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Abstract—Storage media devices are fundamental to Meta’s
hardware infrastructure, which supports a diverse family of
applications such as Facebook, Instagram, and WhatsApp. Un-
derstanding the factors that impact the reliability of storage
devices is important for setting application expectations on speci-
fications such as throughput, latency, and read/write success rate.
Improving hardware reliability helps us meet those expectations.

In this paper, we examine the impact that age and workload
have on the annualized failure rate (AFR) of Hard Disk Drives
(HDDs), one of the most used types of storage devices for Meta’s
applications. We analyze the correlation based on data collected
from our production hardware fleet. In our datacenter environ-
ment, we observe that HDD AFR increases as either age or
lifetime cumulative workload increases. We discuss the difference
between the AFR curves and the projections that manufacturers
make using statistical modeling. Additionally, we use a decision
tree-based predictive machine learning (ML) model, XGBoost, for
analyzing the correlation between the SMART (Self-Monitoring,
Analysis, and Reporting Technology) metrics and the health of
HDDs. Through this study, we observe that age and workload-
related SMART parameters are most correlated to the health of
a drive based on the trained ML model. More so, we identify
that the difference of SMART metrics over a 30-day time window
could improve the prediction performance for HDD failures.

Index Terms—hard disk drive, reliability, machine learning,
annualized failure rate, workload, SMART metric, storage

I. INTRODUCTION

Meta deploys large-scale distributed storage services across
datacenters. Storage applications are often categorized based
on the type and temperature of the data stored: hot, warm,
and cold data. At Meta, we have an exabyte-scale distributed
file system, known as Tectonic [1]. Tectonic has tenants that
include a warm Binary Large Object (BLOB) storage tier
and a data warehouse tier. The warm BLOB tier is used
for external media storage (photos, videos, documents), and
internal application data (traces, heap dumps, logs) [2]. The
data warehouse tier is designed to store data analytics for
business intelligence, and objects such as massive map-reduce
tables, snapshots of the social graph, and AI training data
and models. Both tiers run on specialized storage servers
containing Hard Disk Drives (HDDs), also known as Just-a-
Bunch-of-Drives (JBODs) [3]. In industry, HDDs are widely
used as either a boot device or a data device. The HDDs
discussed in this paper are used as data devices. In our
infrastructure, one compute module facilitates concurrent I/O
across all HDDs in a JBOD.

If an HDD fails and our tooling determines that the correct
remediation is to replace that HDD, an online repair process

is followed. For online repairs, a hot-swap is issued to replace
the failed HDD, all without stopping I/O to the other healthy
drives in the server. Once the failure is validated, a datacenter
operator hot-swaps the drive with a new HDD.

To account for drive failures, encoding schema and data
replication are used in Meta’s infrastructure. Tectonic relies
on a combination of data replication and erasure encoding,
such as Reed-Solomon (RS), to reconstruct data [4]. Servers
are physically distributed across datacenters to minimize the
localization of data in the same failure domain, e.g. HDDs in
the same RS encoding group that may be in the same server,
rack, or datacenter. This ensures continuous data availability
to applications when HDD failures occur. In the case of a
perfect storm of events that result in HDD capacity loss beyond
the reconstruction thresholds of the RS encoding, data would
become inaccessible or ultimately lost.

HDDs are a unique type of component in datacenters, as
they are composed of both mechanical and electrical elements
[5]. Drive heads, storage media, electrical components, and
mechanical components can all lead to HDD failures [6].
Datacenter environments can influence HDD failures through
agitators such as thermal interactions, rotational/acoustic vi-
brations (RV/AV), and device handling [6], [7].

Previous studies investigated factors that influence HDD
failures [8]–[10]. In one study, HDD data sets were used
to analyze the impact of workload, age, and temperature
on HDD failures [8]. The result was inconclusive regarding
the correlation between the factors and failures. The authors
also analyzed self-monitoring, analysis, and reporting technol-
ogy (SMART) metrics to determine the probability of HDD
failures; they established that using only SMART metrics is
limited in prediction capabilities.

The scale we operate at makes repairs challenging to
manage, and the variety of failure types triggered by different
services makes failure predictions challenging. Our storage
architecture is complex, and reliability requirements can vary
across applications. Each application has its own tolerance
for latency, internal constraints for failing HDDs, complex
workloads, and varying environmental conditions.

Understanding the conditions that HDDs are exposed to in
our fleet helps us optimize our HDD deployments and remedi-
ate failures. Hence, the motivation for this paper is to provide
insights from Meta’s industry perspective to supplement prior
research explored in this space. The contributions of this work
are summarized as follows:



• We present two correlation studies to evaluate the effects
of HDD age on AFR and HDD cumulative workload on
AFR. The studies leverage a large production data set
sampled from Tectonic’s storage fleet.

• We use a machine learning model (XGBoost algorithm)
to carry out a feature analysis. Through the modeling,
we identify the most impactful SMART metrics that are
indicative of a drive’s health. Our ML model setup helps
us establish that the variation in SMART metric readings
over a 30 day window may indicate potential failure in
HDDs.

The remainder of this paper is organized as follows: in
Section II we present the storage hardware and telemetry setup
within our datacenters. In Section III, we present our case
studies on the impact of age and workload on AFR. In Section
IV, we present a study where an ML model is used for both
SMART metric based feature analysis and failure analysis. We
conclude the paper and scope future work in Section V.

II. BACKGROUND

A. HDDs in a Large-Scale Production Environment

The HDDs sampled in this analysis are classified as nearline
HDDs: high-capacity, high reliability drives designed for cloud
and datacenter applications. The studies sample HDDs used as
data devices across Tectonic and its tenants. We deploy HDDs
from different vendors, models, and vintages in our production
fleet. In this paper we provide insight based on a sampled
subset of the HDD population.

B. Hardware Health Telemetry within Data Centers

SMART is a set of industry standard health metrics for
HDDs that can be used to monitor and indicate drive health
[7], [11]. In this study, we use the daily collected SMART data
to determine the power-on-hours and cumulative workload for
each HDD. We improve the accuracy of power-on-hours by
removing the time the drives were powered on during the
manufacturing process, but were not actually running in Meta’s
environment. When we perform the SMART metric-based
feature analysis, SMART attributes are captured for studying
their potential influence and weight on failures.

In our storage servers, we use micro-services to collect
and log health data from HDDs in our fleet, including HDD
SMART data. These services pull the respective health data
and upload it into the data warehouse tier as unstructured data.
The logs are parsed through a data pipeline into a table and
presented as structured data for analysis.

C. HDD Failure Mechanisms

HDDs have different failure modes resulting from complex
design mechanisms. The failures can be categorized into
one of the following groups: HDD connection loss, opera-
tional timeout, or I/O operational failure. The failures can
be attributed to read/write head degradation, contamination,
media defects, electrical/mechanical elemental failures, and
interface/connectivity loss. These types of failures can all lead
to hard failures within drives [6], [12], [13].

In our fleet, we need to detect and remediate HDD failures.
We run a health monitoring micro-service, Machinechecker,
on a regular cadence to detect hardware failures [14]. Ma-
chinechecker invokes our repair process to initiate remedia-
tions when it detects unhealthy HDDs.

D. Statistical Modeling of Hard Disk Drive Failures

In order to maintain proper balance between application
performance and stability, we rely on the HDD vendors to
create robust, reliable storage devices. The most important part
of the process is progressively scaling up their manufacturing
as they pass specific reliability thresholds. To achieve this goal,
vendors rely on a theoretical model that assesses how AFR
changes over time, better known as the bathtub curve [15].
HDD manufacturers have different types of accelerated tests to
determine potential failure modes at each stage of field usage.
The beginning of the bathtub curve balances the effectiveness
of manufacturing screens compared to their cost impact. The
middle of the bathtub curve expects consistent, stable AFR.
The end of the bathtub curve predicts a sharply increasing
failure rate as the device wears out to the end of its deployed
service life. Not all HDDs are manufactured equivalently, AFR
during deployment will vary as vendors implement continuous
improvements. Additionally, each HDD model has a different
margin available in its subsystems.

Once the vendor and Meta successfully qualify an HDD
product for Meta’s storage applications, there is another im-
portant theoretical model that must be considered: the derating
curve [16]. The purpose of a derating curve is to assess
how given stressors to a component affect the failure rate of
a product over time. For HDDs, the derating curves factor
in temperature and workload as stressors. The HDD vendor
creates boundary conditions for safe usage of the product and
publishes these specifications in their product manual.

E. Dimensions that affect Hard Disk Drive Failures

There are many factors that can influence the reliability
of HDDs. We identify and discuss four contributing factors
that affect HDD reliability: age, workload, temperature, and
interference from vibrations.

Age of HDDs and their associated failures can be statisti-
cally modeled with bathtub curves and derating curves [17],
[16]. These projections are designed to estimate failure rates
over time, however, the projections may not match the actual
trends observed in our large-scale production environment. For
instance, in a previous industry study, failure projections from
statistical models were shown to be inaccurate when compared
against field data [17]. Additional studies also suggest that age
is a factor in HDD failure rates [18], [9].

Workload is another factor that can stress HDDs. Workload
recommendations are defined in each HDD vendor specifica-
tion. These are representative of the maximum workload that
the vendor tests HDDs to in their validation processes before
mass production [19]–[21]. How workload is defined varies
from vendor to vendor. Additionally, vendor models assume a
consistent mix of workload over the life of a drive.



Fig. 1. Read and write bandwidth for a single HDD over the course of its production usage.

In our applications, drives experience different workloads
over their lifetime. For example, when we first provision and
induct racks into a service, drives must be filled with data. This
results in a heavier write to read workload ratio. Applications
may also change encoding schema or BLOB sizes, which can
impact the stress on the HDD. Fig. 1 shows how workload
could vary across the lifetime of an HDD in production. The
data is normalized for both read and write workloads to remove
manufacturer specific information.

Temperature is an agitator to HDDs, and a previous
study showed HDD AFR can double when a drive operates
at a temperature of 55C rather than 40C [22]. Operational
temperatures are taken into account when designing for power
and cooling in the server hardware to optimize HDD reliability.
Our servers use a Baseboard Management Controller (BMC)
to monitor the temperature across all components. The BMC
controls fan speeds, adjusting the airflow within a server’s
chassis to provide optimal operational temperatures.

Rotational and Acoustic Vibrations can disrupt HDD
operations, leading to HDD failures. HDD servo mechanisms
provide a feedback loop to correctly position their read/write
heads [23]. The servo design compensates for mechanical
interference that can arise from the vibrations of fans and other
HDDs in the system [18]. Our server hardware design must
take this into account to dampen interference.

Temperature and RV/AV interference are studied when we
design server hardware. HDD age and workload are oppor-
tunistic candidates to examine in this paper, as they are both
factors that cannot easily be accounted for when designing
servers. In Section III. B, we present how HDD AFR trends
could be different based on the data observed in our production
environment and the statistical models provided by HDD
manufacturers. In Section III. C we present the workload
distributions between healthy and unhealthy HDDs.

F. HDD Annualized Failure Rates

Previous studies show that AFR trends can vary across the
industry. In one external study, AFR ranged from 1.7% for
HDDs in year one of operation, 8.6% AFR in year three, and
approximately 7% AFR in year five [8]. Another study, which
modeled failures by hazard rates, observed that HDDs do not
follow the traditional bathtub curves, rather an increasing-

decreasing-stabilized pattern that occurs in early deployments
[9]. These studies show variation across industry observed
HDD failure rate modeling and failure rate field behaviors.

III. IMPACT OF AGE AND WORKLOAD ON HDD AFR

A. Data Setup

To determine the impact of age on AFR, we sample data
from three HDD models in our fleet. Each HDD model has
been in our production fleet for an extended period of time.
The sampled data is a subset of the entire install base for that
HDD model. To represent the impact of AFR on age of the
HDD, we present our data as a normalized AFR.

To determine the impact of workload on AFR, we sample
a subset of all HDD models in the fleet from the last one
year. We characterize the HDDs as either healthy or unhealthy.
Healthy HDDs are those in production at the time of sampling
this data. Unhealthy HDDs are those that have been hot-
swapped. The cumulative workload collected from unhealthy
drives is collected at the time of the HDD failure.

B. Impact of Age on Annualized Failure Rate

In the first study, we aim to understand the trends that
the impact of age has on HDD AFR in our production
fleet. We examine the relationship between age and AFR
for three drive models, referred to as M1, M2, and M3. It
should be noted that we sample data from subsets of the total
install base for each of the three HDDs across our storage
infrastructure. The exact time in production is removed to
prevent any vendor identifiable information. Normalized AFR
is presented to remove manufacturer specific information. The
data is normalized by scaling AFR to a range, as defined in
the following equation:

AFRnormalized =
AFRcurrent −AFRmin

AFRmax −AFRmin
, (1)

AFRcurrent, AFRmin and AFFmax represent the true AFR
values, the minimum AFR value in the data set, and the
maximum AFR value in the data set.

Fig. 2 shows the AFR trend for M1. From the data, we see
an increase in normalized AFR from its initial deployment at
an age of 0 months to an age of 10 months. After 10 months,
we observe that the normalized AFR stabilizes and remains



constant. This continues until we hit an inflection point at an
age of 24 months. After this age, we observe continued AFR
growth. Fig. 3 presents the AFR trend for M2, which observes
a similar non-linear AFR trend to that in M1.

Fig. 4 shows the AFR trend for M3. We observe that
different HDD models may or may not exhibit different trends
across the fleet. The trend could be similar or could vary
depending on the HDD model. In M3 the major difference is
that the AFR continues to trend upwards, and does not reach
a steady-state AFR by the age of 24 months.

From the analysis across the three HDD models, we observe
that there is a non-linear regression as each HDD ages. We
observer unique AFR trends within Meta’s environments and
applications, and each HDD model may or may not follow
similar AFR behavior. These trends are not reflective of the
traditional statistical models across industry. Statistical models
project that HDD failure rates increase in early-life, stabilize
to constant failure rates, and increase again at the end of
life. The data presented in our study does not suggest this
behavior happens across all models or vintages. The following
differences are observed when our data is compared against
statistical models in industry:

• Based on the typical bathtub curve modeling [15], we
would expect to see higher early life failure rates at the
beginning of the hardware lifetime, followed by a steady-
state where the failure rate remains relatively constant,
followed by an increase in failure rate towards the end
of the hardware lifetime.

• In our environment, however, we expect that most of the
early life failures should have been screened and removed
by the manufacturers. So we do not see the high failure
rate at the beginning of the hardware lifetime. In addition
to that, our failure curves start with an increase then reach
the steady-state, which is also different from the typical
bathtub curve for which we would expect to see the
steady-state failure rate right after the initial high failure.

• After the steady-state failure period, we observe ad-
ditional AFR growth. This AFR growth is before the
portion of the HDD life cycle where we expect to hit
the end of life, and at these ages, we would expect the
AFR to remain constant rather than increase.

C. Impact of Workload on Annualized Failure Rate

In this study, we compare the cumulative workload distribu-
tions from healthy and unhealthy HDDs. The data is collected
by randomly sampling a subset of healthy and unhealthy
HDDs in the production fleet from the last one year. To
remove manufacturer specific information, we normalize the
workloads. This preserves the workload distributions between
healthy and unhealthy HDDs.

Fig. 5 presents the data for our workload distribution across
healthy and unhealthy drives in the fleet. The boxes show
the P75 and P25 workloads, while the middle lines show the
median workloads. The lines above and below the boxes show
the minimum workloads (workloads below P25) and maximum

Fig. 2. M1’s annualized failure rate (AFR) over age.

Fig. 3. M2’s annualized failure rate (AFR) over age.

Fig. 4. M3’s annualized failure rate (AFR) over age.



Fig. 5. Distribution of workloads between healthy and unhealthy HDDs.

workloads (workloads above P75). The markers above and
below those lines represent the workload outliers.

The first observation is that the median workload for un-
healthy HDDs is 1.5x greater than the median workload for
healthy HDDs. The second observation is that amongst healthy
and unhealthy drives, there is an overlap across the interquar-
tile ranges of workload. For our data, a statistical test (z-test)
confirmed a p-value less than 0.05. This provides evidence to
reject the null hypothesis. Hence, the mean workloads between
healthy and unhealthy drives are statistically significant.

IV. FEATURE STUDY USING A MACHINE LEARNING MODEL

Our next step is to examine how SMART metrics can
assist in understanding the underlying trends or contributing
factors to HDD failures within our fleet. To achieve this,
we use the XGBoost algorithm to predict these failures, and
we formulate the problem as a binary classification task. In
other words, we train a classifier to identify which drives are
healthy or unhealthy based on their SMART metrics. After the
classifier is trained, we analyze how each feature affects the
performance of the classifier.

Our data for health metrics, repairs, and failures of the
HDD-based systems are retained for multiple years. For this
analysis, we use the daily collected data from over 53,000
failed HDDs from our Tectonic storage fleet. We use the
SMART readings from one day and 30 days before the drives
failed and categorize them as unhealthy drives. Additionally,
we selected 54,000 healthy drives randomly from our hardware
fleet as healthy drives. By combining the failed drives and the
54,000 healthy drives that were randomly sampled, our sample
size for this study amounts to over 107,000 drives.

A. Training Setup

An XGBoost classifier is used as the modeling algorithm
to classify unhealthy and healthy drives. We consider three
different sets of features and each set of features is referred
to as a configuration. Each configuration is used to train a
separate model. The three configurations of features used are:

• Model A: SMART readings of drives taken one day
before a failure event.

• Model B: SMART readings of drives taken 30 days before
a failure event.

• Model C: The difference/delta between the SMART read-
ings of a drive taken one day and 30 days before a failure.

B. Prediction Results

The evaluation of each model is done using two categories
of test sets that include:

• Test data I: Test data derived from a 20% random
selection of all the drives (i.e., over 107,000 drives) in
the data set. We split the data into a training set and a test
set. 80% of the drives were used for training the model,
while the 20% subset was held out for evaluating the
model’s performance on unseen data. This approach helps
to prevent overfitting of the model to the training data and
provides a more accurate estimate of its generalization
performance on new data. It is worth noting that this test
data is taken from the same time window as the training
set. This means that this test data is taken from the same
period of time as the data used to train the model. This
approach ensures that the test data is similar in nature
to the training data, allowing for a fair evaluation of the
model’s ability to generalize to new data.

• Test data II: Test data based on all the unhealthy and
healthy drives in production, but from a different time
window than the training set. The purpose of this test
data is to assess the model’s ability to generalize to a
live production environment. By testing the model on a
different time window and in a real-world setting, we
can verify that the model’s performance is consistent
and reliable across different contexts. This is important
because the model should be able to accurately predict
the health of drives in production, regardless of the
time period or other factors that may impact the data.
Therefore, the use of this test data is critical in assessing
the practical application of the model in a real-world
scenario.

Table I shows the models’ performance metric using preci-
sion and recall across two test datasets from the different time
windows. Precision is the ratio of the number of true positive
predictions to the total number of positive predictions, where
a true positive prediction is when the model correctly predicts
the positive class. On the other hand, recall is the ratio of
the number of true positive predictions divided by the total
number of actual positive instances. We define the positive as
the unhealthy drives and the negative as the healthy drives.

From the result shown in table I, the performance of our
ML models is limited across the three setups, especially when
using test data that is sourced from a time window different
from the one used in training (i.e., test data II). The precision
of the models significantly dropped to 0.28%, 0.26% and
1.11% for Model A, B and C respectively. This shows that
the trained models did not generalize well to new datasets
from future time windows. The precision is particularly low
because of the imbalanced nature of the problem, i.e. there are
much more negative samples than positive samples so the false



Fig. 6. The feature importance of Model C based on the number of times each feature (i.e., F-score) is used to split the data across all trees in the model. It
depicts the features that have greater than 100 F-score.

positive rate tends to be high. This is because it is expected
that the ratio of unhealthy to healthy drives will be minimal.
However, Model C outperforms Model A and B in terms of
precision and recall when the test and training sets are from
the same or different time window. Model C has a precision of
1.11% compared to Model A and B when the test set is from a
different time window. This suggests that utilizing the change
in SMART metrics over a period of 30 days may enhance the
capability to predict HDD failures.

With the low precision, the models are not ready for deploy-
ment in production considering the engineering overhead of
the false positives. For a model to work in production, we need
to evaluate the saving from the correctly predicted failures (i.e.,
true positives), and the cost of incorrectly predicted failures
(i.e., false positives). This evaluation is important to ensure that
the overall benefits of the predictions outweigh the engineering
overhead of the false positives.

TABLE I
PERFORMANCE MEASURE OF THE XGBOOST CLASSIFIERS USING

DIFFERENT LEVELS OF TEST DATA.

Model Precision (%) Recall (%)
Test data I Test data II Test data I Test data II

A 88.16 0.28 86.70 94.39
B 83.84 0.26 85.47 94.16
C 97.59 1.11 97.52 97.76

C. Feature Analysis
The feature importance for Model C is demonstrated in

Fig. 6, where features are ranked based on their significance
in classifying (i.e., F-score) the drives. F-score measures the
significance of a feature in a model, and is determined based
on the frequency each feature is used for splitting the data
in all the trees of the XGBoost model. Only the top ranked
features are shown in Fig. 6.

It can be observed that the most important feature is
the power-on-hours, suggesting that the age of the HDD in

operation is indicative of identifying a faulty drive in our fleet.
Furthermore, the workload is another important feature, with
read and write workload serving as pointers in determining
the health of a drive in our fleet.

V. CONCLUSION

The studies presented in this paper show the influence that
workload and age have on HDD AFRs in Meta’s production
hardware fleet. The first study finds that AFR increases as
HDD age increases in the fleet. Through the study, we find that
the AFR across HDD models may or may not be similar to one
another. Additionally, HDD AFR trends across Meta’s storage
infrastructure can be different from the statistical models
presented within industry. The second study finds that there
is a difference in the workload distributions between healthy
and unhealthy HDDs. The median cumulative workload is 1.5x
higher for unhealthy HDDs than healthy HDDs. However,
there is an overlap in the interquartile ranges of workload
between healthy and unhealthy HDDs.

In addition to our fleet analytic studies, we present a feature
study using an ML algorithm to find the correlation between
HDD failures and SMART metrics. We observe that age and
workload related SMART metrics are most correlated to HDD
failures. We could not obtain a production worthy ML model
by using the SMART metrics. However, in the future, we plan
to extend this effort to include additional HDD metrics, such
as extended SMART logs, server level metrics, and application
performance metrics.
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