
Predictive Test Selection
Mateusz Machalica, Alex Samylkin, Meredith Porth, Satish Chandra

Facebook, Inc.
{stupaq, bane, mporth}@fb.com, schandra@acm.org

Abstract—Change-based testing is a key component of con-
tinuous integration at Facebook. However, a large number of
tests coupled with a high rate of changes committed to our
monolithic repository make it infeasible to run all potentially-
impacted tests on each change. We propose a new predictive test
selection strategy which selects a subset of tests to exercise for
each change submitted to the continuous integration system. The
strategy is learned from a large dataset of historical test outcomes
using basic machine learning techniques. Deployed in production,
the strategy reduces the total infrastructure cost of testing code
changes by a factor of two, while guaranteeing that over 95% of
individual test failures and over 99.9% of faulty changes are still
reported back to developers. The method we present here also
accounts for the non-determinism of test outcomes, also known
as test flakiness.

Index Terms—Continuous integration, test selection, machine
learning, flaky tests.

I. INTRODUCTION

Like many other organizations, Facebook maintains a mono-
lithic repository for code development. This means that any
code change committed by a developer must first ensure
that all the potentially impacted code continues to build fine
and all the potentially impacted tests continue to pass. As a
rough indication of the magnitude of the problem, each of
several tens of thousands of changes submitted to our mobile
codebase every week potentially impacts of the order of ten
thousands tests that would need to be exercised, on average.
This renders carrying out exhaustive quality control on each
code change impractical. To reduce the infrastructure costs of
testing changes submitted by developers, as well as to speed
up delivery of correctness signal, change-based test selection
techniques are inevitable [1].

A common change-based test selection strategy is to choose
tests that transitively depend on modified code according to
build dependencies, as seen in Fig. 1. This technique has been
employed at Facebook for two main reasons. First, dependency
information recorded in build metadata makes it very easy
to identify all tests transitively depending on modified files.
More importantly, strict build isolation enforced by the build
system guarantees this technique identifies all tests that could
possibly be impacted by the change. A major disadvantage of
this approach is the number of tests selected on code changes,
in the order of 104. This is despite a vast majority of code
changes touching only a few files and altering low-hundreds
in lines of code.

There exists a spectrum of change-impact analysis methods
with varying applicability to the test selection problem. The
approach based on build dependency graph, as mentioned

1 2

63 4 5

Fig. 1. Example build dependency graph. Circles represent tests, squares –
intermediate units of code, for example libraries, diamonds – individual source
files in the repository. An arrow connects two entities A→ B if and only if
B directly depends on A, which we interpret as A impacting B. Two files
modified in a particular code change and all entities transitively dependent
upon them are colored red. A trivial test selection strategy based on build
dependencies would in this scenario exercise tests 1, 2, 3 and 4. Tests 5 and
6 are not exercised, as they do not depend on modified files.

above, utilizes build metadata. One can envision a strategy
based on static analysis of the code, at various levels of
granularity. A coarse-grain stategy would be to select all
tests that transitively refer to any modified class in Java; a
finer-grain strategy would analyze transitive data and control
dependences. This later approach could reduce the number
of tests selected for a particular code change, due to finer
granularity of dependency information it utilizes. However,
sound treatment of certain language features, such as reflec-
tion in Java, may require compromising precision of such
dependency analysis [2]. Also, this approach is hard to apply
in multilingual code bases where it is possible for program
control flow to cross language boundaries, such as Facebook’s
mobile repository.

Selecting tests using change impact based on dynamic
analysis could potentially further reduce the number of tests
exercised on a particular change. Ekstazi [3] is an example
of a test selection approach based on dynamically collected
information about classes loaded into JVM during a previous
execution of a particular test. Note that all dynamic methods
must be treated as approximate, in a sense that they may ignore
tests that would detect regression in a particular change. This is
due to the fact it is fundamentally impossible to know control
flow of a test execution before the test is exercised. Since test
selection must take place before the test is run on a particular
version of the code, it cannot be based on dynamic analysis
of test’s behavior on this exact version. While it is possible to
base test selection on dynamic analysis of the code a particular

change is based on, one can no longer make strict guarantees
on quality of this approach, as even a small code change can
arbitrarily alter runtime behavior. Also, maintaining per-test
code coverage information accurate enough to drive the test
selection process is impractical in large monolithic repositories
[1], while recording it requires language-specific infrastructure
and is challenging across language boundaries.

In this work, we propose and evaluate a data-driven, or
predictive, test selection strategy. We look at test selection as
a problem of learning a classifier, which, given a code change
and a test, says how likely is it that the test will fail on that
code change. Such a classifier is trained based on historical
data: it is learned automatically from previous code changes
and test outcomes on those changes. Obviously, since the goal
is to predict test outcomes for future as-yet-seen code changes,
the classifier acts upon a set of features extracted from code
changes and from tests. Thus, a future code change’s behavior
on a test can be predicted based on their respective features,
and the learned behavior of similar code changes or similar
tests. Such test selection strategy is approximate in the same
sense as one based on dynamic analysis is – it may fail to select
tests that would detect regressions. We prefer the predictive
test selection over one based on information collected by
dynamic analysis due to unknown accuracy of the latter and
challenges associated with recording runtime information at
Facebook’s scale.

Predictive test selection requires several important engi-
neering considerations. Among those, how to account for
flakiness in test outcomes is a key hindrance. Flakiness is
the phenomenon whereby the same test produces different
outcomes upon multiple independent trials. If we train our
classifier on flaky test results, we get very poor predictions.

In this paper, we describe in detail the design of our
predictive test selection system, as well as the way in which
we compensate for flakiness. Our key results are the following:
• Using predictive test selection, we can catch over 95%

of individual test failures and over 99.9% of faulty code
changes. A code change is marked faulty if any of the
individual tests run in response to the code change fails;
typically it is the recall of the faulty code changes that
matters.

• The test selection procedure selects fewer than a third
of the tests that would be selected on the basis of build
dependencies;

• At the same time, we reduce the total infrastructure cost
of change-based testing by a factor of two.

The predictive test selection has been operational at Facebook
for several months.

The rest of the paper is organized as follows. In Section II
we give background information on Facebook’s repository
structure and the continuous integration system. Section III
discusses approximating a set of tests impacted by a particular
change. In Section IV we describe the process of training
and evaluating the predictive test selection strategy. Section V
discusses how test flakiness affects the learned model. We
present measured performance of the strategy in Section VI. In

Section VII we cover related work and conclude by discussing
future directions in Section VIII.

II. CONTINUOUS INTEGRATION AT FACEBOOK

A. Repository Structure

At Facebook, all of source code comprising mobile ap-
plications and backend services is stored in a single code
repository. There are few restrictions on interdependencies
between different portions of the code base, to the point where
Facebook apps for iOS and Android platforms utilize the same
C++ libraries as the company’s backend services. However,
any form of versioning parts of the repository is not supported
and strictly disallowed. So is creating merge commits or
maintaining long-lived feature branches. This forces all code
changes submitted by developers to be linearized in a single
master branch of the repository, also known as trunk-based
development [4].

The monolithic code base model brings a number of benefits
[4], it: simplifies dependency management, and in particular,
makes it impossible for the dreaded diamond dependency
problem to occur; forces end products to migrate to recent
versions of libraries they depend on; enables large-scale
refactorings of library APIs and all callsites, in one atomic
change; encourages engineers to make small, incremental
changes as well as check for interactions between changes
made by different developers to the same product early in the
development cycle. A primary disadvantage of this model is
that even small changes can impact a large number of artefacts,
which poses a challenge for scaling developer tools such as
continuous integration.

Within the repository, source code is organized into small
and reusable units referred to as targets, each defined in one of
many build metadata files stored in the repository. Each target
describes how to materialize its output artefacts from declared
inputs, such as source files, and other targets it depends
on. At the time materialisation of a particular artefact (e.g.
compiling and linking a test binary) is requested, our cross-
platform, language-agnostic build system, reads all relevant
build metadata files in the repository and executes recipes
prescribed in target specifications until the requested artefact
is materialized. Targets are materialized in an order obtained
by topologically sorting a directed acyclic graph (DAG) of
dependencies between targets, with independent targets being
materialized in parallel when possible.

Automated tests defined by developers are organized in
test targets similarly to code under test. Those special targets
define both how to materialize executables implementing tests
as well as how to exercise them. When a developer or
continuous integration system requests certain test to be run,
the build system takes care of the whole process by first
building the binaries and then launching them in an appropriate
environment, for example using a mobile device emulator.

Depending on the programming language and testing frame-
work in question, a single test target may define multiple test
cases, each making a number of assertions. In our presented
work we have considered a test target be the atomic unit of

verification performed in the continuous integration system.
We consider a test target to fail if and only if any assertion
made by any of test case has failed or the test binary terminated
prematurely, for example due to a process crash.

B. Testing in Developer Workflow

Typical mobile developer workflow involves:
1) Creating a change based on a recent commit in the

master branch. Each change embeds information on the
version of the repository it is based on. It is thus possible
to reconstruct exactly the state of the code base after the
change.

2) Creating a diff in the internal code review tool, attaching
the change as the first version of the diff.

3) Iterating on the diff based on review feedback, creating
a new version on each iteration.

4) Once the diff is accepted, submitting it for landing,
which involves asynchronously pushing the diff into the
master branch, if it introduces no detectable breakages.

5) If the diff is rejected during land, for example due to
rebase conflicts or errors detected by static or dynamic
analysis, the author of the diff may continue iterating or
abandon it.

Automated testing happens at all stages of the developer
workflow, with objectives varying from stage to stage.

1) Pre-submit: Although left with freedom to skip this step,
developers typically exercise a few hand-picked tests prior to
creating a diff in the code review tool. In this way engaging
reviewers is avoided if the diff is broken in a quickly detectable
way, which limits human resources used in the review process.

2) Diff-time: Facebook’s continuous integration system au-
tomatically runs a subset of tests every time a new version of
a diff is created and reports their results in the code review
tool. Each tested patch is first rebased onto a recent version of
master branch that is known to pass all automated tests, which
guarantees reported test failures to indicate diff introducing a
regression. The developer need not wait for the results before
working on a follow up diff. This feedback lets developers fix
any detected problems before they move on to a different task
and lose some of the context of the change. Ideally results of
test suite should be delivered in no more than ten minutes.

3) Land-time: Once a diff is submitted for landing, it is
rebased onto a recent version of master branch that passes all
automated tests and a (possibly more comprehensive) subset of
tests is run on the modified version of the code base. The diff
is rejected if any of the tests reports a failure on it. This stage
of testing acts as a gatekeeper, guarding against breakages
slipping into the master branch.

Note that due to the velocity of code changes, it is not
feasible to serialize the process of land-time testing for all of
them. This implies that a number of code changes submitted
for landing will be rebased onto the same version of master
branch, tested in parallel and then serialized into a linear
history of commits. It is possible that changes being landed
simultaneously pass when tested individually, even though

they would cause test failures when rebased on top of each
other.

4) Stabilization: Once every few hours, all tests are exer-
cised on the most recent version of master branch. Tickets
are created for failing tests, which are then triaged either to
their respective owners or authors of breaking changes. This
stage aims to catch any breakages that slipped through prior
stages and find versions of master branch that are free of
bugs detectable using automated tests. Release candidates of
mobile applications can only be based of such versions of
the repository, which implies no bug detectable via automated
testing can affect the quality of released product, even if it
slips through prior stages.

The stabilization stage could also be considered a form of
testing all diffs submitted in the past few hours in a batch.
Testing multiple diffs at once can greatly reduce infrastructure
cost of continuous integration, although it does have a few
notable disadvantages. Successful completion of a test suite
does not imply each diff in the sequence is free of detectable
faults, as it is possible for the sequence to contain a diff
introducing a breakage and a following diff fixing the bug.
Additionally, it the test suite detects a fault it is usually not
immediately clear which of the diffs was a culprit [5].

Out of all discussed stages of automated testing, diff- and
land-time ones require an order of magnitude more machine
resources than testing during the stabilization stage. Resource
requirements of earlier stages scale at least linearly in the
number of developers, contrary to resources devoted to the
last stage. This is due to the relative frequency of events that
trigger different stages, which increases for those happening
earlier in the developer workflow.

Presence of the stabilization stage means the main goal of
diff- and land-time testing is to boost developer productivity
at an additional infrastructure cost, rather than to reduce
risk of buggy software being released. Continuous integration
system must work with a trade-off between infrastructure cost
and latency of test signal, as well as chances of a breaking
change being landed, both of which should be minimized.
Thoroughness of testing at each stage can be controlled to
decide which part of the trade-off is implemented.
• Less thorough testing at diff- and land-time would cause

developers to learn about errors that need to be corrected
at a later time, in the extreme case at the stabilization
phase. This increases the need to context-switch between
tasks, which negatively impacts developer productivity.

• More thorough testing prior to landing a diff, although
reducing the chances of detectable bug being committed
to master branch, negatively impacts the cost of testing
and/or latency of correctness signal provided to a devel-
oper.

III. LEARNING TO SELECT TESTS

A. Approximating The Set of Impacted Tests

Implementing a perfect test selection strategy, that is one
choosing all-and-only tests impacted by a particular code
change, is not feasible. Such a strategy would necessarily

require access to pieces of information unavailable at test
selection time. Our key observation is that we can derive from
data a strategy that is close enough to a perfect one.

Observation 3.1:
While we cannot compute exactly the set of impacted tests

for a particular change, we can approximate this computation
by learning to identify which tests would have reported a
failure, based on historical data.

It is important to note that our approximation needs not
be conservative, in a sense that it may miss some of the
impacted tests, yet it can still be applied in diff- and land-
time testing. As explained in Section II, these stages of
testing are not only non-essential, but also cannot maintain
the quality of the released product on their own due to races
between diffs being tested and landed simultaneously. Their
primary objective is to improve developer productivity at
some additional infrastructure cost. This means the continuous
integration system may trade how thorough testing is applied
at each stage with how much it costs in terms of machine
resources and developer time, in order to optimize developer
experience while keeping these costs in check.

Fig. 2 depicts test targets impacted by a code change
according to various test selection strategies as well as their
respective outcomes. While all tests reporting failures must be
impacted by the change, not all of the tests that passed are.
Intuitively, when learning to approximate the set of impacted
tests for a particular change, we should aim to capture as many
tests that would report failure and as few unimpacted tests
as possible. We will now formalize this intuition and discuss
metrics that quantify usefulness of test selection strategy to
the process of change-based testing in continuous integration
system.

failed tests

dynamic analysis

static code references

build dependencies

all tests

approximation

Fig. 2. Schematic relationship between sets of tests selected by different
methods for a hypothetical change, as well as all and only failed tests.
Proportions are not preserved. Note that approximate test selection is not
conservative, in a sense that it has missed a portion of failing tests, which
definitely were impacted by the change. Similarly, strategy based on dynamic
analysis has missed a portion of failures, as it has selected a subset of
tests based on information collected on prior version of the code. Coarse-
grained build dependencies, specified at the granularity of targets, rather
than individual files, typically cause test selection based on analysis of code
references more accurate than one based on build dependency graph.

B. Measuring Quality of Test Selection

At diff- and land-time stages of testing, the continuous
integration system does not need to exercise all test targets
transitively depending on code modified in a diff. While
the fact that specific tests are passing may constitute useful
feedback to developers, it suffices if only targets that would
fail are run on a particular code change. This is due to the code
change being ineligible for landing and requiring developer
action if and only if it breaks any test. For the same reason,
had we known ahead of time that none of the tests would
report a failure, we would not need to run any of them. Since
almost 99.9% of test targets selected by build-dependency-
based selection strategy pass, selecting fewer passing tests
could greatly reduce the resources consumed by testing.

We can formalize the above considerations by defining three
metrics which quantify quality of a particular test selection
strategy. Let us introduce notation we will use throughout the
rest of this paper. For a test selection strategy s and a code
change d, let:
• AllTests(d) be the set of test targets present in the version

of the repository associated with d,
• DependentTests(d) ⊆ AllTests(d) be the set of test targets

transitively dependent upon any file modified in d ac-
cording to build metadata,

• SelectedTests(s, d) ⊆ AllTests(d) be the set of test targets
selected by s on d,

• FailedTests(d) ⊆ DependentTests(d) be the set of test targets
that would report failure on d had all tests been exercised,

Definition 3.1 (Test recall):
Let s be a test selection strategy and D a set of code

changes, such that for Fd = FailedTests(d), ∃d∈DFd 6= ∅.

TestRecall(s,D) =

∑
d∈D | SelectedTests(s, d) ∩ Fd|∑

d∈D |Fd|

Intuitively, test recall equals empirical probability of a par-
ticular test selection strategy “catching” an individual failure.

Definition 3.2 (Change recall):
Let s be a test selection strategy and D a set of code

changes, such that for Fd = FailedTests(d), ∃d∈DFd 6= ∅.

ChangeRecall(s,D) =
|{d ∈ D | SelectedTests(s, d) ∩ Fd 6= ∅}|

|{d ∈ D | Fd 6= ∅}|
Intuitively, change recall equals empirical probability of a

particular test selection strategy “catching” at least one failure
on a faulty code change.

Definition 3.3 (Selection rate):
Let s be a test selection strategy and D a set of code

changes.

SelectionRate(s,D) =

∑
d∈D | SelectedTests(s, d)|∑
d∈D |DependentTests(d)|

Note that selection rate measures the fraction of test tar-
gets selected by a particular strategy relative to the build-
dependency-based one. Since the latter is easily computable
and identifies all (but not only) the impacted test targets for

each code change, it constitutes a good baseline to compare
other methods against.

Whenever a particular set of changes D follows from the
context, we omit it and write TestRecall(s), ChangeRecall(s),
SelectionRate(s) respectively.

IV. TEST SELECTION MODEL

In this section, we present our main contribution: a statistical
model that selects a subset of tests to exercise on a particular
code change. The model, rather than being defined manually, is
derived using basic machine learning techniques from a large
dataset that records the outcomes of running all potentially
impacted tests on a sample of code changes submitted to the
continuous integration system.

Ideally, we would like to learn a model that selects all-
and-only-those tests impacted by a particular code change. As
discussed in Section III we cannot observe exactly which tests
were impacted by the change even if we exercise all of them.
We can, however, tell which tests have failed on the change.
Since all failed tests must have been impacted, we can instead
learn to predict whether a particular test would have failed and
select tests that have high likelihood of failing according our
prediction.

Having access to large dataset containing outcomes of
tests run on historical changes submitted to the continuous
integration system, we can train a binary classifier, which
recognizes pairs of code changes and tests that reported failure
on them. While doing so, we must ensure that the classifier
generalizes to previously unseen changes, as it is extremely
unlikely for the same historical code change based on the same
version of the repository to ever be created again. Therefore,
we make the classifier operate on a set of features in place of
an actual code change and an actual test. The trained classifier
is a function that takes as inputs features of a given change
and a test, and outputs a likelihood of the actual test failing
on the change if it was run.

probability of failure

code change

test target

file extensions

distance in
dependency

graph

project name

historical
failure rates

number of
affected files

feature
extraction

predictionfeatures

Fig. 3. A schematic explanation of feature extraction and prediction
process. Individual features used by the test selection model are covered in
Section IV-A.

We are using the learned test selection to make data-guided
trade-off between the cost and quality of test signal at diff-
and land-time stages of testing in the continuous integration
system. For this reason, we must be able to predict behavior of

the test selection model on changes submitted in the future and
adjust it, in order to achieve desired correctness guarantees.

A. Feature Engineering

Model inputs, a change d and a test target t provide a natural
way to think about different categories of features: change- and
target-dependent ones, as well as cross features between them.

Change level features consist of:
• Change history for files is useful to identify active areas

of development which are more prone to breakages. We
thus use features indicating number of changes made to
modified files in the last 3, 14, and 56 days.

• File cardinality, or number of files touched in a change.
Large changes are harder to review and we assume that
probability of a test failure is lower for small changes.

• Target cardinality, i.e. number of test targets triggered by
a change. If certain files are used in many projects then a
small change in them might trigger unexpected behavior.

• Our projects use multiple programming languages, which
have different breakage patterns. We use a fixed-size bit
vector to identify extensions of files modified in a change.

• Number of distinct authors for files in a change might
indicate common code that is used in multiple project
and requires extra attention.

Target level features consist of:
• Historical failure rates of a target are a good baseline for

the probability of failure. We include a vector of failure
rates in the last 7, 14, 28 and 56 days as a feature.

• Project name is useful to identify an area the target covers
and categorize breakage patterns based on a project.

• Number of tests in a target can be used as a proxy of the
code area covered by it.

Cross features are:
• Minimal distance between one of the files touched in a

change and the prediction target. The feature approxi-
mates how close are changes to a given target and the
significance of the impact on it.

• Number of common tokens shared by paths of modified
files and test defines lexical distance to proxy human
perceived relevance.

B. Model Architecture

Our learned test selection strategy is based on gradient
boosted decision trees classifier [6]. This learning algorithm
has a number of properties desirable for our use-case: it does
not require normalizing feature values, takes little time to train
on available hardware, works out-of-the-box for datasets where
numbers of positive and negative examples differ by a few
orders of magnitude, supports ordinal and categorical features.

The classifier is learned on test outcomes recorded for
changes submitted over past three months. Each entry in
such training dataset represents a change d and a test target
t ∈ DependentTests(d), and is labeled as positive if and only
if t ∈ FailedTests(d). The classifier provided with features
extracted from a particular code change d and test target t

returns a score Score(d, t) ∈ [0, 1], which can be interpreted as
estimated likelihood of t ∈ FailedTests(d).

The proposed strategy s∗ constructs a subset of selected
targets for a particular change d based on scores returned by
the classifier for all t ∈ DependentTests(d). It is parameterized
with a score threshold above which the target shall be selected,
ScoreCutoff(s∗) ∈ [0, 1], and a number of top-scoring targets to
select for each change, CountCutoff(s∗) ∈ N≥0.
• LikelyFailing(s∗, d) contains all t ∈ DependentTests(d) for

which Score(d, t) ≥ ScoreCutoff(s∗).
• HighlyRanked(s∗, d) contains up to CountCutoff(s∗) of t ∈

DependentTests(d) with highest ScoreCutoff(s∗).
The final strategy s∗ is defined as a union of the two
approaches above SelectedTests(s∗, d) = LikelyFailing(s∗, d) ∪
HighlyRanked(s∗, d).

C. Model Calibration

Behavior of trained classifier depends on training dataset
and chosen learning algorithm. Feature engineering, collecting
higher quality and quantity of data, tunning hyper-parameters
of the learning algorithm all contribute to the classifier return-
ing more accurate scores. The more accurate the scores, the
better is the trade-off between correctness and cost savings
brought by predictive test selection. However, actual perfor-
mance of proposed strategy s∗ is determined by values of
ScoreCutoff(s∗) and CountCutoff(s∗) chosen during calibration
based on the desired performance.

We use strategy s∗ trained on past code changes to select
tests for changes created in the future. Therefore, when cal-
ibrating s∗ and evaluating its performance we must use test
results not included in the training dataset. We split collected
data, such that test outcomes recorded for changes submitted
during the most recent week fall into the testing dataset and
the remainder forms the training dataset. Described approach
ensures the evaluation procedure closely replicates how the
model is going to be used in practice, which makes estimated
model performance match closely the one observed in produc-
tion.

Accurately measuring test and change recall for a set
of all code changes, D, recently submitted to continuous
integration system, and a particular test selection strategy
s requires knowing outcomes of all test targets belonging
to DependentTests(d) for each d ∈ D in order to determine
FailedTests(d). Note that had we only exercised SelectedTests(d)
we would not be eable to determine whether we had missed
any test targets belonging to FailedTests(d)\SelectedTests(d). Thus,
the only way to calculate test and change recall of s is to
exercise all test targets in DependentTests(d) for each change
d ∈ D. The need to repeatedly evaluate performance of the
test selection model renders this approach impractical. Also,
running all possibly impacted tests on each change defeats
the purpose of our work, which is to significantly reduce the
infrastructure cost of continuous integration. In practice, we
have found it is sufficient to estimate the performance of a
test selection strategy based on a sample of test results. We
sample independently a subset D′ ⊂ D such that |D′| � |D|

and schedule for each d ∈ D′ a learning test run. During such
run we exercise all test targets in DependentTests(d) and record
their results. We then compute test and change recalls, as well
as selection rate of s on changes in D′ and assume they are
a good approximation of performance of s on D.

Learning test runs do not produce any output visible to
developers interacting with the continuous integration system.
This gives us an opportunity to defer them to off-peak hours,
when load on CI and other developer tools drops significantly.
In this way are able to sample close to a quarter of submitted
code changes and collect evaluation data without increasing
peak resource usage of the system, utilizing only off-peak,
spare capacity.

D. Deployment Process

Since we evaluate the model’s performance on only one
week worth of test outcomes, we cannot guarantee it remains
unchanged for a much longer period of time. For this reason,
we have automated the following process to occur on a weekly
basis:
• Train new model as described in Section IV-C, including

freshly collected data.
• Assert that the trained model’s performance meets prede-

fined criteria. We may require SelectionRate(s∗) < 0.3 for
TestRecall(s∗) = 0.9 and CountCutoff(s∗) = 0, for example.

• In the case that the assertion is violated, the responsible
team member is notified to investigate regression.

• The model meeting the criteria automatically replaces one
operating in production.

The ability to retrain a test selection strategy is a major ad-
vantage of a learning-based approach over a manually devised
heuristic, as the former can dynamically adapt to evolving
code base and continuously guarantee a predefined level of
correctness. Automating the process of training, verifying and
deploying the model has reduced the maintenance cost of the
system and the likelihood that a human will cause a model to
underperform and affect developer productivity.

V. TEST FLAKINESS

While it’s convenient to consider every reported test failure
to indicate presence of a fault, outcomes of real-world tests are
frequently affected by flakiness. In the context of change-based
testing, we consider a failure that is not caused by the change
as one caused by test flakiness. Typical sources of flakiness
include [7], [8]: usage of random number generators, assump-
tions about timeliness of asynchronous operations, races in
the test code, reliance on production services, and tests poi-
soning the environment. Although Facebook’s developers are
incentivized and provided with resources to write reliable tests
and fix flaky ones, we do not believe eradicating test flakiness
entirely is economically viable. Thus it is a responsibility of
the continuous integration system to operate well in presence
of flakiness [5].

For the purpose of evaluating test selection strategies, we
identify failures unrelated to the code change by retrying

failed tests

all tests

flaked tests

strategy A

strategy B

Fig. 4. Schematic relationship between sets of tests selected by two strategies
for a hypothetical change, as well as tests that failed all and some-but-not-
all attempts. Proportions are not preserved. Both strategies capture all failed
tests, however the portions of tests that failed flakily differ. Strategy A having
selected more tests overall than B also captured more tests failing for reasons
unrelated to the change.

failed tests

all tests

strategy B

flaked tests

strategy A

Fig. 5. Schematic relationship between sets of tests selected by two strategies
for a hypothetical change, as well as tests that failed all and some-but-not-all
attempts. Both strategies captured half of FailedTests(d)∪ FlakedTests(d) on
a change d. Strategy A captured exactly FailedTests(d), which is desired
behavior, while strategy B captured exactly FlakedTests(d) and none of
FailedTests(d), which is not acceptable. Note that if we were not able to
distinguish FailedTests(d) from FlakedTests(d), we would measure equal
performances of both strategies, and thus were not able to deterministically
avoid choosing the bad one, that is strategy B.

corresponding test a number of times. During test runs pro-
ducing training and evaluation data, every failed test target is
exercised up to ten times or until it reports a successful result,
whichever comes first. Results of all attempts of each test
target t ∈ DependentTests(d) are then aggregated for a particular
code change d, so that:
• t ∈ FailedTests(d) if and only if all attempts failed,
• t ∈ FlakedTests(d) if and only if there was both failed and

successful attempt.
The described de-flaking procedure assumes that if there

exists a possible execution of a test on a particular version of
the code that does not trigger a failure, then any failure the test
may report on that version of the code is flaky. This technique
is accepted across the industry [5].

Let D′ be the set of changes sampled for learning test runs.
We have observed that

∑
d∈D′ | FlakedTests(d)| is about four

times larger than
∑

d∈D′ | FailedTests(d)|. Note that the number
of test targets failing flakily depends on the employed test
selection strategy. For each change d, FailedTests(d) can only
contain impacted tests and is empty for all non-faulty d, At
the same time, FlakedTests(d) may be non-empty irrespective
of whether d is faulty or not. This is due to flaky tests
having non-zero chance of reporting failure even if they are
not impacted by a change. We thus can expect the fraction
of failures identified as flaky to increase significantly if all
tests are run on each code change, and shrink accordingly if a
more sophisticated test selection strategy is employed. Fig. 4
explains above reasoning on an example.

It is worth noting that the retry-based de-flaking mechanism
may not address all forms of flakiness. Hence our estimate on
the number of test failures that are not related to the underlying
code change should be treated as lower-bound.

Test flakiness impacts predictive test selection, as it affects
recorded test outcomes used to train and evaluate test selection
models. In the end of the day, the correctness of test selection
strategy depends on its ability to capture test failures caused by
the change, not flaky ones. If we were not able to distinguish
between them, we would risk training the model to accurately
capture tests that failed flakily, rather than those that failed
detecting a fault. It is best seen on Fig. 5.

VI. RESULTS

While performance of the test selection model operating in
production is important for developer productivity and contin-
uous integration resources, true insight comes from studying
how different features affect the trade-off between the model’s
ability to catch test failures and the number of tests needed to
be exercised. In the following sections we use popular model
introspection techniques to determine the impact of utilized
features. Additionally, we cover the impact of test flakiness
and show that the learned test selection strategy performs well
in real-world conditions, where test outcomes are not fully
deterministic.

A. Empirical Performance

Fig. 6 and Fig. 7 depict measured performance of predictive
test selection strategy s∗ for varying values of parameters.
We measure dependency of TestRecall(s∗) on ScoreCutoff(s∗)
and ChangeRecall(s∗) on CountCutoff(s∗) separately. This greatly
simplifies calibrating the model, avoiding the need to grid-
search over possible pairs of both parameters. Given targeted
correctness of s∗, we determine ScoreCutoff(s∗) correspond-
ing to desired TestRecall(s∗) based on Fig. 6 and indepen-
dently CountCutoff(s∗) corresponding to desired ChangeRecall(s∗)
based on Fig. 7. While, in principle, either recall depends
on the choice of both ScoreCutoff(s∗) and CountCutoff(s∗), we
have found that in order to achieve high TestRecall(s∗) while
ScoreCutoff(s∗) = 0 one would have to set CountCutoff(s∗) to
large value, which would cause all possibly affected test targets
to run on large portion of changes. Likewise, in order to
achieve high ChangeRecall(s∗) while CountCutoff(s∗) = 0 one
would have to set ScoreCutoff(s∗) such that tests with very low

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

selection rate

test recall

Fig. 6. TestRecall(s∗), SelectionRate(s∗) as functions of ScoreCutoff(s∗),
whose values vary along the curve. We fix CountCutoff(s∗) = 0. All rela-
tionships can be inverted, so that it’s possible to determine ScoreCutoff(s∗)
corresponding to a particular value of TestRecall(s∗) or SelectionRate(s∗).

0.7

0.75

0.8

0.85

0.9

0.95

1

0 20 40 60 80 100 120 140 160 180 200 220 240

count cutoff

change recall

Fig. 7. ChangeRecall(s∗) as a function of CountCutoff(s∗), for fixed
ScoreCutoff(s∗) = 0. Note the range on the vertical axis extends from 0.7 to
1. This is due to the model being able to capture at least one failure on 70%
of faulty changes by selecting only two highest-scoring test targets.

probability of failing are exercised, which too increases the
number of selected test targets.

At Facebook, we calibrate the test selection model s∗ to
guarantee TestRecall(s∗) > 0.95 and ChangeRecall(s∗) > 0.999
at land-time stage of testing, as marked on Fig. 6 and Fig. 7.
As a consequence, we fail to report only < 5% of individual
test failures and < 0.1% of faulty changes. Based on our
experience operating such test selection strategy in production
for several months, the described correctness guarantees are
sufficient. Note that any faulty change that makes it into
the master branch will be detected in the stabilization stage.
Besides, significantly more faults are detected in stabilization
stage due to reasons discussed in Section II-B3, than due to
the test selection missing failing tests.

As seen in Fig. 6, had the model only been selecting
LikelyFailing(s∗, d) test targets for each change d, we would
observe SelectionRate(s∗) < 0.25. Fig. 7 shows that had the
model only been selecting HighlyRanked(s∗, d) test targets for
each change d, it would choose no more than CountCutoff(s∗) =
230 targets per change. Note that the average number of
targets transitively depending on files modified in a change
d is |DependentTests(d)| � 1000, that is multiple times larger

than CountCutoff(s∗). Overall, combining both approaches,
that is selecting SelectedTests(s∗, d) = LikelyFailing(s∗, d) ∪
HighlyRanked(s∗, d) for each change d, yields a model that
achieves TestRecall(s∗) > 0.95, ChangeRecall(s∗) > 0.999 and
SelectionRate(s∗) < 0.33.

The impact of the described test selection on the scalability
of the continuous integration system can be best measured
by the fact that deploying it has reduced total number of test
executions by a factor of three and total infrastructure cost
of testing code changes, measured in number of machines,
by a factor of two, relative to test selection based on build
dependencies.

B. Feature Selection

The model with all the features defined in Section IV-A
will not necessarily perform better than a model with a subset
of them and we therefore need to apply feature selection.
In order to evaluate feature importance we used a wrapper
method [9]: for every feature above we evaluated the model
on a full feature set and a full set without the evaluated
feature. To measure the impact of a feature on a model we
use ratios of SelectionRate(s∗) given TestRecall(s∗) = 0.9 for the
classification metric and CountCutoff(s∗) ratios for the ranking
metric. Table I summarizes performance improvements and
regressions for the features defined in Section IV-A, the higher
value is associated with better performance. Values below 1
indicate a regression that was introduced by the feature.

TABLE I
RELATIVE FEATURE PERFORMANCE

Feature Classification Ranking

File extensions 1.04 1.62
Change history for files 1.03 1.59

File cardinality 0.95 0.98
Target cardinality 1.1 0.2

Historical failure rates 1.37 1.62
Project name 1.15 0.97

Number of tests 1.07 2.89
Minimal distance 1.23 0.96
Common tokens 0.33 0.68
Distinct authors 0.3 0.72

The best performing model uses file extensions, change his-
tory, failure rates, project name, number of tests and minimal
distance. The remaining features introduce regressions and we
excluded them from the models used in Section IV-D. Despite
the regression on the ranking metric, we include the project
name feature. The feature improves the classification metric,
which dominates selection rate of the strategy.

C. Impact of Test Flakiness

We have shown in Section V a theoretical argument that
an ability to identify failures unrelated to a code change is
important when evaluating empirical performance of a test
selection strategy. An interesting question is whether flakiness
impacts learned test selection models in practice. To answer

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

selection rate

test recall test recall with flakes

Fig. 8. TestRecall(sA), TestRecallWithFlakes(sA) as functions of
SelectionRate(sA) for CountCutoff(sA) = 0 in Experiment A. The model is
better at “catching” failed tests than those that would flake, as indicated by
the fact TestRecall(sA) ≥ TestRecallWithFlakes(sA).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

selection rate

test recall test recall with flakes

Fig. 9. TestRecall(sB), TestRecallWithFlakes(sB) as functions of
SelectionRate(sB) for CountCutoff(sB) = 0 in Experiment B. The model
trained and calibrated on non-de-flaked data using TestRecallWithFlakes(sA)
would achieve worse-than-expected TestRecall(sA), thus failing to report
larger-than-expected number of test failures, as indicated by the fact
TestRecall(sB) < TestRecallWithFlakes(sB).

it, we have conducted additional experiments that measure
performance of a model trained on data that did not undergo
the described de-flaking procedure.

In order to quantify to what extent a test selection strategy
captures failures unrelated to the underlying change, we define
a measure similar to TestRecall.

Definition 6.1 (Test recall with flakes):
Let s be a test selection strategy and D a set of code

changes, such that for Fd = FailedTests(d) ∪ FlakedTests(d),
∃d∈DFd 6= ∅.

TestRecallWithFlakes(s,D) =

∑
d∈D | SelectedTests(s, d) ∩ Fd|∑

d∈D |Fd|

Intuitively, the new metric equals empirical probability of
a particular test selection strategy “catching” a failed test
outcome irrespective of whether it was related to the change
or not. In the following experiments, we compare values of
TestRecall(s) and TestRecallWithFlakes(s) to determine whether the
model is learning to identify tests that would detect a fault or
those that would flake.

In Experiment A, we have trained a test selection model sA
as described in Section IV. Using the evaluation dataset, we
have plotted TestRecall(sA), TestRecallWithFlakes(sA) as functions
of SelectionRate(sA) for CountCutoff(sA) = 0 as seen in Fig. 8.

In Experiment B, we have trained the test selection
model sB as described in Section IV, with one modifi-
cation. This time, when training the binary classifier de-
scribed in Section IV-B, we considered examples (d, t) for
t ∈ DependentTests(d) and d ∈ D as positives if and only
if t ∈ FailedTests(d) ∪ FlakedTests(d). This is equivalent to
training the model on test outcomes recorded by hypothetical
learning test runs that did not perform aggressive retries
described in Section V. Using the evaluation dataset, we have
plotted TestRecall(sB), TestRecallWithFlakes(sB) as functions of
SelectionRate(sB) for CountCutoff(sB) = 0 as seen in Fig. 9.

A number of observations based on the presented results of
the experiments lead to interesting conclusions.

1) We have TestRecall(sB) < TestRecallWithFlakes(sB) for all
SelectionRate(sB) ∈ [0, 1]. Had we not performed the de-
flaking procedure described in Section V, we would
train and evaluate test selection model on a dataset that
conflates failed and flaked tests. As a result, we would
perceive the model to capture TestRecallWithFlakes(sB)
fraction of failures at chosen selection rate. In reality
the model would capture only TestRecall(sB) of failures
at this selection rate. Note that at SelectionRate(sB) =
0.15 we have TestRecallWithFlakes(sB) ≈ 0.9 but
TestRecall(sB) ≈ 0.7. Had we deployed such a model
in production, we would fail to report three times as
many test failures as expected from the evaluation.

2) For all SelectionRate(sA) = SelectionRate(sB) ∈ [0, 1] we
have TestRecall(sA) > TestRecall(sB). This confirms that
training the model on data that did not go through de-
flaking procedure yields a model with strictly worse
performance than had training data been de-flaked.

3) TestRecall(sA) ≥ TestRecallWithFlakes(sA) for all choices of
SelectionRate(sA) ∈ [0, 1]. This verifies that the model
trained on de-flaked data is not worse at “catching”
failed tests than those that flaked, a desired behavior.

We can therefore conclude that it is important to reduce
the impact of flakiness on data used both for training and
evaluation, to prevent the model from learning to capture
mostly flaky failures as well as to be able to accurately
measure its performance.

VII. RELATED WORK

A number of test selection techniques based on static analy-
sis of source code at varying granularity have been proposed to
date. Ryder and Tip [10] present a test selection strategy based
on method-level analysis of call graphs. Legunsen et al. [2],
[11] conducted an extensive study of static techniques, noting
that ones based on analyzing class-level test dependencies
match performance of state-of-art dynamic methods, such as
Ekstazi [3]. Zhang [12] described a test selection strategy that
combines method- and file-level analysis of test dependency
and change information. The mentioned techniques are not

easily extensible to multilingual code bases, where control
flow of a program can cross language boundaries. Also,
analyzing code dependencies at fine granularity poses scaling
challenges in multi-million line code bases.

On the other hand, we are aware of multiple test selection
strategies based on dynamic analysis. Rothermel et al. [13]
first describe a dynamic test selection technique operating at a
granularity of basic blocks in control flow graph. Gligoric et
al. [3] proposed a method operating at the granularity of files.
Celik et al. [14] present a technique capable of tracing test ex-
ecution across language boundaries. The mentioned dynamic
techniques require recording execution traces at sufficiently
fine granularity, which is not feasible at Facebook’s scale.

Memon et al. [1] describe a technique most closely related
to our work, coming from similar industrial context. The
technique has been applied in large, monolithic code base and
combines static analysis of build metadata with the empirical
observation that changed units of code and failing tests have
small distance in build dependency graph. In our predictive test
selection strategy, we use the distance as one of the features
and find that, although important, it is not sufficient to conduct
accurate test selection on its own.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

Delivering test signal to engineers early in the development
workflow is crucial to developer productivity. Continuous
integration systems must, however, balance the quality of
signal with its latency and cost, which can be achieved through
change-based test selection. Designing and implementing scal-
able test selection strategy is a non-trivial problem, especially
in large monolithic code bases. We have demonstrated that
such a strategy can in fact be learned automatically from a
sufficiently large dataset containing outcomes of tests exer-
cised on various code changes. By combining many sources
of information, each being a weak indicator of whether a
particular test needs to be run on a specific version of code
on its own, we were able to construct a test selection strategy
delivering good and predictable performance. Applying ma-
chine learning techniques allowed us to maintain the strategy
with little to no manual tuning that is typically necessary with
various heuristics. We have also shown that non-determinism
of real-world tests does not preclude applicability of predictive
test selection.

Many important sources of information, such as history of
code changes, could be incorporated into the test selection
model in the form of additional features. We have shown that
the model effectively combines multiple seemingly unrelated
pieces of information in order to assess the probability of a
particular test failing. We believe that existing change-impact
analysis techniques can yield many more powerfull features
we did not have a chance to explore in this work.

We are also interested in experimenting with more sophis-
ticated machine learning algorithms and model architectures.
The presented approach considers each test potentially im-
pacted by a change separately, thus it cannot capture the fact
that some subsets of tests may have overlapping coverage

and thus correlated results. We believe it is possible to make
the predictive test selection strategy understand correlations
between tests outcomes and avoid selecting multiple sets that
are likely going to provide redundant signal [15].

ACKNOWLEDGMENTS

We would like to thank the following engineers and ac-
knowledge their contributions to the project: Billy Cromb,
Jakub Grzmiel, Glenn Hope, Hamed Neshat, Andrew Pierce,
Yuguang Tong, Eric Williamson, and Austin Young.

REFERENCES

[1] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski,
and J. Micco, “Taming Google-scale continuous testing,” in Proceedings
of the 39th International Conference on Software Engineering: Software
Engineering in Practice Track, ser. ICSE-SEIP ’17. Piscataway, NJ,
USA: IEEE Press, 2017, pp. 233–242.

[2] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in Proceedings of the 2016 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, ser. FSE
2016. New York, NY, USA: ACM, 2016, pp. 583–594.

[3] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test
selection with dynamic file dependencies,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis, ser. ISSTA
2015. New York, NY, USA: ACM, 2015, pp. 211–222.

[4] R. Potvin and J. Levenberg, “Why Google stores billions of lines of
code in a single repository,” Commun. ACM, vol. 59, no. 7, pp. 78–87,
Jun. 2016.

[5] J. Micco, “The state of continuous integration testing at Google,” 2017.
[Online]. Available: https://ai.google/research/pubs/pub45880

[6] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proceedings of the 22Nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY,
USA: ACM, 2016, pp. 785–794.

[7] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of
flaky tests,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 643–653.

[8] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, pp. 433–444.

[9] I. Guyon and A. Elisseeff, “An introduction to variable and feature
selection,” J. Mach. Learn. Res., vol. 3, pp. 1157–1182, Mar. 2003.

[10] B. G. Ryder and F. Tip, “Change impact analysis for object-oriented pro-
grams,” in Proceedings of the 2001 ACM SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering, ser. PASTE
’01. New York, NY, USA: ACM, 2001, pp. 46–53.

[11] O. Legunsen, A. Shi, and D. Marinov, “Starts: Static regression test
selection,” in Proceedings of the 32Nd IEEE/ACM International Confer-
ence on Automated Software Engineering, ser. ASE 2017. Piscataway,
NJ, USA: IEEE Press, 2017, pp. 949–954.

[12] L. Zhang, “Hybrid regression test selection,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18. New
York, NY, USA: ACM, 2018, pp. 199–209.

[13] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Trans. Softw. Eng. Methodol., vol. 6, no. 2,
pp. 173–210, Apr. 1997.

[14] A. Celik, M. Vasic, A. Milicevic, and M. Gligoric, “Regression test
selection across JVM boundaries,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2017.
New York, NY, USA: ACM, 2017, pp. 809–820.

[15] A. Najafi, W. Shang, and P. C. Rigby, “Improving Test Effectiveness
Using Test Executions History: An Industrial Experience Report,” in
Proceedings of the 41st International Conference on Software Engi-
neering 2019 Software Engineering in Practice track (SEIP), ser. ICSE
SEIP ’19, 2019.

