
BENCHMARKING LF-MMI, CTC AND RNN-T CRITERIA FOR STREAMING ASR

Xiaohui Zhang?, Frank Zhang?, Chunxi Liu?, Kjell Schubert, Julian Chan, Pradyot Prakash,
Jun Liu, Ching-Feng Yeh, Fuchun Peng, Yatharth Saraf, Geoffrey Zweig

Facebook AI, USA

ABSTRACT

In this work, to measure the accuracy and efficiency for a latency-
controlled streaming automatic speech recognition (ASR) application,
we perform comprehensive evaluations on three popular training
criteria: LF-MMI, CTC and RNN-T. In transcribing social media
videos of 7 languages with training data 3K - 14K hours, we conduct
large-scale controlled experimentation across each criterion using
identical datasets and encoder model architecture. We find that RNN-
T has consistent wins in ASR accuracy, while CTC models excel
at inference efficiency. Moreover, we selectively examine various
modeling strategies for different training criteria, including modeling
units, encoder architectures, pre-training, etc. Given such large-scale
real-world streaming ASR application, to our best knowledge, we
present the first comprehensive benchmark on these three widely used
training criteria across a great many languages.

Index Terms— LF-MMI, CTC, RNN-T, latency-controlled ASR

1. INTRODUCTION

Thus far there has been a growing interest in speech community
to investigate ASR modeling techniques that allow for flat-start
(alignment-free) training, e.g., connectionist temporal classifica-
tion (CTC) [1], recurrent neural network transducer (RNN-T) [2],
and attention-based sequence-to-sequence (seq2seq) models [3, 4].
Specifically, CTC criterion learns an encoder-only model, which
can be further composed with an n-gram language model (LM) in
a standard WFST framework. RNN-T or attention-based seq2seq
model jointly learns an encoder with a neural decoder model that can
be considered as a neural LM.

There have been extensive ASR benchmarks on the public dataset
like LibriSpeech [5]. Recently deep transformer based hybrid models
have achieved state-of-the-art results among cross-entropy (CE) [6]
and CTC based models [7] respectively. Improving accessibility to
social media videos remains an important task, which allows for
various applications like automatic video captioning, indexing and
retrieval. Transcribing the heterogeneous social media videos of
extensively diverse languages is still highly challenging, and prior
works [8, 9, 10, 11, 7, 12] have examined various ASR technologies
in both real-world high- and low-resource scenarios. In this work,
we particularly focus on streaming and long-form ASR solutions,
where each test utterance is up to 45 seconds long. While attention-
based seq2seq models have shown difficulty in generalizing well on
long utterances given the previous study [10], we thus do not include
attention-based seq2seq model in this study.

To understand the performance distinction of different model
types, it is essential to examine whether the model architecture or
the training criterion is accountable. This is typically a challenging

? Equal contribution.

task, since the model architectures for differing training criteria are
intrinsically different, which makes the training criteria not directly
comparable. However, we note that, for all these training criteria,
the majority of model parameters resides in the encoder part. In
order to understand the relative performance difference in a relatively
fair manner, we can fix the encoder model architecture for each
training criterion to exclude the respective encoder impact on ASR
performance. Therefore, in this work, we focus on comparing RNN-T
and CTC criteria against a strong hybrid LF-MMI [13] baseline, and
all cases use the same streamable encoder architecture. We evaluated
the modeling performance by word error rate (WER) and decoding
efficiency by real-time factor (RTF) of models trained by all three
training criteria on video ASR tasks of 7 languages with training
data ranging from 3K to 14K hours, with test sets of three noisy
levels for each language. To the best of our knowledge, there has not
been such comprehensive study thus far. For example, prior work
[14] provided comparisons among CTC, RNN-T, and attention-based
seq2seq models, while not including the standard hybrid ASR model.
Recent work in [10, 15] has compared RNN-T with attention-based
seq2seq models with the same encoder architecture; however, they
used different encoder architectures in comparison to hybrid and CTC
models. Besides, [16] has compared RNN-T with LF-MMI with the
same encoder architecture on English.

Additionally, as we understand that RNN-T relies on a neural
decoder - which can be seen as an implicit neural LM - in the first-
pass decoding, however, all model types are able to explicitly perform
additional online neural LM rescoring in the first-pass decoding (e.g.
shallow fusion [17]). So we further exclude any additional LM
rescoring effect in this study.

Besides the comprehensive benchmark of three training criteria,
we make further contributions by selectively specifying how we reach
the best modeling strategies for each criterion. We present studies
on: (i) the choice of modeling units, wordpiece v.s. chenone, and (ii)
encoder model architectures, latency-controlled bi-directitonal LSTM
(LC-BLSTM) v.s. time-depth separable (TDS) convolutions for CTC
models of three languages. We also present optimization efforts -
reducing memory consumption and model pre-training - for RNN-T
training, which lead to improvements in both modeling performance
and training efficiency.

2. MODEL TRAINING

For each language we evaluated on, all models were trained on the
same data segmented to up-to 10s, which was achieved by force align-
ing the whole audio against the reference using the same cross-entropy
(CE)-trained model. Segmenting training data could substantially
improve the training throughput, and slightly improve the accuracy
as shown in [6]. LF-MMI models were pre-trained with CE criterion
on 10s segments, and then fine-tuned with LF-MMI criterion on 1.5s

segments. CTC models were trained on 10s segments directly. The
encoder in RNN-T models were pre-trained with CE criterion [15]
and then the whole model was fine-tuned with RNN-T criterion, all
on 10s segments. The chunk size used during training is 1.28s for
CTC and RNN-T, and 1.5s for LF-MMI. The right context in training
is 210ms for LF-MMI and 240ms for CTC and RNN-T1.

Here we briefly review the three training criteria which are stud-
ied in this paper. ASR can be formulated as a sequence-to-sequence
problem. Each speech utterance is parameterized as an input acoustic
feature vector sequence x = {x1 . . . xT } = x1:T , where xt ∈ Rd

and T is the number of frames in x. We define a grapheme set or a
wordpiece inventory as Y , and the corresponding target sequence of
length U as y = {y1 . . . yU} = y1:U , where yu ∈ Y . Besides, we
define Ȳ as Y ∪ {∅}, where ∅ is the blank label, and Ȳ∗ as the set of
all sequences over output space Ȳ .

2.1. LF-MMI

The MMI objective can be formulated as:

FMMI = log
p(x|y)∑
ŷ p(x|ŷ)

≈ log
p(x|Gnum)

p(x|Gden)
(1)

where ŷ represents any possible hypothesis. In LF-MMI [13], a
composite HMM graph called “denominator graph” Gden is used to
approximate the denominator, which encodes all possible hypothesis,
and thereby we have

∑
ŷ p(x|ŷ) ≈ p(x|Gden). Efficient computa-

tion of the denominator without having to generate lattices is en-
abled by adopting an n-gram phone/character language model (LM)
when generating Gden, and doing full forward-backward computa-
tion on GPUs. Similarly, the numerator p(x|y) is approximated by
p(x|Gnum) where Gnum is another composite HMM graph called
“numerator graph”, encoding all possible sequences of HMM states
pertaining to the transcription y. It could be either an acyclic graph
encoding pre-computed alignments, giving regular LF-MMI (used in
this work), or a graph with self-loops determined solely by reference
transcripts, giving flat-start (alignment-free) LF-MMI.

2.2. CTC

As a sequence-level training criterion, for CTC, the log-likelihood
of a given target sequence y can then be found by summing the
probabilities of all allowed alignments. Specifically,

log p(y|x1:T) =
∑

a∈B−1(y)

t=T∏
t=1

p(at|xt) (2)

where B : Ȳ∗ → Y∗ is a mapping operation that removes all blank
labels and repeating symbols in a given sequence. The encoder is
trained to maximize the log-likelihood for each training example and
p can be computed efficiently using the forward-backward algorithm.

Note that the underlying assumption in Eq (2) is that probabilities
between timestamps are conditional independent. The Transducer
criterion introduced in the next section will lift this constraint.

1The difference in right context is due to it needs to be divisible by the
stride e.g. 3, 4 or 8. Empirically the slight different in right context did not
affect final WER and real time factor.

2.3. RNN-T

Excluding the conditional independence assumption made in CTC,
RNN-T models the posterior probability as:

P (y|x) =
∑

a∈B−1(y)

P (a|x) (3)

where B : Ȳ∗ → Y∗ is a mapping operation that removes all
blank labels in a given sequence. RNN-T model parameterizes the
alignment probability P (a|x) and computes it with an encoder net-
work (i.e. transcription network in [2]), a prediction network and a
joint network. The encoder performs a mapping operation, denoted
as f enc, which converts x into another sequence of representations
henc = {henc

1 . . . henc
T ′}:

henc = f enc(x) (4)

where T ′ is equal or shorter than T due to subsampled frame rate. A
prediction network f pred, based on RNN or its variants, takes both its
state vector and the previous non-blank output label yu−1 predicted
by the model, to produce the new representation hpred:

hpred
1:u = f pred(y0:(u−1)) (5)

where u is the output label index and y0 = ∅. Finally, the joint
network f join is a feed-forward network that combines the encoder
output henc

t and prediction network output hpred
u to compute logits

zt,u, which go through a softmax function and produce a posterior
distribution of the next output label over Ȳ:

zt,u = f join(henc
t , hpre

u) (6)

p(yu|x1:t, y1:(u−1)) = Softmax(zt,u) (7)

The encoder can be seen as an acoustic model, and the combination
of prediction and joint network as a decoder.

3. MODELING UNITS

For the LF-MMI criterion, we used tied context-dependent grapheme
states (i.e. chenones) [18] with a stride (sub-sampling factor) of 3.
For CTC criterion, we used wordpiece units with a stride of 8. For
RNN-T criterion, we used wordpiece units with a stride of 4. For each
training criterion, the choice of modeling units, and stride were tuned
separately on validation data to achieve the best balance between
WER and inference efficiency. In Section 6.3, we will specify our
analysis in the modeling unit options for CTC. Besides, the size of
the chenone set (i.e. decision tree size) or wordpiece vocabulary were
tuned to optimize WER on each language for each model, also on
validation data.

4. MODEL ARCHITECTURE

We keep the encoder architecture fixed when comparing performance
across different training criteria. In the main experiment, we used a
latency-controlled bi-directitonal LSTM (LC-BLSTM) encoder with
5 layers of 800 hidden units. Sub-sampling along the time dimension
by a factor of 3 is applied at the output of the first layer to achieve a
stride of 3 for LF-MMI models, and sub-sampling by a factor of 2 is
applied at the output of first, second or third layer to achieve a stride
of 4 or 8 respectively for RNN-T and CTC models. The encoder
alone has around 75M parameters. All the models presented here can
run in a streaming fashion, because of the limited right context.

5. MODEL INFERENCE

For LF-MMI and chenone-CTC models, we pre-built decoding graphs
H ◦ C ◦ L and G 2 and dynamically composed them during decod-
ing [19]. For wordpiece-CTC models, we use the same dynamic
decoding approach but pre-built H ◦ L rather than H ◦ C ◦ L [7]. For
RNN-T model, we use standard beam search decoding without any
external LM fusion as in [2], since we are evaluating the three train-
ing criteria under a “vanilla” single-pass inference setting without
any LM fusion/rescoring for all models. All acoustic models were
trained in PyTorch and applied post-training INT8 quantization to
enable efficient decoding. Decoding hyper-parameters, e.g. beam
sizes, were tuned on validation data for each model separately, to
achieve a balance between decoding efficiency and WER. To satisfy
latency constraints for live captioning use-case, we limit the chunk
size to 0.8s for English, Spanish, Hindi and Indic English, and 1.5s
for Thai, Vietnamese and Turkish across all models.

6. EXPERIMENTS

6.1. Data

We evaluate all models on our in-house Video ASR datasets, which
are sampled from public social media videos and completely de-
identified before transcription; both transcribers and researchers do
not have access to any user-identifiable information (UII). These
videos contain a diverse range of speakers, accents, topics, and acous-
tic conditions making automatic recognition very challenging. We
included a wide variety of languages in this study in order to get a
broad understanding of model performance, including: (i) fusional
languages Spanish (ES), Hindi (HI) and Indic English (EN-IN), (ii)
analytic languages US English (EN-US), Vietnamese (VN) and Thai
(TH), and (iii) an agglutinative language Turkish (TR). The training
set sizes are shown in Table 1. Note that we combined Hindi and
Indic English training data and trained a single model for each cri-
terion, although we evaluate the model on Hindi and Indic English
test sets separately. The reason is that due to their similarity in pro-
nunciation and frequent code-switching, it can be hard for a language
identification (LID) model to differentiate acoustic inputs from these
languages. In addition, some special text processing was applied to
Thai: as reference transcripts were un-segmented (no word-level tok-
enization), we needed to tokenize the transcripts at wordpiece level
by training a wordpiece model first, and then construct a lexicon map-
ping wordpieces to graphemes for data segmentation, model training
and decoding. Regarding data augmentation, speed perturbation [20]
and SpecAugment [21] (LD policy for RNN-T and SM policy for
CTC and LF-MMI) are used.

The test sets for each language are composed of clean, noisy
and extreme categories, with extreme being the most acousti-
cally challenging. The validation set for each language was composed
of data from the noisy category. The duration of validation and test
sets for each category in each language is around 10 to 40 hours. All
validation and test data were segmented up to 45s.

Table 1. Training data sizes (in hours).
EN-US ES HI & EN-IN TH VN TR

14K 7.2K 6.7K 5.1K 4.2K 3.1K

2H transduces HMM states to context-dependent graphemes; C trans-
duces context-dependent graphemes to graphemes; L transduces graphemes
to words; G represents the language model.

6.2. Results

In this section, we first present decoding results on all 7 languages
in Table 2, with the best overall modeling strategies (modeling unit,
stride, and pre-training strategy) chosen for each training criterion.
For each language, all models were trained on the same data with
the same encoder model architecture (5×800 LC-BLSTM). Later,
we will selectively analyze the impact of modeling strategies and
encoder model architecture for CTC/RNN-T. We use word error rate
(WER), or character error rate (CER) for Thai, to measure modeling
performance on clean, noisy and extreme test splits for each
language and model. We use real-time factor (RTF) to measure
decoding efficiency.

6.3. WP-CTC v.s. chenone-CTC

It is well-studied that LF-MMI works well with chenone units and
RNN-T works well with wordpiece units. For CTC training, we have
observed that full sequence deep transformer encoder trained with
chenone units outperforms wordpieces consistently. However, the
trend is different for our streaming application in this work. In Table
33, we show results of WP-CTC (with a stride of 8) and chenone-
CTC (with a stride of 4) on English, Vietnamese and Turkish, which
are the best choices of stride for WP/chenone-CTC respectively, in
terms of balancing WER and RTF. We find that for LC-BLSTM
models, WP-CTC training consistently outperforms chenone-CTC in
WER4, and thus we decided to adopt WP-CTC when comparing it
with other training criteria. One hypothesis is that the LC-BLSTM
encoder being a streaming model is less expressive than a full-context
deep transformer encoder. Therefore, the LC-BLSTM encoder is
not able to fully exploit the richer target representation provided by
chenone alignments during training, in a sense that the optimal size
of a chenone is usually much larger than a wordpiece set.

6.4. Choices of the encoder model architecture

We also explored an encoder architecture based on time-depth separa-
ble (TDS) convolutions [22] as an alternative encoder choice under
the CTC setup. Since from recent research [23] TDS encoder has
shown its advantage of speed during inference, we want to explore if
this architecture generalizes well on more datasets. The TDS architec-
ture in this study is designed to use as many parameters as possible to
improve WER given that the RTF is still lower than LC-BLSTM: the
TDS encoder consists of 14 TDS blocks, 3 sub-sampling layers, each
with a stride of 2, for a total sub-sampling factor of 8. The total right
context is 570 ms. Total parameters is 122M and is larger than the
LC-BLSTM model (75M parameters). The realized RTF of TDS on
English (0.26 [23]) is lower than LC-BLSTM as in Table 2. Results
on English, Vietnamese and Turkish languages are presented in Table
4. We can see that TDS WER slightly outperforms LC-BLSTM in
English and lags behind in the other two languages. One possible
explanation is that the TDS architecture is more data hungry, e.g. for
English, there are more than 3 times the training data as Turkish and
Vietnamese. There is also evidence that on LibriSpeech which has
1000hrs of training data, LC-BLSTM is outperforming TDS [22, 18].
Therefore, for the overall 7 languages comparisons, we used the
LC-BLSTM encoder when comparing different training criteria.

3WERs of CTC in Table 3 and Table 4 are different from Table 2 due to
some differences in evaluation datasets, however the same data were used
consistently within each table.

4and also in RTF [7], though we did not measure RTF here.

Table 2. Performance overview of WER (CER for Thai) and RTF. Average WERR (Word Error Rate Reduction, positive and larger is better) is
computed by first computing the WERR on the three test categories individually (using LF-MMI models as a baseline), and then taking the
unweighted average.

Language US English Spanish Hindi Indic English
Model LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T
clean 10.4 11.3 10.2 10.4 10.2 9.1 20.1 18.9 17.9 26.9 26.7 26.2
noisy 14.4 15.0 14.2 12.7 12.6 11.1 21.7 20.6 19.4 31.6 31.1 31.3
extreme 20.3 20.9 19.8 21.0 20.7 19.2 25.7 26.3 25.0 32.2 32.7 31.3
Avg. WERR – -5.3% 1.9% – 1.4% 11.2 % – 2.9% 8.1% – 0.3% 2.1%
RTF 0.46 0.40 0.49 0.50 0.33 0.48 0.44 0.30 0.41 0.44 0.30 0.41

Language Thai Vietnamese Turkish
Model LF-MMI CTC RNN-T LF-MMI CTC RNN-T LF-MMI CTC RNN-T
clean 9.7 9.9 8.7 11.5 11.7 10.5 19.4 19.6 16.9
noisy 13.7 14.2 12.8 19.3 19.9 19.0 20.2 20.7 18.6
extreme 21.7 22.8 20.2 45.3 46.6 46.3 37.9 39.9 38.4
Avg. WERR – -3.6% 7.9% – -2.6% 2.6% – -2.9% 6.5%
RTF 0.41 0.29 0.40 0.37 0.29 0.44 0.45 0.33 0.43

Table 3. WER of WP-CTC v.s. chenone-CTC
Lang. EN VN TR
Unit WP chenone WP chenone WP chenone
clean 14.0 15.3 11.6 15.5 19.3 20.7
noisy 20.0 21.3 19.9 23.5 20.4 21.5
extreme 26.1 28.5 46.6 52.2 39.9 40.6

Table 4. WER of LC-BLSTM v.s. TDS encoder for CTC
Lang. EN VN TR
Unit LC-

BLSTM
TDS LC-

BLSTM
TDS LC-

BLSTM
TDS

clean 14.0 13.7 11.6 12.7 19.3 20.9
noisy 20.0 19.5 19.9 20.9 20.4 22.4
extreme 26.1 25.2 46.6 48.2 39.9 41.8

6.5. (Pre-)training optimization for RNN-T

One of the major challenges of training RNN-T models is the need of
enormous memory size, due to the formulation on both embeddings
from the encoder henc

t and the predictor hpre
u as shown in Eq. 6.

Specifically, in order to compute the forward-backward algorithm
[2], a joint embedding zt,u is needed for each position pair (t, u).
This translates to a minimum memory usage of Ti ∗ Ui ∗D floating
numbers for the i-th sequence in a sequence of batch size B, where
Ti and Ui are sequence lengths of encoder/predictor embeddings and
D is the number of sentence pieces as output units. This can in turn
lead to B ∗maxi(Ti) ∗maxi(Ui) ∗D floating numbers for the entire
batch if with the more traditional “broadcasting” implementation, or
the reduced

∑
iTi ∗ Ui ∗D with optimization [24]. For either cases,

the scale of such tensors is often measured in GBs, therefore limits
the batch size, which is observed to be highly correlated with the
stability of gradients and then the final word error rates.

With the identification of the bottleneck for training RNN-T mod-
els, our in-house RNN-T criterion implementation provides additional
improvements on training efficiency and word error rate reduction
with highly optimized memory consumption. First, function merg-
ing [24] was adopted to fuse the softmax operation into the RNN-T
criterion, this reduces the memory usage by ' 50% (translating to
2x batch size) while the numerical value of gradients stay identical.

Table 5. Training optimization and CE pre-training effects for RNN-
T with varying training mini-batch size. WER results on Turkish
(without model quantization and decoding beam sweeping).

batch size 8 16
pre-training N Y N Y
clean 17.7 17.0 17.1 16.8
noisy 19.3 19.0 18.9 18.9

Second, mixed-precision training was implemented in which 16-bit
float numbers (fp16) are used instead of 32-bit ones (fp32), which
leads to another ' 50% memory usage reduction (another 2x gain
on batch size), with some loss on precision but compensated later by
larger batch sizes. The combined optimizations improves the batch
size by a factor of 4 compared over the vanilla implementation, and
a factor of 2 over function merging alone, which leads to not only
training speed-up but also performance gain.

With an output wordpiece size 2048, RNN-T training can only
use a batch size 8 in each V100 GPU of 16G memory before the
above training optimization. In such case, pretraining the RNN-T
encoder with the hybrid CE model (i.e. the same model used in LF-
MMI systems) has provided consistent performance improvements,
as shown in Table 5. After the training optimization enables a batch
size 16, we observe noticeable performance improvements without
encoder pre-training, while additional pre-training with hybrid CE
model only provides minor further gains.

7. DISCUSSIONS AND CONCLUSIONS

In this work, we demonstrated in details that across the 7 languages
studied, CTC systems achieved best decoding efficiency while RNN-
T systems provided best WER overall. Compared with the LF-MMI
baseline, for CTC, the RTF improvement is around 30% with 2 - 5%
WER degradation for 4 languages and up to 3% WER improvement
for the other 3 languages; for RNN-T, the RTF is about the same
as baseline LF-MMI systems for all languages, with significant and
consistent 2 - 11% WER improvements.

Overall, CTC systems were able to achieve the best decoding
efficiency since they use wordpieces (WP) units (spanning longer
temporal space than chenone) with the largest stride (8) among all

systems. This agrees with findings from other literature that CTC
can achieve a good balance between WER and decoding inference
efficiency when using wordpiece [25, 26, 7] or even whole words
[9] as modeling units. RNN-T systems consistently achieve the best
WERs across all languages, presumably due to to its expressiveness
in explicitly leveraging previous output labels, as shown in Eq. 7.

In future work, we will continue to measure the performance on
named entities (i.e. entity error rate), and present studies on the ASR
inference latency, i.e., delayed token generation problem [27, 28]. We
will also examine various model-specific techniques that can improve
a model type in particular [29, 30, 31], and continue to benchmark
the best systems across training criteria.

In summary, each system explored in this study - LF-MMI, CTC,
or RNN-T - has its own strengths and limits, and accordingly each
could be adopted based on different business requirements, e.g. prior-
itizing run time over WER, or vise versa.

8. REFERENCES

[1] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen
Schmidhuber, “Connectionist Temporal Classification: La-
belling Unsegmented Sequence Data with Recurrent Neural
Networks,” in Proc. ICML, 2006.

[2] Alex Graves, “Sequence Transduction with Recurrent Neural
Networks,” in Proc. ICML, 2012.

[3] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk,
Kyunghyun Cho, et al., “Attention-based models for speech
recognition,” in Proc. NueralIPS, 2015.

[4] William Chan, Navdeep Jaitly, Quoc Le, and Oriol Vinyals,
“Listen, attend and spell: A neural network for large vocabulary
conversational speech recognition,” in Proc. ICASSP, 2016.

[5] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
riSpeech: an ASR corpus based on public domain audio books,”
in Proc. ICASSP, 2015.

[6] Yongqiang Wang, Abdelrahman Mohamed, Duc Le, Chunxi
Liu, et al., “Transformer-based acoustic modeling for hybrid
speech recognition,” in Proc. ICASSP, 2020.

[7] Frank Zhang, Yongqiang Wang, Xiaohui Zhang, Chunxi Liu,
et al., “Faster, simpler and more accurate hybrid ASR systems
using wordpieces,” in Proc. Interspeech, 2020.

[8] Hank Liao, Erik McDermott, and Andrew Senior, “Large scale
deep neural network acoustic modeling with semi-supervised
training data for YouTube video transcription,” in Proc. ASRU,
2013.

[9] Hagen Soltau, Hank Liao, and Hasim Sak, “Neural speech rec-
ognizer: Acoustic-to-word LSTM model for large vocabulary
speech recognition,” Proc. Interspeech, 2017.

[10] Chung-Cheng Chiu, Wei Han, Yu Zhang, Ruoming Pang, et al.,
“A comparison of end-to-end models for long-form speech recog-
nition,” in Proc. ASRU, 2019.

[11] Chunxi Liu, Qiaochu Zhang, Xiaohui Zhang, Kritika Singh,
Yatharth Saraf, and Geoffrey Zweig, “Multilingual graphemic
hybrid ASR with massive data augmentation,” in Proc. of the 1st
Joint Workshop on Spoken Language Technologies for Under-
resourced languages (SLTU) and Collaboration and Computing
for Under-Resourced Languages (CCURL), 2020.

[12] Da-Rong Liu, Chunxi Liu, Frank Zhang, Gabriel Synnaeve,
Yatharth Saraf, and Geoffrey Zweig, “Contextualizing ASR

lattice rescoring with hybrid pointer network language model,”
in Proc. Interspeech, 2020.

[13] Daniel Povey, Vijayaditya Peddinti, Daniel Galvez, Pegah
Ghahremani, et al., “Purely sequence-trained neural networks
for ASR based on lattice-free MMI,” in Proc. Interspeech, 2016.

[14] Eric Battenberg, Jitong Chen, Rewon Child, Adam Coates,
Yashesh Gaur Yi Li, Hairong Liu, Sanjeev Satheesh, Anuroop
Sriram, and Zhenyao Zhu, “Exploring neural transducers for
end-to-end speech recognition,” in Proc. ASRU, 2017.

[15] Jinyu Li, Yu Wu, Yashesh Gaur, Chengyi Wang, et al., “On the
comparison of popular end-to-end models for large scale speech
recognition,” in Proc. Interspeech, 2020.

[16] Mahaveer Jain, Kjell Schubert, Jay Mahadeokar, Ching-Feng
Yeh, Kaustubh Kalgaonkar, Anuroop Sriram, Christian Fuegen,
and Michael L. Seltzer, “Rnn-t for latency controlled asr with
improved beam search,” 2019.

[17] Anjuli Kannan, Yonghui Wu, Patrick Nguyen, Tara N Sainath,
Zhijeng Chen, and Rohit Prabhavalkar, “An analysis of incorpo-
rating an external language model into a sequence-to-sequence
model,” in Proc. ICASSP, 2018.

[18] Duc Le, Xiaohui Zhang, Weiyi Zheng, Christian Fügen,
et al., “From Senones to Chenones: Tied Context-Dependent
Graphemes for Hybrid Speech Recognition,” Proc. ASRU, 2019.

[19] Jun Liu, Jiedan Zhu, Vishal Kathuria, and Fuchun Peng, “Effi-
cient dynamic wfst decoding for personalized language models,”
arXiv preprint arXiv:1910.10670, 2019.

[20] T. Ko, V. Peddinti, D. Povey, et al., “Audio augmentation for
speech recognition,” in Proc. Interspeech, 2015.

[21] D. S. Park, W. Chan, Y. Zhang, et al., “Specaugment: A simple
data augmentation method for automatic speech recognition,”
in Proc. Interspeech, 2019.

[22] Awni Hannun, Ann Lee, Qiantong Xu, and Ronan Collobert,
“Sequence-to-sequence speech recognition with time-depth sep-
arable convolutions,” in Proc. Interspeech, 2019.

[23] Vineel Pratap, Qiantong Xu, Jacob Kahn, Gilad Avidov, et al.,
“Scaling Up Online Speech Recognition Using ConvNets,”
2020.

[24] Jinyu Li, Rui Zhao, Hu Hu, and Yifan Gong, “Improving RNN
Transducer Modeling for End-to-End Speech Recognition,” in
Proc. ASRU. IEEE, 2019.

[25] M. Huang, Y. Lu, L. Wang, Y. Qian, et al., “Exploring Model
Units and Training Strategies for End-to-End Speech Recogni-
tion,” in Proc. ASRU, 2019.

[26] Amit Das, Jinyu Li, Guoli Ye, Rui Zhao, et al., “Advancing
Acoustic-to-Word CTC Model with Attention and Mixed-Units,”
IEEE TASLP, 2018.

[27] Hirofumi Inaguma, Yashesh Gaur, Liang Lu, Jinyu Li, and
Yifan Gong, “Minimum latency training strategies for streaming
sequence-to-sequence ASR,” in Proc. ICASSP, 2020.

[28] Jay Mahadeokar, Yuan Shangguan, Duc Le, Gil Keren, Hang
Su, Thong Le, Ching-Feng Yeh, Christian Fuegen, and Michael
Seltzer, “Alignment restricted streaming recurrent neural net-
work transducer,” in Proc. SLT, 2021.

[29] Andros Tjandra, Chunxi Liu, Frank Zhang, Xiaohui Zhang,
Yongqiang Wang, Gabriel Synnaeve, Satoshi Nakamura, and
Geoffrey Zweig, “Deja-vu: Double feature presentation and
iterated loss in deep transformer networks,” in Proc. ICASSP,
2020.

[30] Chunxi Liu, Frank Zhang, Duc Le, Suyoun Kim, Yatharth Saraf,
and Geoffrey Zweig, “Improving RNN transducer based ASR
with auxiliary tasks,” in Proc. SLT, 2021.

[31] Ashutosh Pandey, Chunxi Liu, Yun Wang, and Yatharth Saraf,
“Dual application of speech enhancement for automatic speech
recognition,” in Proc. SLT, 2021.

