNet.

5.3. MVS Quantitative Evaluation

In this section, we evaluate our method on DTU and T2.
In each evaluation, the main parameter we vary is the num-
ber of redundant views N selected for each voxel, which is
how we influence the total time to compute a reconstruction
(lower N values result in faster reconstructions). We eval-
uate on several settings for N , including ALL and FULL.
For ALL, we select all patches in every voxel. For FULL,
we disable masking of image patches and process every
pixel for comparison with methods which process all pix-
els. This differs from ALL in that patches can be removed
in ALL if the coarse depth estimation filters them out. Since
we can not perform a geometric consistency check when
N=1, we filter patches with E(Ii,p) < 0.75.

The methods that we compare against in our MVS per-
formance evaluations are: O-N: (Ours-N) Our method,

Acc. Com. F1 APU Time
OF-1 0.375 0.253 0.302 4.2 0.25s 262.6x
OF-2 0.246 0.321 0.278 5.6 0.26s 247.5x
OF-3 0.226 0.306 0.260 8.0 0.29s 221.8x
OF-6 0.213 0.339 0.262 13.8 0.36s 178.7x
OF-12 0.222 0.228 0.225 22.2 0.47s 136.9x
OF-ALL 0.208 0.227 0.227 45.2 0.58s 110.9x
OF-FULL 0.211 0.216 0.213 100.0 1.62s 39.7x
O-1 0.281 0.273 0.277 3.5 1.31s 49.1x
O-2 0.233 0.273 0.252 6.7 1.91s 33.8x
O-3 0.219 0.259 0.238 9.5 2.28s 28.0x
O-6 0.213 0.234 0.223 16.3 3.27s 19.5x
O-12 0.222 0.184 0.201 26.0 4.82s 13.3x
O-ALL 0.221 0.168 0.191 45.2 6.83s 9.4x
O-FULL 0.223 0.166 0.190 100.0 15.76s 4.1x
GIPUMAF 0.212 0.296 0.247 100.0 5.17s 12.4x
GIPUMA 0.253 0.191 0.218 100.0 64.34s 1.0x

Table 2: Results on the DTU Robot Image Dataset [19]
(lower is better). O-N and OF-N (Ours-N and OursFast-
N) are our approach, where N is number of views selected
for each surface region, O uses similar settings to GIPUMA,
and OF uses similar settings to GIPUMAF (GipumaFast).
Acc. and Com. stands for accuracy and completeness.

where N is the number of views selected for each voxel.
OF-N: (OursFast-N) The same as O-N but with simi-
lar modifications as GIPUMAF below. GIPUMA: The
method introduced by Galliani et al. [10] and the one we
reimplement in Section 4 to produce O-N. GIPUMAF:
(GipumaFast) Galliani et al. [10] further propose a faster
but less accurate variant of their method, which we denote
GIPUMAF. COLMAP: A general purpose end-to-end re-
construction pipeline [27, 28] that was state-of-the-art as of
publication on Tanks and Temples.

For each dataset, we include a measure of accuracy (or
precision) and completeness (or recall). We also consider
the F1(a, c) = 2 a·c

a+c score (harmonic mean) where a is ac-
curacy and c is completeness. This provides a single score
to measure performance when accuracy and completeness
vary. We also provide the average time taken to com-
pute one depth map and the APU (% pixels used across all
views), which indicates how many pixels were used as ref-
erence pixels.

Parameter Settings. Unless otherwise stated, we use
K =8 iterations, H=4 hierarchy levels, and Sc=8 coarse
scale factor.

5.3.1 DTU Evaluation

Following the evaluation protocol described in the DTU
dataset paper [1], we evaluate on two metrics: accuracy, the
distance between points in the MVS point cloud and in the
ground truth point cloud, and completeness, the distance be-
tween points in the ground truth and the MVS point cloud.
For both metrics, a lower score is better since they measure



Prec. Recall F1 APU Time
O-1 0.216 0.626 0.306 6.5 2.9s
O-2 0.274 0.361 0.289 10.7 4.6s
O-3 0.266 0.523 0.330 14.3 5.0s
O-6 0.295 0.610 0.359 19.3 5.9s
O-ALL 0.277 0.672 0.351 31.0 8.6s
O-FULL 0.276 0.682 0.354 100.0 30.4s
COLMAP 0.494 0.566 0.512 100.0 100.3s

Table 3: Results on the Tanks and Temples Dataset [22]
(higher is better). O-N is our approach, where N is number
of views selected for each surface region. COLMAP [27,
28] is the current state-of-the-art on this dataset.

distance error in millimeters. The median is taken over all
point-wise comparisons and then averaged over all 80 scans
to produce the final score for the dataset. In addition to
the time taken per depth map, we also provide the speedup
compared to GIPUMA [10], which is state-of-the-art on the
dataset. We use Wv=8.0mm coarse voxel size.

Table 2 shows the final scores of the evaluation. As
seen by the time required by the variants of our method,
we are faster by up to two orders of magnitude compared to
GIPUMA while gracefully degrading in completeness. Even
when comparing against the faster baseline of GIPUMAF,
we achieve an 11.0x speedup while matching the accu-
racy and completentess (see OF-12). Our base method,
O-FULL, outperforms GIPUMA and achieves the best com-
pleteness and F1 due to the incorporation of CFD. Our com-
pleteness is not as good at lowerN as there are less views to
check against when performing the geometric consistency
check, whereas our accuracy does not decrease much be-
cause our error metric selects high quality patches. We also
note that scans with mostly weakly-textured surfaces tend to
reduce more in accuracy for lower N than those which are
highly textured because weakly-textured regions rely heav-
ily on neighbors for improving their estimates.

The cost of the patch-wise filtering framework is a minor
overhead compared to the time for executing the rest of the
pipeline. For example, the high-resolution depth estimation
stage takes ~13 minutes in total (all images) for O-FULL.
In comparison, the patch filtering stage takes ~20 seconds
in all configurations, with the I2RNet taking only 120 mil-
liseconds per view.

5.3.2 Tanks and Temples Evaluation

For Tanks and Temples, we report the precision, recall,
and F1 metrics as described in the T2 paper [22]. Preci-
sion is defined as the percentage of points in the computed
point cloud that are within some distance threshold from the
points in the ground truth point cloud, measuring accuracy.
Recall is defined similarly with the distances instead be-
ing computed from the ground truth to the computed point
cloud, measuring completeness. Higher scores are better.

H Acc. Com. F1 Time
1 0.220 0.175 0.195 46.4s
2 0.220 0.169 0.191 31.6s
3 0.223 0.166 0.190 25.0s
4 0.223 0.165 0.190 14.7s

Table 4: Comparison of varying levels of Hierarchy H for
our method on the DTU dataset (lower is better).

For this dataset, we set Wv = 0.02. COLMAP is state-of-
the-art on this dataset.

Table 3 shows the results. (We were not able to evaluate
GIPUMA on this dataset since it fails due to GPU memory
limitations.) As we decrease N , we observe a similar accu-
racy/completeness/speed tradeoff as with DTU. That is, we
achieve significantly faster speeds for a minimal decrease
in completeness. Since we base our method on GIPUMA,
which uses a less sophisticated neighbor selection scheme
than COLMAP, our absolute F1 score is expected to be
lower than that of COLMAP (also observed for GIPUMA
by Schöps et al. [29] in their evaluation).

5.4. Analysis of CFD

We analyze CFD (Section 4) by evaluating our method
with varying hierarchy levels H on the DTU dataset. Ta-
ble 4 shows the result of running O-FULL with H =
1,2,3,4. By adding levels of hierarchy, the overall com-
pleteness improves, thanks to the robustness provided by
initializing the finer levels with the coarser levels of the hi-
erarchy. At the same time, since less iterations are needed at
the finer scales, the total time taken decreases significantly,
despite performing more iterations in aggregate over all the
hierarchy levels. We also notice a minor decrease in accu-
racy (3 microns) at H= 3,4 since some very small features
are not visible at the coarsest level (see Figure 7).

6. Conclusion

We have presented a framework for accelerating MVS
pipelines through learning patch reconstructability. Evalua-
tions show that our I2RNet trained on a large collection of
scans is able to predict the reconstructability of patches to
some extent based on the image alone. This enables us to ef-
ficiently identify reconstructable patches, which, combined
with the proposed patch filtering and coarse-to-fine diffu-
sion components, enables us to speed up 3D reconstruction
with minimal loss in accuracy and completeness. In this
work, we used learning from data to improve a targeted as-
pect of a high-quality MVS pipeline. Taking this approach,
we were able to leverage all the existing theory and algo-
rithms developed for MVS. It is exciting to consider how
future data-driven approaches like ours might be used to
remove the other assumptions and limitations of the hand-
engineered heuristics traditionally used in MVS methods.
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