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Abstract—Fast encoding parameter selection technique have
been proposed in the past. Leveraging the power of convex hull
video encoding framework, an encoder with a faster speed setting,
or faster encoder such as hardware encoder, can be used to
determine the optimal encoding parameters. It has been shown
that one can speed up 3 to 5 times, while still achieve 20-40%
BD-rate savings, compared to the traditional fixed-QP encodings.

Such approach presents two problems. First, although the
speedup is impressive, there is still ∼3% loss in BD-rate.
Secondly, the previous approach only works with encoders
implementing standards that have the same quantization scheme
and QP range, such as between VP9 and AV1, and not in the
scenario where one might want to use a much faster H.264
encoder, to determine and predict the encoding parameters for
VP9 or AV1 encoder.

In this work we propose and present new additions to address
these issues. First, we show that the predictive model can be
used to gain back the quality loss incurred from using a faster
encoder. Secondly, we also demonstrate that, by introducing a
mapping layer, it is possible to predict between two arbitrary
encoders and reduce the computational complexity even further.
Such degree of complexity reduction is made possible by the fact
that different generations of video codecs are usually orders of
magnitude apart in terms of complexity and thus one can use
an encoder from an earlier generation to predict the encoding
parameters for an encoder from later generations.

Index Terms—Video encoding, video codec, per-shot encoding,
convex hull

I. INTRODUCTION

In the age of internet video, adaptive bitrate streaming
(ABR) has been the dominant form of distribution. In ABR
streaming, as opposed to one single encoding, several en-
codings with different resolutions and/or quality levels are
typically produced for a single video source. This allows
client applications to quickly switch to an appropriate version
depending on the bandwidth and device limitations. To address
the paradigm shift in practical applications of video codecs,
Dynamic Optimizer and the convex hull video encoding frame-
work were proposed to provide a way to compare codecs fairly
[1]. It has also been shown that a massive 20-40% saving in
BD-rate can be achieved under this framework.

However, such impressive saving comes with a heavy over-
head in computational complexity, which is typically 6−10×
compared to the traditional fixed-QP encoding. A fast encod-
ing parameter selection for the convex hull video encoding
framework was proposed in [2] to significantly reduce the
computational cost to roughly 120-150% of traditional fixed-
QP encoding, with no more than 3 percentage points (p.p.)

BD-rate loss. It uses a faster encoder or the same encoder
with faster speed settings to perform analysis on the video
sequence first, to determine the optimal encoding parameters
to be used with a slower encoder with better compression
efficiency. Although this fast selection technique can achieve
similar savings with a fraction of the computations, limitations
are still present. First of all, the few percent loss in BD-rate is
not negligible in the case of higher-quality contents, where a
much higher target quality and/or target bitrate is often used.
Secondly, the quantization scheme of the fast encoder, used
for analysis, and that of the slow encoder, used for producing
the actual deliverable encodings, need to be the same in order
for the technique to work.

To address the limitations, we experimented different fea-
tures with our internal implementation of VP9 [3], and pro-
posed a predictive approach work on top of the fast selection
technique presented in [2]. With this new approach, an arbi-
trary pair of encoders can be used in the “analysis” and the
actual “encode” steps. Furthermore, it is also shown that more
than half of the loss in BD-rate can be recovered.

In Sec. II, the prior work on fast encoding parameter se-
lection technique for convex hull video encoding, comprising
of 3 steps, “preprocess”, “analysis”, and “encode”, will be
briefly reviewed. In Sec. III, the effect of encoder features
will first be presented. Then the new “prediction” step, on top
of the prior fast encoding parameter selection technique, will
be introduced to address the aforementioned issues. Sec. IV
is dedicated to presenting and discussing the experiment setup
and results. Followed by Sec. V with summary, remarks, and
future works.

II. ENCODING PARAMETERS SELECTION AND CONVEX
HULL ENCODING

Convex hull video encoding and the Dynamic Optimizer
framework first appeared in a NETFLIX tech blog [4], and the
subsequent work of using it to fairly compare video codecs
[1]. The process of efficiently selecting optimal encoding
parameters based on this framework is briefly described below,
with more details in [2].

1) Preprocess: Perform shot detection and split a video
sequence into multiple shots.

2) Analysis:
a) Downscale and encode: Downsample and encode

each shot using a faster encoder or a faster setting,
at M different resolutions and N QP values.



b) Decode and upsample: Decode and upsample each
encode back to the original resolution of the video
sequence for metrics calculation.

c) Dynamic Optimizer: Use Dynamic Optimizer to
determine the optimal selection of encoding param-
eters (resolution and QP) for all shots, at a desired
average quality level.

3) Encode: Encode using a slower encoder or encoding
setting, by directly applying the optimal encoding pa-
rameters obtained in the previous step.

Similar approach that analyzes the video by pre-encode has
also been proposed in [5]. In this work, we focus on using
faster encoders to perform the analysis.

III. PREDICTING ENCODING PARAMETERS

In this section, the effect of different encoding features is
first explored. Then a new prediction step is introduced on
top of the approach presented above, illustrated in Fig. 1.
A predictive modeling approach within the same standard is
first presented to improve the bitrate saving without additional
computations. It recovers the BD-rate loss when switching
from a slower encoder to a faster one for the “analysis” step.

Extending the same concept that inspired our prior work,
a cross-codec prediction approach is then presented, using
a quantization parameter map across two codecs that have
different quantization schemes. This allows one to use the
fastest encoder from an earlier generation codec, to predict the
encoding parameters for an encoder from a later generation.
With the orders of magnitude difference in computations
across codec generations, this enables us to massively improve
BD-rate performance, with minimal computation overhead.
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Fig. 1. Illustration of predicting encoding parameters for convex hull
encoding.

A. Effects of Encoder Features

An encoder implementation usually has a number of tools
and features that optimizes for bitrate-quality trade-off. One

of the key, and the most compute intensive, components in
block-based video encoding is mode decision (MD), which de-
termines the appropriate mode and partition for a given block.
A straightforward way is to evaluate the entire search space,
i.e., compute the cost of all possible combinations and choose
the best one, which is obviously the most expensive way. To
reduce the complexity, non-normative techniques, which often
include early terminations or threshold based pruning of the
search space, are employed. One of the main factors in the
different speed settings of an encoder implementation is based
on these smart reductions of search space. Typically, a faster
encoding setting would have more smart reductions on the
search space, while the slowest one would have none or very
few of such reduction.

To get further compute reduction in the “analysis” step, the
mode decision search space is analyzed and a static reduction
of search space is done, rather than depending on the dynamic
early termination or pruning. The analysis is done with the
VP9 internal experimental implementation in [3]. All early
terminations or threshold-based pruning were disabled, and
thus created a brute-force search configuration referred to as
the full configuration. In our experiment, the following lower
compute configurations were used as the faster encode setting
in the “analysis” step.

1) Feature 1 (F1) : Disable 4×4 + disable compound
mode: disable the 4×4 TU mode search and the com-
pound modes in inter frame in the mode decision

2) Feature 2 (F2) : Luma based MD: Disable mode
decision process for chroma

3) Lowest compute: Combination of the above (F1 + F2)
The performance model of the experimental encoder was

mapped to estimate the number of cycles spent in finishing one
entire frame of different frame types. The performance was
estimated by modeling the memory access, bandwidth, and
latency of data movement across the entire encoding process.
All blocks are modeled in a pipelined manner to match the
throughput of one superblock. If the full configuration is
normalized to use 100% of the compute, Table I shows the
compute and the corresponding BD-rate loss when the lower
compute setting is used at the “analysis” step.

TABLE I
LOW COMPUTE FOR ANALYSIS + FULL CONFIGURATION FOR ENCODE

BD-rate loss
Analysis step configuration Compute % PSNR FB-MOS VMAF

Full configuration 100% 0% 0% 0%
F1 66.91% -0.04 p.p. -0.01 p.p. 0.00 p.p.
F2 61.02% 2.72 p.p. 3.06 p.p. 1.20 p.p.

lowest compute = F1 + F2 50.94% 2.71 p.p. 3.09 p.p. 1.20 p.p.

The result is averaged across 10 publicly available high
quality videos. In Table I, positive numbers for BD-rate loss
mean worse than the baseline, where the full configuration is
used for both the “analysis” and the “encode” steps. Lower
compute configurations were used for the “analysis” and the
full configuration for the “encode” step. F2 and the lowest
compute configuration are almost the same in terms of BD-



rate while the difference in compute is around 11 p.p. This is
because that while the features that account for the operations
in the mode decision block were disabled, it does not neces-
sarily translate to the winner decision for the final encoding.

Many of the early terminations and pruning in faster speed
settings are targeted towards sub8x8 and inter joint compound
search thresholds. This provided the motivation for disabling
4x4 or compound mode features. The lowest compute config-
uration used for the “analysis” step gives almost 50% compute
reduction with around 3.1 p.p. loss in BD-rate for FB-MOS
and even lower 1.2 p.p. loss for VMAF. We would later
demonstrate such loss can be recovered with a model based
approach in Sec. III-B.

Similar to [2], to examine the effect of these low compute
features and their relationship with resolution and QP further,
we perform a statistical analysis of the qualities and bitrates
from different configurations. Quality metrics and bitrates are
averaged over all the shots for each (resolution, QP), and
across different (resolution, QP). The aggregate changes of
bitrate and quality metrics with different compute configura-
tions are then examined. Table II shows the difference of bits,
quality metrics for each configuration, compared with the full
configuration. The quality metrics stay roughly the same, while
bits spent increase noticeably with lower compute.

TABLE II
AVERAGE BITRATE AND QUALITY DIFFERENCES WITH SAME
(RESOLUTION, QP), COMPARED TO FULL CONFIGURATION

Encoding configuration ∆ bitrate ∆ PSNR ∆ FB-MOS ∆ VMAF
Full configuration 0.00% 0.00 0.00 0.00

F1 0.28% -0.01 -0.04 0.01
F2 11.18% -0.29 -2.53 -1.07

lowest compute = F1 + F2 11.50% -0.30 -2.57 -1.06

B. Predicting within The Same Coding Standard

Based on the observation in Sec. III-A, a predictive model-
ing approach that uses Machine Learning is presented, to be
able to predict the bitrates and quality metrics produced by a
slower encoder from that by a faster one.

When considering the model architecture, the bitrate and
quality interaction needs to be taken into account. The multi-
target regression model was chosen in order to look at bitrate
and quality as a combined target. We built a model factory
conducting a comparison analysis of 35 machine learning
regression algorithms. Multivariate random forest regressor
was selected as the best fit for this purpose. It provides an
additional bonus of having a built-in cross validation step
assuring balanced data representation. The data is split into
train (80%) and test (20%) sets warranting good generalization
potential of the model. Below is the model description.

• Dataset structure: Each row of the dataset is a unique
combination of video shot, QP, and resolution.

• Feature set: The features used for the training are QP,
width, height, frame count, and the corresponding bitrate
and quality metrics collected from the faster encoder.

• Label: The output label consists of the pair of bitrate and
quality metric, which were produced by a slow encoder
for the same video shot and parameters as the feature set.

• Model evaluation: The model is evaluated in two phases.
First RMSE and MAPE metrics are used for the model
evaluation on per row basis. Then, BD-rate loss between
the convex hull of the slow encoder and that based on the
prediction model is used to select the best fitting model
out of the most performing ones from the first phase.

Once the model training phase completes, encoder B pa-
rameters can be obtained from encoder A with the modified
“analysis” step, realized this way:

1) Preprocess
2) Analysis:

a) Downsample and encode
b) Decode and upsample
c) Prediction: From the bitrate and quality pair of

each encoding, (rA, qA), predict the would-be
(r̂B , q̂B) for encoder B.

d) Determine the optimal selection of encoding pa-
rameters (resolution and QP) using the predicted
(r̂B , q̂B).

3) Encode

C. Predicting Across Different Coding Standards

The approach in the previous section works within the
same coding standard, because that even if with different
implementations, how QP affects the distortion is similar and
thus possible to perform the one-to-one prediction.

On the other hand, different quantization schemes do ex-
ist for different standards. Two of the most popular ones,
H.264/AVC and VP9, have completely different designs in
quantization. The same QP would not result in the same
quality level. Furthermore, increasing QP by a certain scale
also would not result in the same proportional decrease in
quality.

The key insight from [2] is that between a slower and a
faster speed setting, the distortion stays roughly the same with
the same QP value, while the bitrate changes proportionally
to the content complexity. Extending on this concept, when
looking at two different coding standards, if one can find
certain QP mapping between them that can produce encodings
with similar distortions, the bitrate differences should also be
proportional to the content complexity.

Based on this, the encoding parameters prediction across
different coding standards is proposed. Without loss of gen-
erality, in the following, encoder A denotes an encoder im-
plementing an earlier generation of video coding standard X ,
and encoder B, a later generation, Y .

First, a map between the different QP values between the
two coding standards X and Y would be constructed in the
following fashion.

1) Gather video shots from a wide variety of contents.
2) Downsample and encode each shot using both encoder

A and B, at M different resolutions and N QP values.



3) Decode and upsample each encode back to the original
resolution for metrics calculation.

4) Aggregate the quality metrics for all shots that were
encoded at the same resolution and QP value.

5) Build a QP map by matching the aggregated quality.

The last step, in our experiment, is simply done with the
nearest neighbor approach. That is, for a QP value with
encoder A, find the QP value for encoder B that would
produce the closest quality, at the same resolution. With such
map, one can then predict the encoding parameters needed to
be used with encoder B, from the convex hull of encoder A.
It can be realized this way:

1) Preprocess
2) Analysis:

a) Downsample and encode
b) Decode and upsample
c) Dynamic Optimizer

3) Prediction: From the list of optimal parameters for
encoder A at a target quality level, look up the cor-
responding QP value to be used with encoder B.

4) Encode
One of the key benefits the presented approach is that it can

work with any two given video codecs and leverage the huge
complexity differences between early codecs such as H.264,
and the modern codecs such as VVC or AV1. However, one
can argue that the most important benefit is that, given a single
video sequence, the convex hull analysis would only need to
be done once with a relatively cheap encoder. Results can be
stored, and later used to predict encoding parameters for any
new encoder or future video coding standards.

IV. EXPERIMENT RESULTS

A. Setup

We focused on two state-of-the-art video coding standards
that have popular open-sourced software implementations:
H.264/AVC, and VP9. For H.264/AVC, we used x264 with
single-threaded, CRF mode, and tune PSNR, along with two
different presets: “veryslow” and “veryfast”. For VP9, we used
libvpx with single-threaded, 2-pass encoding, and constant
quality mode, along with two different speed settings: 0
(slowest) and 4. In addition, we used our HW video encoder
[6] to provide HW-encoded H.264 streams, as well as an
internal experimental implementation of VP9 [3].

Ten real-world internet videos were used, covering a wide
variety of contents, ranging from professionally edited to
amateur-produced videos. They were encoded at 8 different
resolutions: 1080p, 720p, 540p, 432p, 360p, 288p, 216p, 144p,
and 6 different QP/CRF values: [23, 31, 35, 37, 39, 43] for
H.264 and [28, 33, 38, 43, 48, 53] for VP9. We used Lanczos
with alpha 3 to downsample and upsample the frames.

Two perceptual video quality metrics were used: FB-MOS
[7], a metric developed by Facebook, and the well-known
VMAF [8].

B. Predicting within the Same Codec

For predicting within the same codec, we opted to predict
from HW encoders that are typically much faster, to software
encoders. For each video shot, QP, and resolution, the HW
video encoder would produce a (bitrate, quality) pair, used as
the feature set of the model. For the same range of (video,
QP, resolution), the (bitrate, quality) pairs produced by x264
“veryslow” are used as the label.

TABLE III
BD-RATE COMPARED TO X264 “VERYSLOW” WITH FIXED CRF 27

Quality metric Technique in [2] Predictive Modeling ∆

FB-MOS -13.9% -16.0% 2.1 p.p.

VMAF -28.08% -29.34% 1.26 p.p.

Table III shows the results of the BD-rate for each of the
quality metrics averaged across 10 videos, compared to x264
“veryslow” with fixed CRF 27. The approach presented in [2]
is shown as well as the results based on predictive modeling.
By introducing the prediction step, the predictive modeling can
achieve a BD-rate gain of 16.0% on FB-MOS, and 29.34%
on VMAF, as opposed to 13.9% and 28.08%, respectively,
without prediction.

The same experiments were conducted on VP9 encoders as
well, with the internal lowest compute experimental imple-
mentation of VP9, and libvpx. We can observe that without
prediction, there is a gain of 16.96% in FB-MOS and 35.97%
in VMAF, over fixed-QP encodings, while with predictive
modeling, the gain becomes 19.22% and 36.8%. Considering
the approach in [2] introduced less than 3 p.p. BD-rate loss,
the results here show that the predictive modeling can recover
majority of the loss.

TABLE IV
BD-RATE COMPARED TO LIBVPX “CPU=0” WITH FIXED CQ-LEVEL 38

Quality metric Technique in [2] Predictive Modeling ∆

FB-MOS -16.96% -19.22% 2.26 p.p.

VMAF -35.97% -36.8% 0.84 p.p.

C. Predicting Across Different Codecs

The QP map is constructed based on the encoding statistics
of an entirely different video sequence, shown in Fig. 2. As
can be seen, it is fairly consistent between x264 CRF and
libvpx CQ-level across resolutions. It also maxes out fairly
quickly as CRF increases, which is consistent with what most
researchers have noticed, which is that libvpx cannot reach as
low bitrate as x264.

Table. V shows the results of cross-codec prediction. The
baseline is libvpx cpu=0 with fixed CQ-level 38. Subsequent
rows are the BD-rate, on FB-MOS and VMAF, obtained
by “analysis” and “encode” done with different encoders or
different speed settings. The row “libvpx cpu=0 → libvpx
cpu=0 represents the ground truth, which is obtained by



Fig. 2. x264 CRF to libvpx CQ-level mapping based on VMAF

TABLE V
BD-RATE COMPARED WITH LIBVPX “CPU=0” FIXED CQ-LEVEL 38

Configuration FB-MOS VMAF Analysis
Time

Total
Time

libvpx cpu=0
(fixed 38) 0% 0% - 100%

libvpx cpu=0
→ libvpx cpu=0 -22.58% -44.56% 100% 600%

libvpx cpu=4
→ libvpx cpu=0 -22.02% -44.15% 19.7% 218.4%

x264 veryfast
→ libvpx cpu=0 -19.35% -40.41% 1.93% 111.6%

applying the slowest speed setting for both the analysis and
the final encode step. The following rows are the results of
analyzing with libvpx speed 4, and with x264 “veryfast”, along
with the prediction step, respectively.

Same as demonstrated in the prior work, analyzing with
a faster speed setting of the same encoder, the BD-rate loss
is minimal, in this case, less than 1 p.p. if staying within
libvpx. On the other hand, using x264 to predict the encoding
parameters of libvpx does have a larger BD-rate drop, 3.23
p.p. in FB-MOS and 4.15 p.p. in VMAF.

However, since x264 is orders of magnitude faster than
libvpx, the compute overhead incurred in the analysis step
is minimal. As shown in Table. V, if the analysis time with
libvpx cpu=0 is normalized as 100%, the corresponding time
needed for analysis with x264 “veryfast” is only 1.93%. As
for the total time needed to do both the analysis and the
encode, it would be 600% of the traditional fixed-QP encoding
if analyzed with libvpx cpu=0, assuming 6 QPs used for
analysis. With the cross-codec prediction technique, it would
take only 111.6%. In other words, a massive 20-40% BD-rate
improvement can still be achieved with roughly 11% more
compute, compared to the traditional fixed-QP encoding.

V. CONCLUSION AND FUTURE WORKS

With faster encoder in the same codec family, it is possible
to significantly reduce the complexity needed for per-shot
convex hull optimization, with the trade-off of 3 p.p. BD-
rate loss, as shown in our prior work. A new prediction step
is introduced in this work, building on top of the fast encoding
parameter selection technique, to predict across any encoder
pair, and recover the majority of the BD-rate loss incurred by
analyzing with a faster encoder.

First, a prediction model is introduced to predict the bitrate
and the quality of the slower encoder, from that of a faster
encoder. Majority of the BD-rate loss from using a faster
encoder, can be recovered this way. Secondly, a cross-codec
prediction approach was presented, by constructing a quanti-
zation parameter map between encoders based on perceptual
quality metrics. An encoder from an earlier generation can thus
be used to predict the encoding parameters for one from a later
generation. This further reduces the time needed to perform
analysis. By predicting from x264 “veryfast” to libvpx speed
0, a simialr 20-40% BD-rate improvement over the traditional
fixed-QP encoding can still be achieved, with only 3-4 p.p.
loss. However, the analysis time is only 2% of what would be
needed if libvpx speed 0 is used for analysis, and compared to
the traditional fixed-QP encoding, only 11% additional time
is needed to have such huge BD-rate improvement.

The prediction approach opens up various possibilities for
determining optimal encoding parameters. We plan to continue
exploring techniques to further improve and reduce the 3-4 p.p.
BD-rate loss in the cross-codec prediction, while keeping the
complexity as low as possible.
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