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ABSTRACT
In video transmission applications, video signals are transmitted
over lossy channels, resulting in low-quality received signals. To re-
store videos on recipient edge devices in real-time, we introduce an
efficient video restoration network, EVRNet. EVRNet efficiently al-
locates parameters inside the network using alignment, differential,
and fusion modules. With extensive experiments on different video
restoration tasks (deblocking, denoising, and super-resolution), we
demonstrate that EVRNet delivers competitive performance to ex-
isting methods with significantly fewer parameters and MACs. For
example, EVRNet has 260× fewer parameters and 958× fewer MACs
than enhanced deformable convolution-based video restoration net-
work (EDVR) for 4× video super-resolution while its SSIM score is
0.018 less than EDVR. We also evaluated the performance of EVR-
Net under multiple distortions on unseen dataset to demonstrate its
ability in modeling variable-length sequences under both camera
and object motion.
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1 INTRODUCTION
Video restoration aims at recovering the expected quality of videos
in recipient devices. Deep neural network-based solutions [11, 27,
54, 58, 62] achieve high accuracy on these tasks, but they are compu-
tationally very expensive. For example, a deformable convolution-
based video restoration network, EDVR [54], has 21.1million param-
eters and requires 9.96 TMACs (multiplication-addition operations)
for up-sampling a 360p video frame by a factor of 4. Many video
transmission applications (e.g., video streaming and conferencing)
run on edge devices, such as smartphones. The trend is likely to con-
tinue with the adoption of technologies like augmented and virtual
reality. Because edge devices have limited computational resources,
memory, and energy, heavy-weight video restoration networks are
not suitable for such devices. Additionally, video signals at source
often undergo lossy compression for transmission under limited
network bandwidth (see Figure 1a). Because of compression and
transmission noise, the quality of received video signals is low. In
order to be effective, neural networks for these applications should
be light-weight and low latency while restoring high quality and
temporally stable videos on edge devices.

This work introduces an efficient neural network called Efficient
Video Restoration Network (EVRNet) to restore videos with high
quality on edge devices in real-time, and is shown in Figure 2. EVR-
Net is inspired by traditional computer vision methods for motion
estimation and image enhancement [5, 33, 40]. Briefly, EVRNet uses
an alignment module to align current and previous frames without
optical flow. High-frequency components (e.g., object edges) are
often lost during compression. To restore such details, EVRNet uses
a differential and fusion module. The differential module learns rep-
resentations corresponding to high-frequency components while
the fusion module uses these representations along with the input
to produce high-quality output (see Figure 1b). EVRNet more ef-
ficiently allocates parameters and operations inside each of these
modules using small and light-weight encoder-decoder networks.

EVRNet is refreshingly simple and can be used to restore ei-
ther a single (e.g., video denoising) or multiple distortions (e.g.,
video decompression and denoising). To demonstrate the simplic-
ity and effectiveness of EVRNet, it’s performance is evaluated on
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(a) EVRNet in video conferencing application.

(b) Sample EVRNet results on unseen videos. Left: compressed and
noisy frames. Right: Restored frames.

Figure 1: EVRNet on edge devices. (a) shows how EVRNet is
integrated to an edge device while (b) shows the results of
EVRNet on H264 compressed and noisy (Gaussian + salt
and pepper) “unseen” videos. EVRNet is able to restore the
videos with multiple artifacts. See supplementary material
for more results.

a large scale Vimeo-90K dataset [58] on three independent and
standard video restoration tasks: (1) deblocking (Section 4.2), (2)
denoising (Section 4.3), and (3) super-resolution (Section 4.4). EVR-
Net’s performance is also studied for a typical low-bandwidth video
conferencing system where videos undergoes multiple distortions
due to video encoding and noisy transmission network (Section
5). EVRNet delivers competitive performance as state-of-the-art
methods but with significantly fewer parameters and MACs. For
example, on the task of video deblocking and denoising, EVRNet de-
livers similar performance to ToFlow [58] but with 46× and 13.63×
fewer MACs and parameters, respectively. On the task of 4× video
super-resolution, EVRNet has slightly lower SSIM score (0.018) than
EDVR [54], but has 260× fewer parameters and 958× fewer MACs.

Contributions. The main contributions of this paper are: (1) A
novel efficient video restoration network capable of running at
real-time on edge devices. (2) A single neural network, EVRNet,
that can be used to restore video under a single or multiple distor-
tions. (3) Qualitative and quantitative results along with compar-
isons with state-of-the-art methods on three video restoration tasks,
demonstrating EVRNet’s competitive performance, while having
significantly fewer network parameters and MACs.

2 RELATEDWORK
Designing deep neural networks for video restoration tasks is an ac-
tive area of research. This section briefly reviews these approaches
followed by efforts in improving the efficiency of neural networks.

Video restoration. Deblocking (e.g., [6, 32, 35, 58, 62]), denoising
(e.g., [27, 35, 58, 61, 62]), and super-resolution (e.g., [3, 7, 21, 25, 28,
31, 44, 51, 53–55]) are three main video restoration tasks that have
been studied widely in the literature. Video deblocking aims at re-
moving artifacts that arises due to compression (e.g., checkerboard
patterns). Video denoising aims at removing noise-related artifacts
that may arise due to noisy transmission channel (e.g., Internet).
Super-resolution aims at producing a high-resolution videos from
low-resolution videos. Most methods are studied on one of these
tasks and are computationally very expensive. For example, ToFlow
[58] has about 466 GMACs for denoising (or deblocking) a 360p
video. Unlike existing methods, EVRNet can be used to restore
videos under either single or multiple distortions.

Also, some video restoration methods use optical flow (e.g.,
[2, 3, 58]) which is computed using deep flow networks, such as
FlowNet [8, 23], PWCNet [46], and SpyNet [41]). Computing optical
flow with these networks is expensive and this limits the practical
applicability of such approaches, especially on resource-constrained
devices (e.g., smartphones). Similar to [24, 52, 54], EVRNet also does
implicit alignment between consecutive frames using the pyrami-
dal structure in the alignment module and handles large motion
without optical flow. Importantly, EVRNet can restore videos with
high-quality in real-time on edge devices.

Efficient networks. Designing efficient deep neural networks is
an active area in both academic and industrial research, and aims
at reducing the network parameters and MACs by designing ef-
ficient learnable layers (e.g., depth-wise [4] and dimension-wise
[36] convolutions) or quantization or compression or pruning. The
most similar to our work are the methods on architecture design
(hand-crafted [19, 34, 38, 45] and learned [18, 49, 50, 63]). Similar to
these methods, EVRNet also uses depth-wise convolutions for learn-
ing representations efficiently. Network compression & pruning
(e.g., [10, 14, 29, 39, 56, 60]), quantization (e.g., [1, 22, 42, 57]), and
distillation (e.g., [9, 15, 59]) are important complementary efforts
that can be further used to improve the efficiency of EVRNet.

3 EVRNET
We introduce EVRNet, an Efficient Video Restoration Network, to
remove artifacts and restore videos in edge devices in real-time
(schematic shown in Figure 2). EVRNet takes inspirations from tra-
ditional techniques in motion estimation and image enhancement
[33, 40]. Specifically, EVRNet uses an alignment module based on a
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pyramidal structure to model the motion without explicit use of op-
tical flow. To restore high-frequency details (e.g., edges) that may be
lost due to distortions (e.g., compression), EVRNet uses differential
and fusion module. These modules learn high-frequency compo-
nents which are then added back to achieve sharp details. Following
sub-sections describe the overall architecture of EVRNet in detail.

3.1 EVRNet Architecture
EVRNet is an auto-regressive network that efficiently models the re-
lationships between a current frame I𝑡 ∈ R3×𝐻×𝑊 , a previous frame
I𝑡−1 ∈ R3×𝐻×𝑊 , and a previous latent frame H𝑡−1 ∈ R2×𝐻×𝑊 .
Mathematically, EVRNet takes the form:

O𝑡 ,H𝑡 = F (I𝑡 , I𝑡−1,H𝑡−1) (1)

where F is our learned network, EVRNet, that efficiently syn-
thesizes restored frame O𝑡 ∈ R3×𝐻×𝑊 and a latent frame H𝑡 ∈
R2×𝐻×𝑊 , conditioned on inputs (I𝑡 , I𝑡−1 andH𝑡−1). The latent frame
H𝑡 is similar to cell state in LSTMs [16] and allows information flow

between different time steps. Overall, EVRNet has three main mod-
ules: (1) alignment module, (2) differential module, and (3) fusion
module.

Alignment module The alignment module takes a concatenation
of the inputs (I𝑡 , I𝑡−1 and H𝑡−1) and produces aligned representa-
tions A𝑡 ∈ R𝑑×𝐻×𝑊 using an efficient and light-weight encoder-
decoder network (Figure 3a). The alignment module first learns
pyramidal representations using the encoder network. These repre-
sentations are then combined by the decoder to produce aligned rep-
resentations. Compared to existing methods that learns very deep
pyramidal representations for motion estimation [8, 23, 33, 41, 46],
EVRNet is very light-weight and shallow. To demonstrate the abil-
ity of EVRNet in modeling the motion, an example is shown in
Figure 4 where person moves his head during a conversation. The
most salient regions between consecutive frames are near the nose,
spectacles, and shirt as depicted by the optical flow and difference
image in Figure 4c and 4d, respectively. The alignment module in
the EVRNet also pays attention to these salient regions (red color
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(c) Optical flow (d) Difference (b - a)
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Figure 4: This example visualizes outputs of two EVR-
Net modules (alignment and differential). The alignment
module pays attention to areas corresponding tomotion, i.e.,
nose and spectacles (c, d vs. e) while the differential module
pays attention to high frequency components (e.g., spectacle
edges in (f)) in region corresponding to motion. Face in (a)
and (b) is blurred for de-identification.

regions in Figure 4f), illustrating EVRNet’s ability to model the
motion implicitly.

Specifically, the encoder in the alignment module consists of (1)
a standard 5 × 5 convolutional layer, (2) a standard 5 × 5 convo-
lutional layer with a stride of two, (3) a point-wise convolutional
layer, and (4) 𝑁𝐴 convolutional units (CUs; Section 3.2), where 𝑁𝐴

controls the depth of alignment module. The decoder follows a
simplified UNet-like architecture [43]. The output of the last CU is
first upsampled and then concatenated with the output of the first
5 × 5 convolutional layer. The resultant output is then fused using
a point-wise convolution to produce aligned representations A𝑡 .

Differential module The differential module aims at learning high-
frequency components in an image such as object edges. To do so,
the input I𝑡 is first projected to the same dimensionality as A𝑡

using a 3 × 3 convolutional layer to produce a projected output
P𝑡 ∈ R𝑑×𝐻×𝑊 . An element-wise difference is then computed be-
tween P𝑡 and A𝑡 . The resultant output is then fed to differential
module to further refine these representations and produce high-
frequency representations D𝑡 ∈ R𝑑×𝐻×𝑊 . Figure 4f shows an ex-
ample where EVRNet pays attention to high-frequency components
(e.g., spectacle and ear edges). Similar to the alignment module, the
differential module also takes the form of small and light-weight
encoder-decoder network, with an exception to number of CUs. In
the differential module, we stack 𝑁𝐷 CUs.

Fusion module. The fusion module combines high-frequency
representations obtained from the differential module D𝑡 with pro-
jected input representations P𝑡 and produces restored frameO𝑡 and
latent frameH𝑡 . We first addD𝑡 with P𝑡 to enhance high-frequency
components and then feed the resultant tensor to a fusion mod-
ule. If the spatial dimensions of O𝑡 are not the same as I𝑡 (e.g.,
in super-resolution), the output of fusion module is up-sampled
using a pixel-shuffle operation. Otherwise, an identity operation
is performed. The resultant output is then convolved with a 3 × 3
convolutional layer to produce O𝑡 . In parallel, the output of fusion
layer is also projected using a point-wise convolutional layer to pro-
duce latent frame H𝑡 , which allows to share information between
the current and the next time step (Eq. 1). Similar to the alignment
and differential module, the fusion module is also an efficient and
light-weight encoder-decoder network with 𝑁𝐹 CUs.

The operation of differential and fusion module is similar to
traditional image enhancement methods (e.g., unsharpmask) [5, 40].
In such approaches, the input image is first smoothed to suppress
high-frequency components. Then, a difference between smoothed
image and input image is computed to identify high-frequency
components, which are then added back to the input to enhance it.

3.2 Convolutional Unit (CU)
CNN-basedmethods for different visual recognition tasks learns rep-
resentations using either a single branch (e.g., ResNet [13] and Mo-
bileNets [19, 45]) or multiple branches (e.g., InceptionNets [47, 48]
and ESPNets [37, 38]) convolutional units. This work studies these
two methods for learning representations. For learning representa-
tions at a single scale, we use a depth-wise convolutional layer with
7×7 kernel while for learning representations at multiple scales, we
apply three depth-wise convolutional layers simultaneously (3 × 3,
5 × 5, and 7 × 7). In both of these methods, the effective receptive
field is the same, i.e., 7 × 7. Following recent efficient architectures
(e.g., MobileNetv3 [18]), we also adopt squeeze-excitation unit (SE
unit) [20] to model channel inter-dependencies. Figure 3b sketches
the single and multi-scale CUs.

4 EXPERIMENTAL RESULTS
To demonstrate the effectiveness of EVRNet on video restoration
tasks, we evaluate its performance on three video restoration tasks:
(1) deblocking (Section 4.2), (2) denoising (Section 4.3), and (3)
super-resolution (Section 4.4). In this section, we first describe the
experimental set-up and then evaluate the performance of EVR-
Net on each of these tasks.

4.1 Experimental Set-up
Tasks.We study three video restoration tasks: (1) Video deblock-
ing aims at removing artifacts that may arise due to video compres-
sion, (2) Video denoising aims at removing noise (e.g., adaptive
white gaussian noise (AWGN)) which may be induced during video
transmission, and (3) Video super-resolution which aims at up-
sampling low-resolution video to high-resolution at receiver’s end.

Dataset. To evaluate the performance of EVRNet, we use large-
scale Vimeo-90K dataset [58] which consists of about 90K indepen-
dent and diverse video shots with both indoor and outdoor lighting
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Figure 5: Performance of EVRNet under compression artifacts. In (a, b), performance in terms of PSNR and SSIM is measured
as a function of compression factor 𝑄 on both RGB and Y frames, respectively. Lower value of 𝑄 means higher compression.
In (c), qualitative results for two sample images are shown at different value of 𝑄 . The top and bottom panels corresponds to
the compressed frame and restored frames, respectively. Here, PSNR values are computed on RGB frames.

scenarios. We use official training and test splits. Note that, for mon-
itoring the training process, we split the training set randomly into
two subsets using 90:10 ratio. The first subset is used for training
while the second subset is used for validation.

Training. EVRNet models are trained by minimizing L1 loss using
ADAM optimizer [26] for 50 epochs (or about 50K iterations) using
PyTorch. Based on our ablation experiments in Section 6, we set
𝑁𝐴 = 5, 𝑁𝐷 = 2, and 𝑁𝐹 = 2. The learning rate is increased linearly
from 1𝑒−7 to 1𝑒−3 in first 100 iterations and is then annealed by half
at 15-, 25-, 35-, and 45-th epochs. We train EVRNet with an effective
batch size of 64 (8 sequences per GPU x 8 GPUs) and use a L2 weight
decay of 1𝑒−6. All our convolutional layers are followed by a PReLU
activation [12], except the activation in multi-scale block is after
the addition operation. Standard augmentation methods, such as
random crop, random flipping, random gamma correction, and ran-
dom rotation, are used during training. Task-specific augmentation
methods are included in respective sub-sections. For comparison
with existing methods, we use official splits for deblocking, de-
noising, and super-resolution while for sensitivity studies, we use
functions from OpenCV and Skimage libraries.

Evaluation metrics. We use two standard quantitative metrics:
(1) peak signal-to-noise ratio (PSNR) and (2) structural similarity
index (SSIM). Higher value of PSNR and SSIM indicates better
performance. Following previous methods, we report these metrics
on RGB and Y channel (YCbCr color space).

4.2 Video Deblocking
Sensitivity study.We train and evaluate the EVRNet on the task of de-
blocking artifacts. Similar to state-of-the-art methods (e.g., [32, 58]),
we compress frames using JPEG2000 compression. During training,
we randomly select the compression or quality factor (𝑄) between

10 and 40. During evaluation, we vary the value of 𝑄 from 15 to 90
using OpenCV. Smaller value of 𝑄 indicates higher compression
or more blocking artifacts. Note that the same EVRNet network is
evaluated at different values of 𝑄 .

Figure 5 shows quantitative and qualitative results under differ-
ent values of 𝑄 . The quantitative results in Figure 5a and Figure
5b for both RGB and Y-channel shows that EVRNet is robust to
compression. For example, at 𝑄 = 15, EVRNet is able to achieve
PSNR and SSIM values (RGB space) of 33 dB and 0.91, respectively,
indicating that it can generate good quality frames even under high
compression. These quantitative results are further strengthened
with the qualitative results in Figure 5c. The compression artifacts
around the hand and strings of harp in the first row and bread loaf
in the second row of Figure 5c are completely removed by EVRNet,
even under high compression.

Comparison with state-of-the-art methods Table 1 compares the
performance of EVRNet with state-of-the-art deblocking methods
(ARCNN [6], DnCNN [62], V-BM4D [35], ToFlow [58], and DKFN
[32]) on the official Vimeo-90K test set. EVRNet delivers similar
or better performance than existing methods while having sig-
nificantly fewer network parameters and multiplication-addition
operations (MACs). For example, EVRNet delivers the similar per-
formance as ToFlow [58], but has 46× fewer MACs and 13.64×
fewer parameters.

4.3 Video Denoising
Sensitivity study. Following state-of-the-art methods, we train and
evaluate EVRNet under three noise types: (1) Additive White Gauss-
ian Noise (AWGN), (2) Salt and Pepper noise (S&P), and (3) mixture
of AWGN and S&P. During training, we randomly select the vari-
ance of AWGN noise 𝜎2 between 0.05 and 0.4 and the density of
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Figure 6: Performance of EVRNet under noise artifacts. In (a, b), performance in terms of PSNR and SSIM is measured as a
function of AWGN noise varience 𝜎2 on both RGB and Y frames, respectively. Similarly, in (c, d) and (e, f), performance curves
are drawn for salt and pepper noise (S&P) density 𝜌 and mixed noise (AWGN + S&P). Lower value of 𝜎2 and 𝜌 means less noise.
In (g), qualitative results for two sample images are shown for different types of noise. The top and bottom panels corresponds
to the noisy and restored frames, respectively. Here, PSNR values are for RGB frames.

Method MACs # Params PSNR↑ SSIM↑

ARCNN† [6] 27.73 G 117.73 K 36.11 0.960
DnCNN† [62] 128.64 G 558.34 K 37.26 0.967
V-BM4D [35] – – 35.75 0.959
ToFlow [58] 466.83 G 1073.48 K 36.92 0.966
DKFN [32] – – 37.93 0.971
EVRNet (Ours) 10.13 G 78.71 K 36.65 0.967

Table 1: Comparison with existing methods on the task
of video deblocking. EVRNet delivers similar or better
performance, but with significantly fewer parameters and
multiplication-addition operations (MACs). Similar to pre-
vious works, we report results in RGB colorspace on the of-
ficial Vimeo-90K compressed test set where frames are com-
pressed using FFMPEG [58]. The results of methods marked
with † are reported in [32] while V-BM4D’s performance
is reported in [58]. However, MACs and # params of [35]
and [32] are not available because code is not open sourced.
MACs are measured for 640 × 360 RGB frame.

S&P noise 𝜌 between 0.05 and 0.3. Here, 𝜎 represents the standard

deviation and the value of 𝜌 measures the percentage of pixels ran-
domly replaced with noise. For example, 𝜌 = 0.3 indicates that 30%
of pixels in a frame are randomly replaced with S&P noise. During
evaluation, we first study the effect of AWGN (Figure 6a and 6b)
and S&P (Figure 6c and 6d) independently. For AWGN, we vary 𝜎2
between 0.0005 and 0.1while for S&P, we vary 𝜌 between 0.025 and
0.15. We then study the effect of mixture of AWGN and S&P noise
(Figure 6e and 6f). In these experiments, we set 𝜌 = 0.1 and vary
𝜎2 between 0.001 and 0.1. Note that we train only one EVRNet net-
work for video denoising and then evaluate it at different settings
of AWGN, S&P, and mixed noise. The quantitative results in Figure
6 shows that EVRNet is robust to different types and amounts of
noise. For example, the RGB PSNR values of EVRNet with AWGN
noise (𝜎2 = 0.001; Figure 6a), S&P noise (𝜌 = 0.1; Figure 6c), and
mixed noise (𝜎2 = 0.001 and 𝜌 = 0.1; Figure 6e) are around 33 dB,
showing the robustness of EVRNet to different types of noise. This
is further demonstrated qualitatively in Figure 6g. In the first and
second row of Figure 6g, we can see that EVRNet is able to remove
noise and also, restore fine details (e.g., hairs in the second row)
under different types of noise.

Comparison with state-of-the-art methods. Most state-of-the-art
methods train denoising models on Vimeo-90K dataset and eval-
uate on Vid4 dataset [30]. Following these works, we adopt the



Method MACs # Params PSNR↑ SSIM↑

ToFlow [58] 466.83 G 1073.48 K 33.51 0.939
EVRNet (Ours) 10.13 G 78.71 K 32.37 0.921

(a) Vimeo-90K official test set

Method MACs # Params PSNR↑

V-BM4D† [35] – – 26.31
DnCNN† [62] 128.64 G 588.34 K 26.64
N2V ★† [27] 140.61 G 27.90 M 25.17
N2N+F2F [61] – – 26.56
EVRNet (Ours) 10.13 G 78.71 K 25.79

(b) Vid4 dataset

Noisy Denoised DenoisedNoisy

(c) Qualitative denoising results using EVRNet on Vid4 dataset.

Table 2: Comparison with state-of-the-art methods on the
task of video denoising. EVRNet is able to denoise videos
efficiently. Similar to previous works, we report results in
RGB colorspace. Here, † represents results are from [61] and
★ represents that the number of MACs and parameters are
computed for U-Net [43] as N2V is built on top of U-Net. On
Vid4 dataset, previous works have not reported SSIM. There-
fore, we do not report SSIM on Vid4 dataset.

same strategy and evaluate on Vid4 dataset. We also compare EVR-
Net with ToFlow on the official Vimeo-90K denoising dataset. Re-
sults are shown in Table 2. EVRNet delivers competitive perfor-
mance to state-of-the-art methods, but with significantly fewer
MACs and parameters. It is worth mentioning that some existing
methods (e.g., ToFlow [58] and N2N + F2F [61]) use optical flow,
which is either computationally expensive or requires specialized
accelerators. Unlike these methods, EVRNet does not requires any
flow estimation and is suitable for edge devices.

4.4 Video Super-resolution
We train and evaluate EVRNet on video super-resolution (2× and
4×) task. For training EVRNet that upsamples the input by 2×, we
randomly crop a patch whose size lies in the range: {128, 144, 160,
176, 192 }. For 4× model, we finetune 2× model and select random
patch size in the range: {64, 72, 80, 88, 96}.

Table 3 shows that EVRNet delivers competitive performance as
compared to existing methods, but with significantly fewer param-
eters and MACs. For example, the SSIM score of EVRNet is 0.018
lower than the EDVR, but has 260× and 958× fewer parameters
and MACs, respectively. We note that EVRNet has slightly lower
PSNR (about 1.6 dB) as compared to EDVR, however, it is robust

Method Up-sampling MACs # Params PSNR↑ SSIM↑

ToFlow [58] 4× 466.83 G 1073.48 K 34.83 0.922
DUF [24] 4× – – 36.37 0.939
RBPN [11] 4× 29.62 T 12.77 M 37.07 0.944
EDVR [54] 4× 9.96 T 20.10 M 37.61 0.949
EVRNet (Ours) 4× 10.39 G 79.55 K 35.98 0.931
EVRNet (Ours) 2× 10.13 G 78.71 K 37.86 0.965

Table 3: Comparison with state-of-the-art methods on the
task of super-resolution. EVRNet delivers competitive per-
formance to existing methods, but with significantly fewer
multiplication-addition operations (MACs) and network pa-
rameters. Similar to previous works, we report results in Y-
channel on the official Vimeo-90K test set.

Bicubic

EVRNet (Ours)

Ground Truth

Bicubic

EVRNet (Ours)

Ground Truth

Figure 7: Qualitative comparison of EVRNet with bicubic
up-sampling on the task of 4× video super-resolution. EVR-
Net is able to restore fine details (e.g., bag pack) which are
hard to restore with bicubic interpolation.

to structural changes that occurs due to distortion (as reflected by
high SSIM score and qualitative results in Figure 7).1

5 DISCUSSION
Generalization to unseen dataset. A video transmission system,
shown in Figure 1a, compresses the video stream before trans-
mitting to the destination in order to reduce network bandwidth.
At the destination, the decoded video stream is of low quality due
to compression and transmission noise, and is restored using the
video restoration methods. To demonstrate the effectiveness of EVR-
Net in real-world applications (e.g., real-time video conferencing),
we trained “multi-task” EVRNet model that is capable of denoising
and deblocking on edge devices (see Figure 1a). To train this model,
we used the same training and validation sets as mentioned in Sec-
tion 4, with an exception to inputs to the model. During training,
the input sequences were randomly compressed (𝑄 ∈ [10, 40]). Af-
ter that, mixed noise (𝜎2 ∈ [0.001, 0.01] and 𝜌 ∈ [0.025, 0.15]) is
added to synthesize transmission noise. Each sequence in Vimeo-
90K dataset comprises of 8 frames, has a fixed spatial resolution of

1PSNR, though a widely used metric for image quality assessment, does not account
for structural changes, which SSIM accounts for. Therefore, for holistic evaluation,
both PSNR and SSIM should be considered [17].



File Size RGB Y-Channel

Seq. Id # Frames Original Compressed PSNR↑ SSIM↑ PSNR↑ SSIM↑

Seq-1 200 10.70 MB 1.43 MB 37.930 0.966 39.405 0.973
Seq-2 200 35.54 MB 4.60 MB 35.662 0.963 36.730 0.971
Seq-3 200 36.07 MB 4.74 MB 35.880 0.962 36.713 0.967
Seq-4 915 56.66 MB 9.28 MB 38.320 0.976 39.656 0.981
Seq-5 366 11.40 MB 8.05 MB 40.386 0.978 42.536 0.984
Seq-6 821 10.57 MB 7.24 MB 38.775 0.974 40.903 0.979

Avg. 37.826 0.970 39.324 0.976

Table 4: Quantitative results on unseen videos. For gener-
ating videos with artifacts, videos are first compressed us-
ing H264 compression method. A mixed noise (AWGN with
𝜎2 = 0.001 and S&P with 𝜌 = 0.1) is then added to synthesize
transmission noise. EVRNet is able to remove these artifacts,
as is evident in Figure 1b. For more results, see supplemen-
tary material.

Input size 240p 360p 480p

Output size 240p 480p 360p 720p 480p 960p

iPhone XS 12.7 12.8 7.2 7.8 4.2 4.2
iPhone 11 20.6 20.4 9.2 9.1 5.6 5.7

Table 5: EVRNet’s speed (in FPS) on edge devices. Each data
point is an average across 100 iterations and is measured
with background applications running on smartphones.

448 × 256, and are compressed frame-by-frame. Therefore, to test
the ability of EVRNet in modeling variable-length sequences under
both camera and object motion, we evaluated its performance on
six high-definition and diverse video sequences that are captured
using different mobile devices (see Table 4). For evaluation, we first
compressed these videos using H264 encoding and then added a
mixed noise (AWGN with 𝜎2 = 0.001 and S&P with 𝜌 = 0.1). Both
quantitative (Table 4) and qualitative (Figure 1b) results shows that
EVRNet (1) can model variable-length sequences and (2) generalizes
to unseen videos.

Run-time on edge devices. Typically, video conference applica-
tions for edge devices, such as Facebook messenger, processes 240p
and 360p videos at 10-15 frames per second (FPS) because most
of these devices are battery-driven and with higher frame rates,
battery would drain out quickly, posing practical implications. To
demonstrate the applicability of EVRNet on edge devices, we mea-
sured it’s inference time on two iOS devices: (1) iPhone XS and
(2) iPhone 11. Table 5 shows that EVRNet runs in real-time. We
would like to highlight that CoreML (Apple’s ML engine) does not
support PixelShuffle on the accelerator. To do that operation, we
used a solution that uses reshape and transpose operations. These
operations are performed on iPhone’s CPU (23% CPU occupancy),
which resulted in drop in speed. Also, EVRNet is faster on iPhone
11 in comparison to iPhone XS. We believe that accelerator-specific
implementations of PixelShuffle along with advancements in hard-
ware technology would further improve the speed of EVRNet on
edge devices.

RGB Y-Channel

CU Type SE Unit MACs # Params PSNR↑ SSIM↑ PSNR↑ SSIM↑

Single ✗ 9.85 G 68.15 K 31.207 0.868 32.650 0.886
Single ✓ 9.85 G 72.95 K 32.006 0.896 33.365 0.914

Multi ✗ 10.79 G 73.91 K 29.026 0.875 30.247 0.895
Multi ✓ 10.79 G 78.71 K 32.370 0.900 33.679 0.916

(a) Effect of different CU units

Module depth RGB Y-Channel

𝑁𝐴 𝑁𝐷 𝑁𝐹 MACs # Params PSNR↑ SSIM↑ PSNR↑ SSIM↑

1 1 7 11.44 G 78.71 K 31.605 0.887 32.913 0.905
1 7 1 11.44 G 78.71 K 31.753 0.884 32.951 0.901
7 1 1 9.47 G 78.71 K 30.859 0.871 32.139 0.890

2 2 5 11.11 G 78.71 K 32.139 0.901 33.477 0.919
2 5 2 11.11 G 78.71 K 32.057 0.891 33.445 0.908
5 2 2 10.13 G 78.71 K 32.403 0.903 33.884 0.921

3 2 4 10.77 G 78.71 K 31.690 0.890 33.047 0.908
3 4 2 10.77 G 78.71 K 30.785 0.874 32.193 0.896
4 3 2 10.46 G 78.71 K 31.416 0.877 32.690 0.895

3 3 3 10.79 G 78.71 K 32.370 0.900 33.679 0.916

(b) Effect of depth of alignment, differential, and fusion modules

Table 6: Ablation studies on the task of AWGN denoising
(𝜎2 = 0.001). Overall, EVRNet with multi-scale CUs + SE unit
and deeper alignment modules provides the best trade-off
between performance and MACs.

6 ABLATIONS
Effect of different CUs. Table 6a studies the effect of single- and
multi-scale convolutional units (CUs) with and without SE unit on
the task of AWGN denoising. Multi-scale CU units with SE improves
the performance. We hypothesize that this is because AWGN noise
is identically distributed in the frames and kernels at different scales
helps learn better representations and remove noisy artifacts (see
gray color row in Table 6a).

Effect of the depth of alignment, differential, and fusion modules.
Table 6b studies EVRNet with different values of 𝑁𝐴 , 𝑁𝐷 , and 𝑁𝐹 .
We are interested in efficient networks for edge devices, therefore,
we studied only those combinations that satisfies this criteria: 𝑁𝐴 +
𝑁𝐷 + 𝑁𝐹 = 9. We found that deeper alignment modules delivers
the best trade-off between performance and MACs. Therefore, in
our main experiments, we used 𝑁𝐴 = 5, 𝑁𝐷 = 2, and 𝑁𝐹 = 2 (see
gray color row in Table 6b).

We perform similar studies for deblocking and super-resolution
tasks (see supplementary material). We do not observe much gains
with different CUs as well as varying the depth of alignment, dif-
ferential, and fusion modules.

7 CONCLUSION
This work introduces EVRNet, a simple neural network that can
be used for different video restoration tasks on edge devices, such
as deblocking, denoising, and super-resolution. Compared to state-
of-the-art video restoration models, EVRNet is more efficient and
runs in real-time on edge devices while delivering competitive
performance across different tasks.
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