
Deduplicating a Places Database

Philip Bohannon
Facebook

pbohannon@fb.com

Nilesh Dalvi
Facebook

nileshd@fb.com

Marian Olteanu
Facebook

marianolteanu@fb.com
Manish Raghavan

U. of California, Berkeley
manishraghavan@gmail.com

ABSTRACT
We consider the problem of resolving duplicates in a database
of places, where a place is defined as any entity that has a
name and a physical location. When other auxiliary at-
tributes like phone and full address are not available, dedu-
plication based solely on names and approximate location
becomes an extremely challenging problem that requires both
domain knowledge as well an local geographical knowledge.
For example, the pairs ”Newpark Mall Gap Outlet” and
”Newpark Mall Sears Outlet” have a high string similarity,
but determining that they are different requires the domain
knowledge that they represent two different store names in
the same mall. Similarly, in most parts of the world, a local
business called ”Central Park Cafe”might simply be referred
to by ”Central Park”, except in New York, where the key-
word ”Cafe” in the name becomes important to differentiate
it from the famous park in the city.

In this paper, we present a language model that can encap-
sulate both domain knowledge as well as local geographical
knowledge. We also present unsupervised techniques that
can learn such a model from a database of places. Finally,
we present deduplication techniques based on such a model,
and we demonstrate, using real datasets, that our techniques
are much more effective than simple TF-IDF based models
in resolving duplicates. Our techniques are used in pro-
duction at Facebook for deduplicating the Checkins Places
database.

1. INTRODUCTION
A key step in data cleaning and integration is the identi-
fication and removal of duplicate records, and a variety of
technologies [8, 2] have been developed to address the prob-
lem. One of the core problems in duplicate identification is
scoring a pair of records – computing the probability that
the records are a match. This computation, in turn, depends
on scoring individual attribute matches.

In this paper, we address the problem of scoring matches be-

tween pairs of noisy, user-generated business records. Many
of these records are generated by a user in the process of
“checking in” to a business on their mobile phone. Since the
user is pressed for time, the business record often has only
two attributes, a name and a location, where the name is
typed by the user and the location is from the phone’s GPS
system. Unlike other domains with relatively rich attribute
data, such as census data or bibliographic data, our data
set has exceptionally sparse attribute data, making it abso-
lutely critical to compute a high quality score based on the
two attributes that are always present, even in the face of
noise or errors in one or both attributes.

Note that, in the literature, matching business names is gen-
erally considered a hard problem, with significantly poorer
quality scores obtained compared to other domains [15, 3].
Examples of some of the challenges that limit match quality
Table 1. The problems include 1) large edit distances for
the names of matching records, 2) small edit distances for
records that do not match and 3) geographic knowledge that
is needed to determine if a match exists.

A second source of difficulty in weighting terms come from
the spatial context of the business name. As an example,
“Bleecker Grocery and Convenience”and“Bleecker Delicates-
sen”are two businesses that are less than two blocks apart on
“Bleecher Street” in New York City. In the places database
as a whole, “Bleecker” is an infrequent word; highly rated
by TF/IDF and similar metrics. However, due to the lo-
cal popularity of the term “Bleecker”, the disagreement be-
tween“Delicatessen” and“Grocery and Convenience” should
be given much more weight. In contrast, if these two names
appeared somewhere else, the fact that the locally rare term
“Bleecher” appeared in both should be weighted heavily.

In this paper we make several contributions toward solving
the challenge of matching business names:

1. We formally define the core word problem to capture
the intuition of weighting “starbucks” and “subway”
more than “restaurant” or “cafe”, and introduce an un-
supervised learning problem to assign weights to words
in business names according to this model.

2. We define the problem of determining the spatial con-
text weight to assign words in a business name match-
ing system, and again introduce an unsupervised algo-
rithm to determine such weights.

3. We define a name matching function that elegantly
combines these two weights.

4. We demonstrate that the combination of accurate core
word identification as well as contextual word weight-
ing can dramatically improve precision and recall of a
place-name matcher, compared to TF-IDF weighting.
We are able to achieve a recall of 90% at a precision
of 90% based solely on names.

Previous work on customizing string matching functions to
specific tasks have fallen into two categories: token-weighting
schemes [14] and machine-learned edit distances [10, 13, 4,
11]. Our core words technology is an extension of token-
weighting schemes, but departs substantially from the use of
frequency as the dominant component. In contrast, spatial
context is more general, since it defines different weights to
the same word in different contexts. Thus, this component
cannot be modeled by a single fixed weighting as consid-
ered by published token-weighting schemes, and it will also
be very difficult to simulate in a system for machine-learned
edit distances, even with affine gaps. The point is that these
techniques again attempt to learn a set of fixed weights for
tokens and/or characters. A much more promising approach
is to extend learned match-weighting systems by using our
spatial and core word scores as features, and this is a topic
of future work.

2. PLACES DATABASE
In this section, we describe our Places database, and illus-
trate the challenges of deduplication.

Our Places database consists predominantly of user gener-
ated content (UGC), which lets users search for places and
“check in”to them [5]. The following three operations form a
simple abstraction that captures the essence of our database.

create(name, address∗, phone∗, category∗; uid, lat, lon)

search(name∗; uid, lat, lon)

checkin(placeid; uid, lat, lon)

Every operation is implicitly associated with the uid, denot-
ing the user performing the operation, and the lat and lon,
consisting of the coordinates of the location at which the
operation takes place. Optional fields are annotated by ∗.

The search operation, which is initiated by user uid at lo-
cation (lat, lon), takes an single, optional argument that is
the name of the place. It returns a set of potential matches,
ranked by the likelihood of the given user to checkin to the
place. When the name argument is omitted, it simply re-
turns the popular places near the user. The checkin oper-
ation checks the user into a specific place, chosen from the
search results. This operation records that the user was at
the location, and usually alerts the users friends to their lo-
cation as well. If the user does not find the place she wants,
she can create a new place using the create operation, which
requires the user to specify the name, and optionally other
attributes like address, phone and category.

Source of Duplicates: We define a search failure as a
situation in which a user calls search with the intention of
checking in to some place p, but p does not appear in the

Figure 1: Duplicates of Stanford University

result list, even though it actually exists in the database.
Typically, a duplicate is created when a user has a search
failure, and chooses to call create, producing a duplicate of
p. The two main causes of search failure are

1. the user search query might have a typo, alternate
spelling or abbreviation.

2. the user might try to checkin to a place from a physical
location that is away from the actual place location,
e.g., trying to check into a restaurant on the way back
home. Again, this might result in the place not being
ranked at the top in the search results.

In these situations, instead of refining or altering the search
query, the user might simply choose to create a new place.
Given the high volume of checkins, even if search failures are
rare, the result can be a large number of duplicates. Note
that this process effectively guarantees difficulty in matching
the newly created place arose either from a location differ-
ence or a name difference that was not recovered by the
spelling correction module on the search engine.

Finally, even if the search succeeds, the user may ignore the
result and chose to create a new place in order to use the
checkin as a medium of expression. For example, the user
may create a place called“The Happiest Place on Earth”(for
Disneyland) or “New York Rocks!”. In these cases also, the
name similarity between the new place and p suffers.

Users do not want to see multiple copies of places appear-
ing in the search results. Duplicates often compete for user
checkins, resulting in fragmentation of the checkin activity
of places across several copies. Also, while business owners
might create places with a rich set of attributes, the user
created duplicates often lack detailed attributes, resulting
in poor attribute coverage. As a result, in order to provide
a good user experience, deduplication is an important prob-
lem to solve for any such database.

Challenges of Deduplication: While deduplication is a

place1 place2 issue

(a) Fresca Fresca’s Peruvian Restaurant Large edit distance.
(b) Newpark Mall Sears Outlet Newpark Mall Gap Outlet Places with high string similarity might differ in

key terms.
(c) San Francisco Airport San Francisco Airport Terminal 1 Nested Places are hard.
(d) Central Park Central Park Cafe In New York City, near Central Park, these may

well be different. In most other places, they are
almost certainly the same.

(e) Sittin’ on my sofa eating
chips

– Junk places or places of personal interest intro-
duce lots of noise.

Table 1: Examples of Deduplication Challenges

ubiquitous problem, the fact that our database predomi-
nantly consists of user generated content (UGC) makes it
an extremely challenging problem. We illustrate here some
of the challenges.

First, a typical deduplication algorithm makes uses of a large
number of attributes, i.e. name, address, city, phone, web-
site, category etc. In our setting, we do not have the
luxury of using rich feature set. When users create places,
they do not necessarily add detailed attributes. E.g., a user
trying to checkin to a restaurant might not know the full
street address, the business phone or the website. Although
we might have a copy of the same place, created by the place
owner, with all the details, we do not have the correspond-
ing attributes in the duplicates to match against. Thus, we
primarily have to rely just on the place name, along with the
location coordinates, since every place creation operation is
associated with a lat and lon.

While the presence of location coordinates with each entity
might suggest a very trivial deduplication task, in reality,
location coordinates themselves are extremely noisy. This
is because users often create places from a physical location
that is distant from the actual place locations. Even when
the user is physically present at the place at the time of
creation, there are often large GPS inaccuracies [12] in the
reported user location. As an example of the extent of this
issue, Fig. 1 shows all the duplications of the Stanford Uni-
versity that we detected in our database, along with the lo-
cations where they were created. There are duplicates that
were created several miles away from the true location of
the Stanford University. Given that more than 400K users
have checked in to Stanford, it is not surprising that a very
small fraction of checkins resulted in the creation of several
duplicates, throughout the San Francisco Bay Area.

User generated content also implies that there is no stan-
dardization in naming places. This includes descriptions like
“GocHi Japanese Fusion Tapas” vs. “Gochi Asian Restau-
rant”, abbreviations like “JF Kennedy Intl. Arpt.”, mis-
spellings and alternate spellings, as so on.

Table 1 captures some of the challenges of deduplicating
places based on names. Example (a) shows two places that
are duplicates, but have a large edit distance. Term fre-
quency analysis can partially alleviate the problem, by sug-
gesting that Restaurant is a frequent token. But Peruvian is
a rare token, almost as rare as Fresca. As we show later, a
TF-IDF based similarity measure does not give us an accept-

able accuracy. Examples (b) and (c) shows the reverse prob-
lem, where two place names having a high string similarity
are, in fact, not duplicates. Example (d) is especially in-
teresting: two places named Central Park and Central Park
Cafe near each other are most likely duplicates in most parts
of the world, where users might refer to the cafe as simply
Central Park when there is no ambiguity. However, in New
York, near Central Park, they are most certainly different,
where one refers to the actual park, and the latter refers
to some cafe in the vicinity of the park. Thus, geograph-
ical context matters a lot when determining if two places
are duplicates. The final example just shows that there are
lots of junk/personal places which introduce lots of noise in
deduplication.

Problem Definition Based on the motivation, we define
the following problem:

Problem 1. Given two place names n1 and n2, and an
approximate geographical location containing both of them,
determine if the two names can refer to the same entity.

Note that, as suggested by the above problem formulation,
we are focusing only on name matching in this paper. In our
full deduplication system, we use name matching as one of
the features (albeit the most important one), in conjunction
with the distance between the places, the set of checkins,
and other features like phone and address when available.

Our Approach Our solution to the place name match-
ing problem has three main components. The first is a
novel generative language model for places that identifies
the core of a place name. E.g., it identifies that in “Fresca’s
Peruvian Restaurant”, Fresca’s is the core and Peruvian
Restaurant is the description. Section 3 describes this model.
The second component is a language model that incorpo-
rates the spatial context, e.g., the presence of nearby land-
marks, parks, malls, airports, major streets and the cur-
rent city. The spatial model helps us with distinguishing
“Newpark Mall Gap Outlet” from “Newpark Mall Sears Out-
let” and matching/non-matching Central Park and Central
Park Cafe. We present the spatial context model in Sec-
tion 4. The third component of our solution is a place name
similarity measure based on our language models, which is
described in Section 5.

3. A SIMPLE NAME MODEL

Let W be a set of words, which we call the vocabulary.
Each place name, n ⊆ W , consists of a set of words. Let
N be a set of names. We assume that each name n consists
of a set of tokens, which we call core, and rest, which we
call background. We denote them by core(n) and back(n)
respectively. E.g., for the name

n =“Guggenheim Art Museum, Manhattan”,

core(n) = {Guggenheim}, since this identifies the place, and
back(n) = {Art, Museum, Manhattan}, which describe the
place properties. On the other hand, for the name Guggen-

heim Starbucks, the core consists of Starbucks and Guggen-

heim is the background.

Given a name, we want to identify the core and the back-
ground part of the name. We assume the following gener-
ative model for names. Let B and C be two probability
distributions over W . First, a word is chosen from W from
the distribution C to be the core of the name. Next, an
integer k ≥ 0 is picked from some distribution. Finally, k
tokens are drawn from the distribution B as the background
words. The final name consists of the union of the core and
the background.

Learning Problem Given a set of names N , our objec-
tive is the learn (1) the distributions B and C, and (2) for
each name n ∈ N and each token w ∈ n, the probability
that w is the core of n. Let z(w, n) denote the binary event
that w is the core of n, i.e., z(w, n) = 1 if core(w) = n and
0 otherwise. Let z denote the collection of all such binary
events. Then, the probability of observing the given data N
is

P(N | B, C, z) =
Y

n∈N

Y
w∈n

C(w)z(w,n).B(w)(1−z(w,n))

We want to learn B, C, z that maximize the probability of
P(N | B, C, z), or alternatively, its logarithm, given by:

L(B, C, z) =
X
n∈N

X
w∈n

z(w, n) log C(w)+(1−z(w, n)) log B(w)

Note that the training data simply consists of the set of
names N . If we knew the core of each name, i.e., the vari-
ables z, then estimating B and C would have been straight-
forward by simple counting. However, in the absence of
this information, we revert to the Expectation Maximiza-
tion (EM) method to solve this optimization problem. In

the E-step, given the current parameters B(t) and C(t), we
compute the expected value of L over all choices of z. Since
L is a linear combination of z, we can use linearity of expec-
tations. We observe that

E(z(w, n) | B(t), C(t)) = P(z(w, n) = 1)

=
C(t)(w)

Q
x∈n\w B(t)(x)P

w2∈n C(t)(w2)
Q

x∈n\w2
B(t)(x)

=
C(t)(w)/B(t)(w)P

w2∈n C(t)(w2)/B(t)(w2)

Let z(t)(w, n) denote E(z(w, n) | B(t), C(t)). In the M-step,

we compute the B(t+1), C(t+1) that maximizes the expecta-

tion of the objective function. This is a standard optimiza-
tion problem, whose solution is given by

C(t+1)(w) =

P
n|w∈n z(t)(w, n)P

w′∈W

P
n|w′∈n z(t)(w′, n)

B(t+1)(w) =

P
n|w∈n(1− z(t)(w, n))P

w′∈W

P
n|w′∈n(1− z(t)(w′, n))

The final algorithm is given in Algorithm 1. We illustrate
with a simple example. Consider three place names given in
the table below:

n1 : Starbucks Coffee

n2 : Peets Coffee

n3 : Starbucks

Our vocabulary, W = {Starbucks, Peets, Coffee}. The to-
ken Starbucks is as frequent as Coffee. However, Star-

bucks appears by itself in n3, and hence we expect it to
be likely a core term. Based on this knowledge, in n1, we
expect Coffee to be a background term. This, in turn,
suggests that Peets should be a core term in n2. Algo-
rithm 1 captures this intuition. Initially, B(1) and C(1) are
uniform distributions. Thus, we have z(1)(Starbucks, n1) =

z(1)(Coffee, n1) = 1
2
, z(1)(Peets, n2) = z(1)(Coffee, n2) =

1
2
, and z(1)(Starbucks, n1) = 1. Based on this, we get

C(2) = {Starbucks ← 1
2
, Peets ← 1

6
, Coffee ← 1

3
} and

B(2) = {Starbucks ← 1
4
, Peets ← 1

4
, Coffee ← 1

2
}. Thus,

the core probability of Starbucks and the background prob-
ability of Coffee increases. The algorithm converges to the
following solution:

C = {Starbucks← 2

3
, Peets← 1

3
, Coffee← 0}

B = {Starbucks← 0, Peets← 0, Coffee← 1}

Thus, for this hypothetical example, the algorithm drives
down the core probability of Coffee to 0 and background
probabilities of Starbucks and Peets to 0. Note that the
constraint of one core token in each name is crucial for learn-
ing to happen, since identifying a core token gives us (nega-
tive) information about all other tokens that co-occur with
it. Without the constraint, both the core and the back-
ground models will converge to exactly the document fre-
quencies.

Algorithm 1 EM (Inputs: Vocabulary W , names N)

1: B(1) ← uniform distribution
2: C(1) ← uniform distribution
3: for t = 1 .. N do

4: z(t)(w, n)← C(t)(w)/B(t)(w)P
w2∈n C(t)(w2)/B(t)(w2)

5: C(t+1)(w)←
P

n|w∈n z(t)(w,n)P
w′∈W

P
n|w′∈n z(t)(w′,n)

6: B(t+1)(w)←
P

n|w∈n(1−z(t)(w,n))P
w′∈W

P
n|w′∈n(1−z(t)(w′,n))

7: end for

4. SPATIAL CONTEXT MODEL
Place names often include the names of nearby landmarks,
parks, malls, airports, major streets, the location city, and

so on. E.g. consider two places “Newpark Mall Gap Out-

let” and “Newpark Mall Sears Outlet”. While the two
names look very similar textually, they are different busi-
nesses, both of which include the name of the mall they
are located in. As another example, consider two places
“Copenhagen Cafe” and Copenhagen Bakery”. If both the
candidates are in New York, they most likely refer to the
same business. But in Copenhagen, Denmark, they most
likely different places.

In this section, we describe an unsupervised method to iden-
tify the spatial context in any given region.

Backstorm et al. [1] have looked at the problem of how search
engine queries vary across geographic regions. They posit
a model where each query has a geographic center repre-
sented by a single point. This center corresponds to the
point at which the query should occur most frequently, with
frequency falling off with distance from the center. In ad-
dition to center, each query has two other parameters: a
constant, C, giving the frequency at the query’s center, and
an exponent α determining how quickly the frequency falls
off as one gets further away from the center. They assume
that the probability of a random user at distance d issu-
ing the query is proportional to Cd−α. Then they seek the
parameters that best fit the data.

In principle, we can apply the same techniques to study the
distribution of place names. However, in contrast to search
engine queries that have high dispersion, we observe that
the spatial contexts in place names are tightly concentrated
in specific regions, corresponding naturally to the physical
spans of the contexts. Figures 2,3,4 show all the places in our
database containing the phrases “Times Square”, “Central
Park” and “Broadway” respectively, plotted on the map of
New York. We see that Times Square, which is a point
place, exhibits a natural center. On the other hand, Central
Park has no center, and we see a constant density within the
physical span on the park that decays off outside the span.
For Broadway, we see a more extreme form of this behavior.
The term is highly concentrated around the entire span of
the Broadway street in New York. We even see two branches
going across, which correspond to two other, lesser known,
Broadway streets in the city.

In conclusion, we need to handle arbitrary spans of terms in
modeling spatial context. Note that for our deduplication
task, we don’t need to solve the problem of identifying the
span of any given term. Instead, we need to solve the re-
verse problem of given a location, what is the distribution of
contextual terms in that location. Thus we take a simpler
approach. We divide the entire world into tiles, and try to
learn the distribution of terms in each tile.

Formally, a tile l is a geographical region. We assign each
place a tile based on the location at which the place was cre-
ated. Thus, each place is represented by a (n, l) pair, where
n is the name and l is the tile. We want to learn a back-
ground contextual model B[l] for each tile l that captures
the probability distribution of background terms for each
tile l. Suppose we are given the set of background terms,
back(n), for each place name n. The maximum likelihood

Figure 2: Times Square, NY

Figure 3: Central Park, NY

Figure 4: Broaway, NY

estimate for B[l] is simply the relative counts,

Bl
ml(w) =

count(w; l)P
w count(w; l)

where count(w; l) is the number of times token w appears
in back(n) in tile l. However, this can lead to overfitting.
Therefore, we borrow techniques from Information Retrieval
for smoothing document models. We linearly interpolate
the maximum likelihood estimate for a tile with the global
background model B, i.e.,

B[l](w) = λBl
ml(w) + (1− λ)B(w) (1)

where B is the background model as described in Section 3.

4.1 Combining the Models
For defining the spatial model in previous section, we as-
sumed that we already know the background terms in each
name. We can first learn the name model as described in
Section 3, and then use it to infer the spatial model. How-
ever, there is a cyclic dependency as the name model itself
may benefit from a spatial model. E.g., consider a mall,
called Newpark Mall, containing a large number of businesses
containing the mall name. Without the spatial context, for
each such place, the name model might infer that Newpark
is the core term, as Newpark has a very low global frequency.
Since the term Newpark doesn’t appear in the background
for any of the places, the spatial model doesn’t learn that it
is a contextual term for the location.

To resolve the cyclic dependency, we modify Algorithm 1 to
jointly learn both models. We assume that we have a set of
tiles L and a set of places P , where each p ∈ P has a name
p.n and a tile p.l containing the place.

Algorithm 2 EM (Inputs: Vocabulary W , places P , tiles
L)

1: B(1) ← uniform distribution
2: C(1) ← uniform distribution
3: B[l](1) ← uniform distribution for all l ∈ L
4: for t = 1 .. N do

5: z(t)(w, p)← C(t)(w)/B[p.l](t)(w)P
w2∈p.n C(t)(w2)/B[p.l](t)(w2)

6: C(t+1)(w)←
P

p|w∈p.n z(t)(w,p)P
w′∈W

P
p|w′∈p z(t)(w′,p)

7: B(t+1)(w)←
P

p|w∈p.n(1−z(t)(w,p))P
w′∈W

P
p|w′∈p.n(1−z(t)(w′,p))

8: B[l]
(t+1)
ml (w)←

P
p|w∈p.n,p.l=l(1−z(t)(w,p))P

w′∈W

P
p|w′∈p.n,p.l=l(1−z(t)(w′,p))

9: B[l](t+1)(w)←λB[l]
(t+1)
ml (w)+(1−λ)B(t+1)(w)

10: end for

In each iteration, in the E step, the algorithm computes
the expected probability of each token being a background
token based on the current name and spatial context model.
In the M step, the algorithm updates the models based on
the background token probabilities.

5. DEDUPLICATING PLACES
We next show how the language models from the previous
sections, which gives the background probabilities for tokens
in place names, can be combined with string edit operations
to solve the task of places deduplication.

Our task is to determine, given two place names in a given
location, whether they can refer to the same business. We
formalize the problem as : given two places, determine if
they have the same core. In Section 3, we worked with
the constraint that exactly one word in each name is core.
As we explained, the constraint was crucial for us to learn
good core and background models. Now that we have the
language models for the core and the background, we relax
the constraint here, and allow names to have multiple core
words. Given a place p, we assume that each token in the
name p.n is independently drawn from the core model C
with probability α, and from the background model B[p.l]
with probability 1 − α, where p.l denotes the location of p.
Let core(w, p) denote the event that the word w in p is a
core word. Then,

P(core(w, p)) =
αC(w)

αC(w) + (1− α)B[p.l](w)
(2)

We use c(w, p) to denote the probability P(core(w, p)).

Let core(p) denote the random variable containing the core
tokens of place p. Given two places, p1 and p2, they have
same core iff (1) all tokens belonging to their symmetric
difference are from background, and (2) every token common
to them is either a core in both or none. This can be written
as P[core(p1) = core(p2)] =0@ Y

w∈p1\p2

1− c(w, p1)

1A×
0@ Y

w∈p2\p1

1− c(w, p2)

1A× (3)

 Y
w∈p1∩p2

c(w, p1)c(w, p2) + (1− c(w, p1))(1− c(w, p2))

!

Incorporating Edit Operations So far we have focused
on identifying the core of a given name. Next, we describe
how to modify Eq. (3) to incorporate string edit operations.
We assume that we have a set of edit operations E. Each
operator takes as input a sequence of tokens, and produces a
new sequence of tokens. Examples of edit operations that we
use in our system include abbreviations, e.g. North West→
NW, concatenations, e.g. North West→Northwest and char-
acter edits, e.g. Guggenheim → Guggenheim.

We consider the following generative model for place names.
We are given a set of edit operations E, along with a prob-
ability function π : E → [0, 1]. Given a place p, each token
in the name is independently drawn from the core model C
with probability α, and from the background model B[p.l]
whit probability 1−α. Then, each edit e ∈ E is chosen with
probability π(e) and applied to the resulting name. Given
two places, we want to compute the probability that they
have the same core.

As an example, consider two places, p1=“Dish Dash Restau-

rant, Sunnyvale” and p2=“DD Sunnyvale”. There are sev-
eral possible ways for the two places to have the same core.
E.g. (1) Dish Dash is core in p1 that gets edited to DD in p2,
rest are all background, (2) Dish Dash Sunnyvale is core
in p1, DD Sunnyvale is core in p2 and Restaurant is back-
ground, (3) Sunnyvale is the common core and everything
else is background, and so on. We want to find the proba-

bilities of all possible worlds where the two places have the
same core.

We present an algorithm based on dynamic programming to
solve this problem. Given an edit operation e, let l(e) denote
the number of tokens it consumes, and r(e) denote the num-
ber of tokens it produces. E.g., for the edit operation that
concatenates two tokens, l(e) = 2 and r(e) = 1. Similarly,
for the misspelling operator, l(e) = r(e) = 1. We assume
that for each type of edit operation e, we have a probability
π(e) associated with it.

Let p1, p2 be two given places, and let l1 and l2 be the
number of tokens in their names respectively. Let p.n[i, j]
denote the subsequence of tokens in p.n from token i to
j − 1. To simplify the description of our algorithm, we
define three new types of operators. For each w ∈ p1.n,
we define a deletew operator that deletes the word w, and
has π(deletew) = 1 − c(w, p1). For each w ∈ p2.n, we de-
fine an insertw operator that inserts the word w, and has
π(insertw) = 1− c(w, p2). Finally, for each w ∈ p1.n∩ p2.n,
we define a copyw operator with π(copyw) = c(w, p1)c(w, p2).
Clearly, l(deletew) = 1, r(deletew) = 0, l(insert) = 0,
r(insert) = 1 and l(copy) = r(copy) = 1. The intuition
behind these operators is that a copy operator asserts that
the word is a core word in both names, delete asserts that
the word is a background in the first name, and insert op-
erator asserts that the word in a background in the second
name. The final algorithm is presented below.

Algorithm 3 Similarity (Inputs: p1, p2)

1: returnDP(p1, p2, 0, 0)

Algorithm 4 DP (Inputs: p1, p2, i, j)

1: if i ≡ l1 and j ≡ l2 then
2: return1
3: end if
4: ret← 0
5: for e ∈ E do
6: W1 = p1.n[i, i + l(e)], W2 = p2.n[j, j + r(e)]
7: if e(W1) ≡W2 then
8: ret← ret + π(e).DP (i + l(e), j + r(e))
9: end if

10: end for
11: returnret

One can verify that Algorithm 4 generalizes Eq (3). In other
words, when the set of edit operations E is empty (we still
define the insert, delete and copy operators), then the score
returned by the algorithm is exactly the expression in Eq (3).
Indeed, for each token in the first name that doesn’t occur
in the second, the only choice is to delete it (with cost 1 −
c(w, p1). Similarity, for each token in the second name that
does not occur in the first, the only choice is to insert it
(with cost 1− c(w, p2)). For each token in common, we can
either copy it (with cost c(w, p1)c(w, p2)), or delete it and
insert it again (with cost (1− c(w, p1))(1− c(w, p2)). Thus,
we recover the expression in Eq (3).

6. EXPERIMENTS
We implemented our techniques on two datasets. The first
dataset, which we call WikiMapia, consists of entities from

WikiMapia [9], which is an open-content collaborative map-
ping project that aims to mark and describe all geographical
objects in the world. The dataset has over 20M objects, and
contains the name of the place, along with its latitude and
longitude. We chose a subset of the data corresponding to
entities in USA, to make the task of manual labeling and
evaluation easy. The resulting dataset has around 1M enti-
ties.

The second dataset, which we call Places, consists of all
entities from the Places Database [5] used in production at
Facebook. Again, we restricted ourselves to entities in USA.
For each entity, we use the name of the entity along with the
latitude and longitude where it was created.

For both the datasets, we learn the name model as described
in Section 3 as well as the context model as described in Sec-
tion 4. For learning the context model, we divided the world
map into geographical tiles based on the latitudes and lon-
gitude. For the task of learning language models, we use
both the datasets for evaluation. For the task of deduplica-
tion, we restrict ourselves to Places, since WikiMapia is
not interesting for the deduplication task.

We created two labeled sets for the deduplication task, one
for training and another for evaluation. For each set, we ran-
domly sampled 1500 entities from Places. For each sampled
place, we generated candidate duplicates from Places with
a very liberal distance and name similarity threshold. Each
of the candidates was editorially inspected and labeled as a
duplicate or not a duplicate. Each dataset contains around
7K candidate pairs, of which around 2K are labeled as true
duplicates.

Note that the training of our language models is unsuper-
vised, and hence done on the entire unlabeled dataset. In
addition, our model uses a small set of parameters, e.g., the
probabilities of individual edit operations, the granularity
of tiles, and the weight for smoothing the context model
(Eq. (1)). We use one set of labeled data to tune these
parameters. The second labeled set is used for evaluation.

6.1 Name Model
We first evaluate the name model that we described in Sec-
tion 3. For this task, we consider the task of classifying
tokens as descriptive vs core. For training, we used the en-
tire unlabeled dataset. For evaluation, we randomly sampled
tokens from the vocabulary of the database, as manually la-
beled them as either a core token (e.g. starbucks, guggen-
heim and maggianos) or descriptive (e.g. cafe, museum and
italian). Note that this evaluation is independent of the
context of a name. E.g. there might be a place name with
token guggenheim as a descriptive token. Context depen-
dent evaluation will be the subject of the next section.

As a baseline, we consider an IDF classifier that classifies a
token as descriptive if its frequency in the corpus is greater
than some threshold. We vary the threshold, and plot its
precision vs recall on the evaluation set.

For our method, we use the distributions B for background
and C for core that we learn from the name model, along
with a class prior of α for C. Thus, the posterior probability

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

IDF
Name Model

Figure 5: Accuracy of the core model on WikiMapia

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

IDF
Name Model

Figure 6: Accuracy of core model on Places

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
-m

e
a
s
u
re

α

Places
WikiMapia

Figure 7: F-measure vs α

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
ra

c
y

λ

Figure 8: Accuracy of Identifying Core on Places as
a function of λ

of a token w being core is

αC(w)

αC(w) + (1− α)B(w)

A value of α = 1 will make all words core with high proba-
bility and a value of α = 0 will make all words background.
Again, we vary α and study the precision and recall for this
classifier. Figure 5 shows the plots for the IDF classifier and
the name model on WikiMapia dataset. Figure 6 shows the
same plot on Places dataset.

We see that on both datasets, name model significantly out-
performs IDF. The performance of IDF on WikiMapia data
is better than on Places data, possibly owing to the larger
scale and diversity in Places, but the name model perfor-
mance is at par on both.

The peak F -measure (harmonic mean of the precision and
the recall) for our algorithm is around 0.85, which is achieved
at α ≈ 0.5 on both the datasets. Figure 7 shows the F -
measure as a function of α. This suggests a class prior of
α = 0.5, i.e., on average, names contain equal number of
core and background tokens.

6.2 Context Model
Next, we look at the task of identifying core tokens in the
context of a name. We learn a context model as described in
Section 4 based on the entire unlabeled data. For evaluation,
we randomly sampled a set of places, and labeled the core
tokens in each. Then we used the context model to identify
the core in each place name, taking into account the place
location, using Equation (2).

A parameter that we need to choose is λ, defined in Eq. (1),
which controls the smoothing between the local model and
the global background model. For each choice of λ, we eval-
uate the accuracy of our model in identifying the core in the
context of a name, where accuracy is simply the fraction of
names were we correctly identified the core. Using λ = 0
amounts to not using the local model at all, while λ = 1 im-
plies that the global model is completely ignored. Figures 8
and 9 show the accuracy of identifying core as a function of
λ on Places and WikiMapia respectively. We see that the

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
u
ra

c
y

λ

Figure 9: Accuracy of Identifying Core on
WikiMapia as a function of λ

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

p

r

Edit
TFIDF

Name Model
Context Model

Figure 10: Deduplication Accuracy for Various
Techniques on Places

peak accuracy is around 91% and 87% in the two datasets,
corresponding to roughly the same value of λ ≈ 0.9. Also
note that context matters a lot, as the accuracies for λ = 0
are only 80% and 75% respectively.

6.3 Deduplication
Finally, we look at the our end-goal, which is place dedu-
plication. We want to check if our effectiveness in identify-
ing the cores of place names translates into accurate dedu-
plication. We consider two baselines, Edit, that uses the
Levenshtein distance between the two place names as the
similarity metric, and TF-IDF, which uses the TF-IDF co-
sine similarity between the place names. We also consider
two variants of our algorithm : Context Model refers to our
complete model based on Algorithm 3, and Name Model,
which is a variant of Algorithm 3 that does not use the lo-
cal context. We observe that the Name Model significantly
outperforms baselines based on edit distances and cosine
similarities. Further, context helps a lot. We are able to
achieve a recall of 90% at a precision of 90%.

7. RELATED WORK
String comparison for matching is a relatively well-studied
field. In [7], the authors divide techniques into three cat-

egories, 1) edit-distance-like functions, 2) token-based dis-
tance functions and 3) hybrid functions. In [15], the authors
describe a system for geographic name disambiguation, fo-
cusing on the names of towns and landmarks. The authors
use traditional string match techniques - Jaccard, Jaro Win-
kler, and an Edit Distance. They note that their “highest
F-measure is obtained with a threshold of .5” and observe
that “many matching locations have significant differences
in their names”.

The simple name model of Section 3, the spatial-context
model of Section 4 and the combined model are all tech-
niques to produce token weights, and in Section 6, we com-
pare our technique to the TF-IDF based similarity using the
cosine similarity of the weighted scores as in [7] (and many
others). Other weighting techniques have been proposed,
including the “Learnable Vector-space Similarity” technique
of [4]. This technique learns token weights by using the
TF-IDF weights of matching tokens as input features to an
SVM classifier to learn new weights. Fundamentally, the
difference is that our weighting schemes compute different
weightings for each word in each business name, based either
on the role of the word or on the spatial context. Since, to
our knowledge, all token weighting schemes in the literature
including [4], but excepting [6], compute the same weight
for a given token no matter where it is used in the match-
ing task, our approach is not directly comparable to these
techniques. In [6], the authors introduce a context-sensitive
technique, but the form of context considered in their work
is to assume a low probability of dupes within a particular
source of data, quite orthogonal to the notion of core words
or the spatial context of Section 4.

The place-similarity metric defined in Section 5 is properly
a hybrid technique that incorporates both character edit
weights and token copy, insert and delete weights. These
techniques are similar to the notion of a learned customized
matching functions, to which we now compare. Techniques
that learn simple transition probabilities for edit models, in-
cluding [13, 11] or with affine gaps as in the first technique
of [4], are substantially different from our approach given
the focus on a single set of parameters and the need for su-
pervision. Like all other token schemes, this scheme gives a
fixed weight to each token, unlike our technique that gives
a variant weight based on context. Finally [10] also learns a
discriminative edit distance, but this distance can be based
on features of each word. An interesting topic of future
work is to incorporate our core word and context metrics as
features in an adaptation of this system.

In summary, we are not aware of any previous work that
computes core words or term weighting based on spatial con-
text, nor related work that achieves high accuracy on match-
ing business names, especially not noisy ones.

8. CONCLUSION
In this paper, we described an approach to address the
challenging problem of deduplicating places. Our approach
consists of a novel unsupervised language model that cap-
tures both the domain knowledge as well as the spatial con-
text. We experimentally showed the effectiveness of out
techniques on real data. Our techniques are used in produc-
tion at Facebook to maintain the Facebook Places data.

9. REFERENCES
[1] L. Backstrom, E. Sun, and C. Marlow. Find me if you

can: improving geographical prediction with social
and spatial proximity. In Proceedings of the 19th
international conference on World wide web, pages
61–70. ACM, 2010.

[2] K. Bellare, C. Curino, A. Machanavajihala, P. Mika,
M. Rahurkar, and A. Sane. Woo: A scalable and
multi-tenant platform for continuous knowledge base
synthesis. Proceedings of the VLDB Endowment,
6(11), 2013.

[3] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and
S. Fienberg. Adaptive name matching in information
integration. Intelligent Systems, IEEE, 18(5):16–23,
2003.

[4] M. Bilenko and R. J. Mooney. Adaptive duplicate
detection using learnable string similarity measures. In
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 39–48. ACM, 2003.

[5] J. Chang and E. Sun. Location3: How users share and
respond to location-based data on social networking
sites. In Proceedings of the International Conference
on the Weblogs and Social Media (ICWSM?11), 2011.

[6] W. W. Cohen, N. Glance, C. Schafer, R. Tromble, and
Y. W. Wong. Data Integration for Many Data Sources
using Context-Sensitive Similarity Metrics. Carnegie
Mellon University, School of Computer Science,
Machine Learning Department, 2011.

[7] W. W. Cohen, P. D. Ravikumar, S. E. Fienberg, et al.
A comparison of string distance metrics for

name-matching tasks. In IIWeb, volume 2003, pages
73–78, 2003.

[8] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. Knowledge and
Data Engineering, IEEE Transactions on, 19(1):1–16,
2007.

[9] A. Koriakine and E. Saveliev. Wikimapia. Online:
wikimapia. org, 2008.

[10] A. McCallum, K. Bellare, and F. Pereira. A
conditional random field for discriminatively-trained
finite-state string edit distance. arXiv preprint
arXiv:1207.1406, 2012.

[11] J. Oncina and M. Sebban. Learning stochastic edit
distance: Application in handwritten character
recognition. Pattern Recognition, 39(9):1575–1587,
2006.

[12] B. W. Parkinson. Gps error analysis. Global
Positioning System: Theory and applications.,
1:469–483, 1996.

[13] E. S. Ristad and P. N. Yianilos. Learning string-edit
distance. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 20(5):522–532, 1998.

[14] G. Salton and C. Buckley. Term-weighting approaches
in automatic text retrieval. Information processing &
management, 24(5):513–523, 1988.

[15] V. Sehgal, L. Getoor, and P. D. Viechnicki. Entity
resolution in geospatial data integration. In
Proceedings of the 14th annual ACM international
symposium on Advances in geographic information
systems, pages 83–90. ACM, 2006.

