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Abstract—Access to large corpora with strongly labelled sound
events is expensive and difficult in engineering applications.
Many researches turn to address the problem of how to detect
both the types and the timestamps of sound events with weak
labels that only specify the types. This task can be treated
as a multiple instance learning (MIL) problem, and a key to
it in the sound event detection (SED) task is the design of a
pooling function. The linear softmax pooling function achieves
state-of-the-art performance since it can vary both the signs and
the magnitudes of gradients. However, linear softmax pooling
cannot flexibly deal with sound events of different time scales.
In this paper, we propose a power pooling function which
can automatically adapt to various sound events. By adding a
trainable parameter to each event, power pooling can provide
more accurate gradients for frames in a clip than other pooling
functions. On both weakly supervised and semi-supervised SED
datasets, the proposed power pooling function outperforms linear
softmax pooling on both coarse-grained and fine-grained metrics.
Specifically, it improves the event-based F1 score by 11.4% and
10.2% relatively on the two datasets. While this paper focuses on
SED applications, the proposed method can be applied to MIL
tasks in other domains.

I. INTRODUCTION

Sound event detection (SED) aims to identify the categories
and timestamps of target sound events in continuous audio
recordings. Some studies only focus on the categories of sound
events present (audio tagging), while this paper pays more
attention to the detection of onset and offset time (localiza-
tion). Traditional SED models are often trained from data with
strong labels, which contain the categories and timestamps of
each sound event occurrence [1]–[4]. However, in real-world
applications, such as noise monitoring [5], surveillance sys-
tems [6], machine condition monitoring [7], and multimedia
indexing [8], acquiring such strong labels can incur a high
cost. Google has released a large-scale weakly labelled dataset
(AudioSet) [9] with clip-level annotations. AudioSet has led
researchers to pay more attention to weakly labelled SED, i.e.
when fine-grained timestamps are unavailable.

Weakly supervised tasks can be addressed as a multiple
instance learning (MIL) [10] problem. As strong labels are
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Fig. 1. Pooling function in a MIL system for SED with weak labels. A
pooling function produces weights for fine-grained (frame-level) probabilities
yi to obtain a coarse-grained (clip-level) posterior probability ŷ, and generates
fine-grained gradients from a coarse-grained loss. The plus signs (red) indicate
instances (frames) whose ground truth is positive, and the minus signs (green)
indicate instances whose ground truth is negative. d is the ideal threshold
at which the gradients change signs. Arrows indicate the directions of the
gradients.

expensive, the studies of MIL are widely conducted in many
domains, such as object detection [11]–[13]. In MIL, instances
are grouped into bags. Only the bag-level annotations are
available, but the label of each instance is unknown. The
label convention between a bag and the instances in it obey
the standard multiple instance (SMI) assumption: A bag
annotation is positive if at least one instance is positive. As
for SED, for each event type, an audio clip and its frames can
be regarded as a bag and instances in the bag. A positive bag
is a clip that contains the given type of event, which means
that, it consists of at least one positive frame and may also
contain negative frames; A negative bag, on the other hand,
only consists of negative frames.

To improve the localization accuracy, considerable re-
searches have made efforts to select positive instances more
precisely. Many studies are devoted to the design of pooling
functions: as shown in Fig. 1, the pooling function calculates
the clip-level probability of an event type as a weighted aver-
age of the frame-level probabilities, and also serves to back-
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Fig. 2. Overview of a weakly supervised SED system. C is the number of target classes. “CE loss” is the cross-entropy loss function.

propagate gradients from the clip-level loss function to the
frames. Ideally, the pooling function should produce weights
and gradients discriminative enough. “Max” pooling [14] as-
signs zero weights to non-maximizing frames, which produces
zero gradients and leads to difficult optimization. Average
pooling [15] weights all frames equally and produces positive
gradients for all frames, which leads to undesired gradients
for negative instances in the positive bags. Linear softmax
pooling [16], exponential softmax pooling [17], and attention
pooling [18] assign different weights to frames with varying
the magnitudes of the their gradients. Wang et al. [19] com-
pared the above five pooling functions, and demonstrated that
linear softmax pooling was the best at localizing sound events
because it could produce positive gradients for some frames
and negative gradients for others. McFee et al. [20] developed
a family of adaptive pooling operators named auto-pool which
could achieve a similar effect. He et al. [21] proposed a
hierarchical pooling structure, which has shown remarkable
performance combined with linear, exponential softmax, and
attention pooling.

It remains challenging, however, to predict the onsets and
offsets of sound events using these pooling functions. A core
reason is that environmental sounds in general have less struc-
ture in comparison to speech and music. Diverse independent
sources (e.g. animals, vehicles, electrical appliances) produce
acoustic events with considerable variability. A key factor that
causes variability is the varied durations of different events,
and these pooling functions cannot adapt to such variability.

To mitigate the above issues, we design a simple but
effective pooling function termed as power pooling. We use
a power function of the predicted frame-level probability as
the weight for each frame, and set the exponent as a train-
able parameter to automatically generate an optimal threshold
which is used to partition positive and negative gradients.
The power pooling provides variable gradient directions for
frame-level predictions with a flexible threshold. The trainable
power parameter can also be made class-wise dependent,
thus adapting to various sound events with different acoustic
characteristics. We evaluate the proposed method on DCASE
2017 Task 4 [22] and DCASE 2019 Task 4 [23] datasets.
The former is a weakly labelled SED dataset with longer
events, while the latter is a semi-supervised SED dataset with
shorter events. Our empirical results show that power pooling
outperforms other pooling functions on all metrics.

II. METHOD

In this section, we first formulate the problem of weakly
supervised SED. Then, we introduce the definition and limita-
tions of the linear softmax pooling. Next, we develop a power
pooling function which can adaptively generate proper weights
and gradients for various sound events. Finally, we explain the
similarities and differences between power pooling and auto
pooling.

A. Formulation of weakly supervised SED

Polyphonic SED with C event categories can be regarded
as C binary MIL problems. As such, we will only consider
one event category hereafter.

Each training clip can be regarded as a bag (X,Y ), where
X = [x1, . . . , xm] is a sequence of instances (frames), and
what we have is the label of the bag Y ∈ {0, 1}. The purpose
is to learn a SED system which can output fine-grained
(frame-level) and coarse-grained (clip-level) predictions of
event probabilities simultaneously from such weakly labelled
data.

Fig. 2 gives an overview of the weakly supervised SED
system in this work. The system accepts the log-scaled Mel
spectrograms Xm·k where m and k are numbers of frames
and Mel filters, uses the detector to generate a frame-level
probability yi ∈ [0, 1] for each instance xi, uses the pooling
function to aggregate yi into a clip-level prediction ŷ ∈ [0, 1].
The pooling function assigns a weight wi to each frame and
taking the weighted average:

ŷ =

∑
i yi · wi∑

i wi
. (1)

To train the SED system, the cross-entropy (CE) loss
function is minimized between the clip-level prediction ŷ and
the label Y . During back-propagation, the pooling function
determines the gradient received by each instance, and the
gradients should have appropriate signs. To evaluate the sys-
tem, we apply a threshold γ on both yi and ŷ to generate
binary predictions.

B. Linear softmax pooling

A pooling function should generally assign larger weights to
frames with larger predicted probabilities, which is in order to



TABLE I
THE DIRECTIONS OF CLIP-LEVEL AND FRAME-LEVEL GRADIENTS IN

LINEAR SOFTMAX POOLING (θ = 1/2) AND POWER POOLING
(θ = n/(n+ 1)).

Target Clip-level Condition Frame-level

positive (Y = 1) ŷ → 1
yi > θ · ŷ yi → 1
yi < θ · ŷ yi → 0

negative (Y = 0) ŷ → 0
yi > θ · ŷ yi → θ · ŷ
yi < θ · ŷ yi → θ · ŷ

conform to the SMI assumption. The state-of-the-art (SOTA)
linear softmax pooling uses a weight wi equal to yi:

ŷ =

∑
i(yi · yi)∑

i yi
, (2)

and its gradient is

∂ŷ

∂yi
=

2yi − ŷ∑
j yj

. (3)

This gradient is positive if and only if yi > ŷ/2. For positive
clips (Y = 1), this causes “larger” frame-level probabilities to
increase and “smaller” frame-level probabilities to decrease,
thereby yielding clear boundaries of event occurrences. The
threshold between “larger” and “smaller” probabilities is given
by d = ŷ/2. For negative clips (Y = 0), the gradients pushes
all frame-level probabilities toward ŷ/2. Considering that this
threshold is smaller than ŷ, all the frame-level probabilities
will converge to 0 as desired after enough iterations. The
movements of the frame-level probabilities are listed in Table I
as well as depicted in Fig. 1.

Define θ = d/ŷ as the ratio between the threshold at
which the gradient changes signs and the clip-level predicted
probability. In linear softmax pooling, θ is fixed at 1/2. In
reality, however, it may be desirable to have a different θ for
different event categories. For example, we may want to boost
the predicted probabilities of more frames when a clip contains
a type of event that usually lasts a long time (e.g. vacuum
cleaner), and boost fewer frames when the type of event is
usually transient (e.g. dog bark). This motivated us to propose
power pooling.

C. Power pooling

Without changing the pattern of how predictions move in
Table I, we hope to make the ratio θ variable by adding
a small number of trainable parameters on the basis of the
linear softmax pooling function. We propose to determine the
pooling weights of the frame-level probability using the power
function f(x) = xn, where n is the single trainable parameter.
In other words, we use the n-th power of the frame-level
probabilities (yi)

n as the weights for pooling:

ŷ =

∑
i yi · (yi)n∑

i(yi)
n

. (4)

We call this pooling function power pooling. To conform to the
SMI assumption, wi = (yi)

n must be an increasing function
in yi, therefore the power parameter n must be positive.

The gradient of the power pooling function is:

∂ŷ

∂yi
=

(n+ 1) · (yi)n − n · (yi)n−1 · ŷ∑
j(yj)

n
. (5)

During back-propagation, frame-level probabilities will move
in the same pattern as in Table I, while the threshold is given
by d = θ · ŷ with θ = n/(n + 1) ∈ (0, 1). The gradient still
exhibits different signs for different frames.

Power pooling inherits the advantage of linear softmax
pooling at localizing sound events. In addition, the learnable
power parameter n allows it to approach either max pooling
(as n→ +∞) or average pooling (as n→ 0). When n is fixed
to 1, power pooling reduces to linear softmax pooling.

It is desirable to make the power n depend on the event
category: for long-lasting events we prefer to choose a smaller
n, which results in a lower threshold and boosts more frames;
for transient events we would do the opposite. When the power
n gets too large, however, power pooling can suffer from the
same problem of zero gradients as max pooling. To avoid
this problem, we add a regularization term of λ

∑
c n

2
c to the

loss function, where nc is the power parameter for the event
category c. Thus, the formula of final loss function is

L = CE(Y, ŷ) + λ
∑
c

n2c

= CE

(
Y,

∑
i yi · (yi)n∑

i(yi)
n

)
+ λ

∑
c

n2c .
(6)

D. Relationship with auto-pool

The term “auto-pool” encompasses three pooling operators:
auto pooling (Auto), constrained auto pooling (CAP) and
regularized auto pooling (RAP). Auto pooling adds a trainable
parameter α to the exponential softmax pooling function; its
formula and gradient are:

ŷ =

∑
i yi · exp(α · yi)∑

i exp(α · yi)
, (7)

∂ŷ

∂yi
= (1− αŷ + αyi) ·

exp(αyi)∑
j exp(αyj)

. (8)

Auto pooling allows exponential softmax to approach either
max pooling (as α→ +∞) or average pooling (as α→ 0). To
avoid approaching the max pooling behavior too much, CAP
and RAP are proposed to restrict auto pooling. CAP imposes
an upper limit of ln(m− 1) on α, where m is the number of
frames in a clip, so that no frame may receive more than half
of the total weight. RAP adds a quadratic regularization term
λα2 to the objective function similar to power pooling.

We would like to point out that the gradient in auto pooling
is always positive when α ∈ (−1, 1), therefore it is less
discriminative between positive and negative instances in a
positive bag than power pooling. Moreover, in auto pooling,
frames with near-zero probabilities still get weights close to
1 due to the exp operator, and may unwantedly dominate the
weighted average. This is unlike power pooling, where frames
with near-zero probabilities get near-zero weights.



TABLE II
THE WINDOW LENGTHS OF MEDIAN FILTERS FOR THE EVENT CATEGORIES

OF DCASE 2019 TASK 4.

Event Category Length/s Event Category Length/s
Alarm/bell/ringing 0.21 Electric shaver/toothbrush 2.24
Blender 1.20 Frying 2.82
Cat 0.48 Running water 1.98
Dishes 0.20 Speech 0.49
Dog 0.26 Vacuum cleaner 2.92

III. EXPERIMENTAL SETUP

A. Dataset

We carry out experiments to compare the performance
of power pooling with other pooling functions on DCASE
2017 [22] and DCASE 2019 [23] datasets. Both datasets
contain realistic clips taken from AudioSet [9], and DCASE
2019 has an additional subset of synthetic recordings. Most
clips have a duration of 10 seconds (a few clips are shorter),
and multiple audio events may occur at the same time.

DCASE 2017 [22]: The dataset of Task 4 of the DCASE
2017 challenge is composed of 17 types of “warning” and
“vehicle” sounds. We take the weakly labelled training set
(51,172 clips) and the strongly labelled public test set (488
clips). The mean duration of each type of event varies from
4 s to 10 s, covering more than 40% of the clips.

DCASE 2019 [23]: The DCASE 2019 dataset focuses on
10 types of sound events in domestic environments. It consists
of three training sets (synthetic strongly labelled: 2,045 clips,
weakly labelled: 1,578 clips, unlabelled: 14,412 clips) and a
validation set (1,168 clips). The mean duration of each type
of event varies from 0.5 s to 5 s, covering less than 50% of
the clips.

The two datasets involve relatively long and short events,
respectively. They also allow us to verify the performance of
the pooling functions in a pure weakly supervised scenario as
well as a semi-supervised scenario.

B. Evaluation

The performance of systems is measured with fine-grained
and coarse-grained F1 score:

F1 =
P +R

2 · P ·R
, (9)

P =
TP

TP + FP
, (10)

R =
TP

TP + FN
, (11)

where TP , FP , and FN are the number of true positives,
false positives and false negatives. The F1 score balances
precision (P ) and recall (R). For fine-grained evaluation,
we compute both event-level and segment-level metrics. The
former treats each event occurrence as an instance with a
200 ms collar on onsets and a collar of 200 ms or 20% of the
event length on offsets; the latter treats each 1 s segment as

TABLE III
THE DEFINITIONS AND GRADIENTS OF POOLING FUNCTIONS. m IS THE

NUMBER OF FRAMES IN A CLIP. α AND n ARE TRAINABLE PARAMETERS.

Pooling Function Definition Gradient

Max ŷ = max
i
yi

∂ŷ

∂yi
=

{
1, if yi = ŷ

0, otherwise

Average ŷ =
1

m

∑
i

yi
∂ŷ

∂yi
=

1

m

Exp ŷ =

∑
i yi · exp(yi)∑

i exp(yi)

∂ŷ

∂yi
= (1− ŷ + yi) ·

exp(yi)∑
j exp(yj)

Attention ŷ =

∑
i yi · wi∑

i wi

∂ŷ

∂yi
=

wi∑
j wj

Auto ŷ =

∑
i yi · exp(αyi)∑

i exp(αyi)

∂ŷ

∂yi
= (1− αŷ + αyi) ·

exp(αyi)∑
j exp(αyj)

Linear ŷ =

∑
i yi · yi∑

i yi

∂ŷ

∂yi
=

2yi − ŷ∑
j yj

Power ŷ =

∑
i yi · (yi)n∑

i(yi)
n

∂ŷ

∂yi
=

(n+ 1) · (yi)n − n · (yi)n−1 · ŷ∑
j(yj)

n

an instance. For coarse-grained evaluation, we compute clip-
level metrics treating each entire 10 s clip as an instance. We
use the macro-average to aggregate the metrics across event
categories. The evaluation details can be found in [24].

C. Model architecture and post-processing

On DCASE 2017, the data pre-processing and model archi-
tecture are nearly the same as in [19]. In a nutshell, the input
Mel features have 400 frames and 64 frequency bins, and the
model structure contains 3 convolutional blocks, 2 bidirec-
tional gated recurrent unit (BiGRU) layers, and 1 dense layer.
We add a batch norm layer to each convolutional block.

On DCASE 2019, we apply a semi-supervised framework
since the dataset contains unlabelled data. The data pre-
processing and backbone model are based on [25]. We adopt
the popular mean-teacher [26] architecture and a feature
extractor implemented as a convolutional recurrent neural
network. Notably, as DCASE 2019 contains synthetic strong
labelled data and unlabelled data, a frame-level CE loss and
a consistency loss are applied during training [25]. Further-
more, the following optimizations are performed: First, we
augment the data by shifting input features along the time
axis, sampling the shift from a normal distribution with zero
mean and a standard deviation of 16 frames. Second, we adopt
the hyperparameters of the feature extractor in [27]. Third,
we apply a set of median filters on the frame-level predicted
probabilities, using window lengths proportional to the average
duration of each event category. The specific window lengths
can be found in Table II.

The regularization hyperparameter λ for the power parame-
ters is set to 10−4 for DCASE 2017 and 0 for DCASE 2019.
The threshold γ is tuned to optimize the clip-level F1 score
on DCASE 2017, and is fixed to 0.5 on DCASE 2019, which
follows the strategy in [19], [27].

D. Baseline pooling functions

We take the following pooling functions as baselines to
compare against the proposed power pooling:



TABLE IV
DETAILED RESULTS ON DCASE 2017 TASK 4 AND DCASE 2019 TASK 4. WE INDICATE IN BOLD THE BEST F1 SCORES ACROSS ALL SYSTEMS, AS

WELL AS THE BEST APART FROM POWER POOLING.

Pooling Function
DCASE 2017 DCASE 2019

Event-level Segment-level Clip-level Event-level Segment-level Clip-level
F1 Precision Recall F1 Precision Recall F1 F1 Precision Recall F1 Precision Recall F1

Max [14] 0.094 0.169 0.073 0.372 0.567 0.300 0.465 0.256 0.381 0.201 0.488 0.836 0.362 0.609
Average [15] 0.165 0.147 0.196 0.450 0.425 0.515 0.516 0.171 0.158 0.201 0.564 0.499 0.675 0.597

Exp [17] 0.166 0.154 0.187 0.466 0.472 0.481 0.521 0.187 0.190 0.203 0.569 0.559 0.654 0.611
Attention [18] 0.130 0.139 0.171 0.434 0.481 0.470 0.527 0.320 0.359 0.300 0.600 0.688 0.547 0.386

Auto [20] 0.169 0.144 0.217 0.457 0.425 0.535 0.536 0.218 0.288 0.180 0.597 0.755 0.526 0.655
CAP [20] 0.164 0.152 0.199 0.468 0.447 0.521 0.544 0.188 0.217 0.171 0.598 0.628 0.601 0.641

RAP 10−2 [20] 0.176 0.147 0.233 0.464 0.411 0.561 0.532 0.177 0.189 0.179 0.584 0.544 0.668 0.639
RAP 10−3 [20] 0.165 0.145 0.202 0.464 0.432 0.529 0.534 0.172 0.175 0.181 0.586 0.530 0.682 0.640
RAP 10−4 [20] 0.158 0.132 0.206 0.455 0.410 0.539 0.526 0.178 0.229 0.151 0.537 0.602 0.533 0.516

Linear [19] 0.162 0.178 0.161 0.471 0.542 0.451 0.535 0.343 0.431 0.292 0.583 0.738 0.498 0.655
Power 0.196 0.168 0.248 0.480 0.460 0.537 0.545 0.378 0.437 0.340 0.624 0.752 0.547 0.694

TABLE V
COMPARISON OF THE F1 SCORES OF OUR POWER POOLING WITH THREE POPULAR POOLING FUNCTIONS ACROSS THE 10 EVENT CATEGORIES OF

DCASE 2019 TASK 4. BEST RESULTS ARE SHOWN IN BOLD.

Category Event-level F1 Segment-level F1 Clip-level F1

Attention Auto Linear Power Attention Auto Linear Power Attention Auto Linear Power
Alarm/bell/ringing 0.403 0.264 0.460 0.473 0.735 0.735 0.798 0.822 0.474 0.755 0.816 0.840

Blender 0.325 0.321 0.319 0.462 0.560 0.530 0.516 0.552 0.336 0.571 0.549 0.614
Cat 0.364 0.070 0.442 0.407 0.519 0.594 0.525 0.567 0.082 0.738 0.688 0.734

Dishes 0.204 0.107 0.167 0.199 0.429 0.460 0.376 0.456 0.041 0.482 0.524 0.581
Dog 0.230 0.060 0.128 0.230 0.621 0.628 0.638 0.648 0.441 0.699 0.716 0.716

Electric shaver/toothbrush 0.352 0.447 0.396 0.388 0.669 0.608 0.551 0.598 0.636 0.646 0.617 0.653
Frying 0.316 0.260 0.291 0.301 0.543 0.489 0.411 0.514 0.482 0.527 0.465 0.556

Running water 0.174 0.269 0.189 0.212 0.451 0.584 0.482 0.519 0.271 0.631 0.580 0.613
Speech 0.421 0.101 0.471 0.489 0.828 0.814 0.807 0.825 0.482 0.895 0.880 0.894

Vacuum cleaner 0.416 0.284 0.565 0.623 0.639 0.532 0.731 0.736 0.604 0.603 0.710 0.743

• Three classic pooling functions: max, average, and expo-
nential softmax (Exp for short);

• The popular attention pooling;
• A family of adaptive pooling functions: Auto, CAP, and

RAP;
• The state-of-the-art linear softmax pooling.
Table III lists the definitions and the gradients of all the

pooling functions.

IV. RESULTS AND DISCUSSION

In this section, we first describe the marco-average results
on two datasets and the detailed results of each sound events
in DCASE 2019 dataset. We then visualize how power pooling
improve the localization performance in an audio clip. Finally,
we show the value of parameter nc for sound events in two
datasets to illustrate that power pooling adaptively generates
proper nc for sound events with various time scales.

A. Results on test datasets

Table IV compares power pooling with the baseline pooling
functions on the DCASE 2017 and DCASE 2019 datasets.
The impact of pooling functions appears to be similar on
the weakly labelled dataset and the semi-supervised dataset.
Power pooling achieves the highest F1 at all the three levels
on both datasets. For event-level evaluation, which is most
relevant for sound event localization, power pooling achieves
F1 scores of 0.196 and 0.378 on the two datasets. Compared

with the best scores of the baseline pooling functions (0.176,
0.343), power pooling shows an absolute improvement of
2% and 3.5%, and a relative improvement of 11.4% and
10.2%. As for the segment-level and clip-level metrics, linear
softmax pooling, attention pooling and two of the auto pooling
functions achieve the highest F1 scores among the baseline
functions (0.471, 0.600, 0.544, 0.655) on the two datasets,
while models with power pooling outperform the above results
with an absolute improvement from 0.1% to 4%. The exper-
imental result demonstrates that the power pooling benefits
both audio tagging and localization, indicating that it yields
proper weights and gradients.

Comparing with the baseline linear softmax pooling, we
can attribute the superior performance of power pooling to
its ability to significantly increase the recall score while
maintaining comparable precision. Power pooling overcomes
the defect of linear softmax pooling that it tends to produce
false negatives [19].

Table V shows the F1 scores of the 10 event categories in
DCASE 2019. Here, we compare our power pooling function
with the three pooling functions that generated the highest F1

at a certain level in Table IV. On 8 out of the 10 event cat-
egories, power pooling achieves a better event-level F1 score
than linear softmax pooling, demonstrating that power pooling
can find proper power parameters and achieve more accurate
localization. Moreover, compared with the other three pooling
functions, power pooling exhibits competitive performance
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Fig. 3. Frame-level predictions of linear softmax and power pooling at
epoch 40.

(first or second highest) at all levels for all the ten events
(except segment-level F1 for “electric shaver/toothbrush”). If
the practical purpose is to simultaneously detect multiple types
of sound events, especially when their durations vary, power
pooling appears to be the method of choice.

Table V also indicates that baseline functions have their own
strengths, despite their difficult balance between evaluation
granularities and poor flexibility toward various sound events.
Attention pooling can benefit fine-grained detection in semi-
supervised learning, as it achieves the highest event-level and
segment-level F1 scores for three and four event types, re-
spectively. Nevertheless, it yields poor clip-level performance.
The reason might be that an extra frame-level cross-entropy in
semi-supervised learning leads attention pooling to pay more
attention to fine-grained evaluation. Auto pooling can be useful
on coarse-grained classification, as it obtains the highest clip-
level F1 scores on three event types of DCASE 2019, and high
macro-average F1 on both datasets at clip-level.

B. Visualization of localization improvement

Fig. 3 illustrates the predictions for the “vacuum cleaner”
event on a weakly labelled training clip, produced by a linear
softmax pooling system and a power pooling system after
40 epochs of training (we trained for 200 epochs in total).
We also plot the actual temporal interval spanned by the event.
For the power pooling system, we show the threshold between
positive and negative gradients arising from both the power
pooling function (dpower = n/(n+1)·ŷ) and the linear softmax
pooling function (dlinear = 1/2 · ŷ). The power parameter for
the “vacuum cleaner” event is n = 0.337 < 1, yielding a
lower threshold and allowing more frames to receive positive
gradients. Compared with the linear softmax pooling system,
more frames in the power pooling system receive a gradient
in the correct direction, notably from 0.7 s to 3 s and 9 s to
10 s. This indicates how a more appropriate threshold between
positive and negative gradients can help to correctly pinpoint
the onset and offset of events.
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Fig. 4. The power parameter nc for each event category in the final model.

C. Proper parameters nc produced for various sound events

Fig. 4 shows the power parameters nc of each event category
in the final model. We sort the event categories horizontally by
their average duration, and divide them roughly into shorter
events (smaller symbols) and longer events (larger symbols).
The durations of shorter and longer events in the DCASE
2017 dataset fall within 4–5 s and 6–10 s; for DCASE 2019,
these durations fall within 0.5–1.1 s and 2–5 s. Except for
a small portion of categories (marked by triangles), longer
events tend to have smaller power parameters, making the
power pooling approach average pooling; shorter events tend
to have larger power parameters, making the power pooling
approach max pooling. We even observe the power parameters
nc adapt to event durations across datasets: events in DCASE
2017 generally last longer than those in DCASE 2019; as a
result, the parameters nc are usually smaller than 0.5 for events
in DCASE 2017, but are much larger in DCASE 2019. The
experimental results agree well with the motivation.

V. CONCLUSION

This paper has proposed a practical power pooling func-
tion for weakly labelled SED. Power pooling overcomes the
shortcoming of the SOTA linear softmax pooling, whose frame
weights are determined by a fixed formula from its predicted
probabilities. By adding only one learnable power parameter
for each category, power pooling can automatically learn an
appropriate threshold between positive and negative gradients
for each event category. The learnable parameter allows power
pooling to adapt to various sound events with different time
scales. Our experimental results indicates that power pooling is
much more preferred for weakly supervised SED, especially
for polyphonic SED. Moreover, the power pooling function
is generic enough to be applied to MIL problems in other
domains.
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