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Abstract

Convolutional networks are the de-facto standard for an-
alyzing spatio-temporal data such as images, videos, and
3D shapes. Whilst some of this data is naturally dense (e.g.,
photos), many other data sources are inherently sparse. Ex-
amples include 3D point clouds that were obtained using
a LiDAR scanner or RGB-D camera. Standard “dense”
implementations of convolutional networks are very ineffi-
cient when applied on such sparse data. We introduce new
sparse convolutional operations that are designed to pro-
cess spatially-sparse data more efficiently, and use them
to develop spatially-sparse convolutional networks. We
demonstrate the strong performance of the resulting mod-
els, called submanifold sparse convolutional networks (SS-
CNs), on two tasks involving semantic segmentation of 3D
point clouds. In particular, our models outperform all prior
state-of-the-art on the test set of a recent semantic segmen-
tation competition.

1. Introduction

Convolutional networks (ConvNets) constitute the state-
of-the art method for a wide range of tasks that involve
the analysis of data with spatial and/or temporal struc-
ture, such as photos, videos, or 3D surface models. While
such data frequently comprises a densely populated (2D or
3D) grid, other datasets are naturally sparse. For instance,
handwriting is made up of one-dimensional lines in two-
dimensional space, pictures made by RGB-D cameras are
three-dimensional point clouds, and polygonal mesh mod-
els form two-dimensional surfaces in 3D space.

The curse of dimensionality applies, in particular, to data
that lives on grids that have three or more dimensions: the
number of points on the grid grows exponentially with its
dimensionality. In such scenarios, it becomes increasingly
important to exploit data sparsity whenever possible in or-
der to reduce the computational resources needed for data
processing. Indeed, exploiting sparsity is paramount when
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Figure 1: Examples of 3D point clouds of objects from the
ShapeNet part-segmentation challenge [23]. The colors of
the points represent the part labels.

analyzing, e.g., RGB-D videos which are sparsely popu-
lated 4D structures.

Traditional convolutional network implementations are
optimized for data that lives on densely populated grids,
and cannot process sparse data efficiently. More recently,
a number of convolutional network implementations have
been presented that are tailored to work efficiently on sparse
data [3, 4, 18]. Mathematically, some of these imple-
mentations are identical to regular convolutional networks,
but they require fewer computational resources in terms of
FLOPs and/or memory [3, 4]. Prior work uses a sparse ver-
sion of the im2col operation that restricts computation
and storage to “active” sites [4], or uses the voting algo-
rithm from [22] to prune unnecessary multiplications by ze-
ros [3]. OctNets [18] modify the convolution operator to
produce “averaged” hidden states in parts of the grid that
are outside the region of interest.

One of the downsides of prior sparse implementations of
convolutional networks is that they “dilate” the sparse data
in every layer by applying “full” convolutions. In this work,



Method Average IoU

NN matching with Chamfer distance 77.57%
Synchronized Spectral CNN [11] 84.74%

Pd-Network (extension of Kd-Network [10]) 85.49%
Densely Connected PointNet (extension of [17]) 84.32%
PointCNN 82.29%

Submanifold SparseConvNet (Section 6.5) 85.98 %

Table 1: Average intersection-over-union (IoU) of six ap-
proaches on the test set of a recent part-based segmentation
competition on ShapeNet [23]. Higher is better. Our SSCNs
outperform all alternative approaches.

we show that it is possible to create convolutional networks
that keep the same level of sparsity throughout the network.
Therefore, it becomes practical to train networks with sig-
nificantly more layers, e.g., ResNets [7] and DenseNets [9].

To this end, we develop a new implementation for per-
forming sparse convolutions (SCs) and introduce a novel
convolution operator termed submanifold sparse convolu-
tion (SSC).1 We use these operators as the basis for sub-
manifold sparse convolutional networks (SSCNs) that are
optimized for efficient semantic segmentation of 3D point
clouds, e.g., on the examples shown in Figure 1.

In Table 1, we present the performance of SSCNs on the
test set of a recent part-based segmentation competition [23]
and compare it to some of the top-performing entries in the
competition: SSCNs outperform all of these entries. Source
code for our library is publicly available online.2

2. Related Work
Our work primarily builds upon previous literature on

sparse convolutional networks [3, 4], and image segmenta-
tion using dense convolutional networks [14, 19, 24]. Ex-
amples of applications of dense 3D convolutions on volu-
metric data include classification [15] and segmentation [2];
these methods suffer from high memory usage and slow in-
ference, limiting the size of models that can be used.

Methods for processing 3D point clouds without vox-
elization have also been developed [10, 17]. This may seem
surprising given the dominance of ConvNets for processing
2D inputs; it is likely due to the computational obstacles
involved in using dense 3D convolutional networks.

Prior work on sparse convolutions implements a convo-
lutional operator that increases the number of active sites
with each layer [3, 4]. In [4], all sites that have at least one
“active” input site are considered as active. In [3], a greater

1These operators appeared earlier in an unpublished report [5], includ-
ing experiments on several classification datasets.

2https://github.com/facebookresearch/
SparseConvNet

degree of sparsity is attained after the convolution has been
calculated by using ReLUs and a special loss function. In
contrast, we introduce submanifold sparse convolutions that
fix the location of active sites so that the sparsity remains
unchanged for many layers. We show that this makes it
practical to train deep and efficient networks similar to VGG
networks [20] or ResNets [7], and that it is well suited for
the task of point-wise semantic segmentation.

OctNets [18] are an alternative form of sparse convolu-
tion. Sparse voxels are stored in oct-trees: a data struc-
ture in which the grid cube is progressively subdivided into
23 smaller sub-cubes until the sub-cubes are either empty
or contain a single active site. OctNet operates on the sur-
faces of empty regions, so a size-3 OctNet convolution on
an empty cube of size 8×8 ×8 requires 23% of the calcu-
lation of a dense 3D convolution. Conversely, submanifold
convolutions require no calculations in empty regions.

Another approach to segmenting point clouds is to avoid
voxelizing the input, which may lead to a loss of infor-
mation due to the finite resolution. This can be done by
either using carefully selected data structures such as Kd-
trees [10], or by directly operating on the unordered set of
points [17]. Kd-Networks [10] build a Kd-tree by recur-
sively partitioning the space along the axis of largest varia-
tion until each leaf of the tree contains one input point. This
takes O(N logN) time for N input points. PointNet [17]
uses a pooling operation to produce a global feature vector.

Fully convolutional networks (FCNs) were proposed in
[14] as a method of 2D image segmentation; FCNs make
use of information at multiple scales to preserve low-level
information to accurately delineate object boundaries. U-
Nets [19] extend FCNs by using convolutions to more ac-
curately merge together the information from the different
scales before the final classification stage; see Figure 4.

3. Spatial Sparsity for Convolutional Networks
We define a d-dimensional convolutional network as a

network that takes as input a (d+1)-dimensional tensor: the
input tensor contains d spatio-temporal dimensions (such as
length, width, height, time, etc.) and one additional feature-
space dimension (e.g., RGB color channels or surface nor-
mal vectors). The input corresponds to a d-dimensional grid
of sites, each of which is associated with a feature vector.
We define a site in the input to be active if any element in
the feature vector is not in its ground state, e.g., if it is non-
zero3. If the data is not naturally sparse, thresholding may
be used to eliminate input sites at which the feature vector
is within a small distance from the ground state. Note that
even though the input tensor is (d + 1)-dimensional, activ-
ity is a d-dimensional phenomenon: entire lines along the
feature dimension are either active or inactive.

3Note that the ground state does not necessarily have to be zero, in
particular, when convolutions with a bias term are used.
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Figure 2: Example of “submanifold” dilation. Left: Origi-
nal curve. Middle: Result of applying a regular 3× 3 con-
volution with weights 1/9. Right: Result of applying the
same convolution again. Regular convolutions substantially
reduce the feature sparsity with each convolutional layer.

Similarly, the hidden layers of a d-dimensional convolu-
tional network are represented by d-dimensional grids of
feature-space vectors. When propagating the input data
through the network, a site in a hidden layer is active if any
of the sites in the layer that it takes as input is active. (Note
that when using size-3 convolutions, each site is connected
to 3d sites in the hidden layer below.) Activity in a hid-
den layer thus follows an inductive definition in which each
layer determines the set of active states in the next layer.
In each hidden layer, inactive sites all have the same fea-
ture vector: the one corresponding to the ground state. The
value of the ground state only needs to be calculated once
per forward pass at training time, and only once for all for-
ward passes at test time. This allows for substantial savings
in computation and memory use.

We argue that the framework described above is unduly
restrictive, in particular, because the convolution operation
has not been modified to accommodate the sparsity of the
input data. If the input data contains a single active site,
then after applying a 3d convolution, there will be 3d active
sites. Applying a second convolution of the same size will
yield 5d active sites, and so on. This rapid growth of the
number of active sites is a poor prospect when implement-
ing modern convolutional network architectures that com-
prise tens or even hundreds of convolutional layers, such as
VGG networks, ResNets, or DenseNets [8, 9, 20].

Of course, convolutional networks are not often applied
to inputs that only have a single active site, but the afore-
mentioned dilation problems are equally problematic when
the input data comprises one-dimensional curves in spaces
with two or more dimensions, or two-dimensional surfaces
in three or more dimensions. We refer to this problem as
the “submanifold dilation problem”. Figure 2 illustrates the
problem: even when we apply small 3×3 convolutions on
this grid, the sparsity of the grid rapidly disappears.

4. Submanifold Convolutional Networks

We explore a simple solution to the submanifold dilation
problem that restricts the output of the convolution only to
the set of active input points. A potential problem of this ap-

Figure 3: SSC(·, ·, 3) receptive field centered at different ac-
tive spatial locations. Active locations in the field are shown
in green. Red locations are ignored by SSC so the pattern
of active locations remains unchanged.

proach is that hidden layers in the network may not receive
all the information they require to classify the input data:
in particular, two neighboring connected components are
treated completely independently. We resolve this problem
by using convolutional networks that incorporate pooling
or strided convolution operations. Such operations are im-
portant in the sparse convolutional networks4 we study, as
they allow information to flow between disconnected com-
ponents in the input. The closer components are spatially,
the fewer strided operations are necessary for components
to “communicate” in their intermediate representations.

4.1. Sparse Convolutional Operations

We define a sparse convolution SC(m,n, f, s) with m
input feature planes, n output feature planes, a filter size
of f , and stride s. An SC convolution computes the set
of active sites in the same way as a regular convolution: it
looks for the presence of any active sites in its receptive
field of size fd. If the input has size `, then the output has
size (`−f+s)/s. Unlike regular convolutions or the sparse
convolutions of [4], an SC convolution discards the ground
state for non-active sites by assuming that the input from
those sites is zero. This seemingly small change reduces
the computational cost by circa 50%.

Submanifold sparse convolution. The main contribution
of this paper is the definition of another sparse convolu-
tion. Let f denote an odd number. We define a sub-
manifold sparse convolution SSC(m,n, f) as a modified
SC(m,n, f, s=1) convolution. First, we pad the input with
(f−1)/2 zeros on each side, so that the output will have
the same size as the input. Next, we restrict an output site
to be active iff the site at the corresponding site in the input
is active (i.e., if the central site in the receptive field is ac-
tive). Whenever an output site is determined to be active, its
output feature vector is computed by the SSC convolution;
see Figure 3 for an illustration. Table 2 displays the compu-
tational and memory requirements of a regular convolution
(C) operation and our SC and SSC convolutions.

4Our “sparse convolutional networks” are networks designed to operate
on spatially-sparse input data; they do not have sparse parameters [12, 13].



Active Type C SC SSC

Yes FLOPs 3dmn amn amn
Memory n n n

No, a > 0
FLOPs 3dmn amn 0
Memory n n 0

No, a = 0
FLOPs 3dmn 0 0
Memory n 0 0

Table 2: Computational and memory requirements of three
convolutions: regular convolution (C), sparse convolution
(SC), and submanifold sparse convolution (SSC). We con-
sider convolutions with size f = 3 and padding s = 1 at a
single location in d dimensions. Herein, a is the number of
active inputs to the spatial location, m the number of input
feature planes, and n the number of output feature planes.

SSC convolutions are similar to OctNets [18] in that
they preserve sparsity structure. However, unlike OctNets,
empty space imposes no computational or memory over-
head in the implementation of SSC convolutions.

Other operators. To construct convolutional networks
using SC and SSC, we also need activation functions, batch
normalization, and pooling. Activation functions are de-
fined as usual, but are restricted to the set of active sites.
Similarly, we define batch normalization in terms of regu-
lar batch normalization applied over the set of active sites.
Max-pooling MP(f, s) and average-pooling AP(f, s) oper-
ations are defined as a variant of SC(·, ·, f, s). MP takes
the maximum of the zero vector and the input feature vec-
tors in the receptive field. AP calculates f−d times the sum
of the active input vectors. We also define a deconvolution
[25] operation DC(·, ·, f, s) as an inverse of the SC(·, ·, f, s)
convolution. The set of active output sites from a DC con-
volution is exactly the same as the set of input active sites
to the corresponding SC convolution: the connections be-
tween input and output sites are simply inverted.

4.2. Implementation

To implement (S)SC convolutions efficiently, we store
the state of a input/hidden layer in two parts: a hash table5

and a matrix. The matrix has size a ×m and contains one
row for each of the a active sites. The hash table contains
(location, row) pairs for all active sites: the location is a tu-
ple of integer coordinates, and the row number indicates the
corresponding row in the feature matrix. Given a convolu-
tion with filter size f , let F = {0, 1, . . . , f −1}d denote the
spatial size of the convolutional filter. Define a rule book to
be a collection R = (Ri : i ∈ F ) of fd integer matrices

5https://github.com/sparsehash/sparsehash

each with two columns. To implement an SC(m,n, f, s)
convolution, we:

1. Iterate once through the input hash-table. We build the
output hash table and rule book on-the-fly by iterating
over points in the input layers, and all the points in
the output layer that can see them. When an output
site is first visited, a new entry is created in the output
hash table. For each active input x located at point i
in the receptive field of an output y, add a row (input-
hash(x), output-hash(y)) to rule book element Ri.

2. Initialize the output matrix to all zeros. For each i ∈ F ,
there is a parameter matrix W i ∈ Rm×n. For each row
(j, k) in Ri, multiply the j-th row of the input feature
matrix by W i and add it to the k-th row of the the
output feature matrix. This can be done efficiently on
GPUs because it is a matrix-matrix multiply-add.

To implement an SSC convolution, we re-use the in-
put hash table for the output, and construct an appropriate
rule book. Note that because the sparsity pattern does not
change, the same rule book can be re-used in the network
until a pooling or subsampling layer is encountered.

If there are a active points in the input layer, the cost of
building the input hash-table is O(a). For FCN and U-Net
networks, assuming the number of active sites reduces by
a multiplicative factor with each downsampling operation,
the cost of building all the hash-tables and rule-books is also
O(a) regardless of the depth of the network.

The above implementation differs from [4] in that the
cost of calculating an output site is proportional to the num-
ber of active inputs, rather than to the size of the receptive
field. For SC convolutions this is similar to the voting algo-
rithm [22, 3] – the filter weights are never multiplied with
inactive input locations – but for SSC convolutions, the im-
plementation is less computationally intensive than voting
as there is no interaction between active input locations and
inactive neighboring output locations.

5. Submanifold FCNs and U-Nets
for Semantic Segmentation

Three-dimensional semantic segmentation involves the
segmentation of 3D objects or scenes represented as point
clouds into their constituent parts; each point in the input
cloud must be assigned a part label. As progress has been
made in the segmentation of 2D images using convolutional
networks [14, 19, 24], interest in the problem of 3D seman-
tic segmentation has grown recently. Interest was fueled, in
particular, by a new dataset for the part-based segmentation
of 3D objects, and an associated competition [23].

We use a sparse voxelized input representation similar
to [3, 4] and a combination of SSC convolutions and strided
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SC convolutions to construct sparse variants of the popular
FCN [14] and U-Net [2] networks. The resulting networks
are illustrated in Figure 4; see the caption for details. We
refer to these networks as submanifold sparse convolutional
networks (SSCNs), because they process low-dimensional
data living in a space of higher dimensionality.6

The basic building blocks for our networks are “pre-
activated” SSC(·, ·, 3) convolutions. Each convolution is
preceded by batch normalization and a ReLU non-linearity.
In addition to FCN and U-Nets with standard convolutional
layers, we also experiment with variants of these networks
that use pre-activated residual blocks [8] that contain two
SSC(·, ·, 3) convolutions. Herein, the residual connections
are identity functions: the number of input and output fea-
tures are equal. Whenever the networks reduce the spatial
scale by a factor of two, we use SC(·, ·, 2, 2) convolutions.
Our implementation of FCNs upsamples feature maps to
their original resolution rather than performing deconvolu-
tions using residual blocks. This substantially reduces the
number of parameters and mult-add operations in the FCN.

6. Experiments
In this section, we perform experiments with SSCNs on

the ShapeNet competition dataset [23]. We compare SS-
CNs against three strong baseline models in terms of per-
formance and computational cost: (1) shape contexts [1],
(2) dense 3D convolutional networks, and (3) multi-view
2D convolutional networks [21]. Throughout our experi-
mental evaluation, we focus on the trade-off between seg-
mentation accuracy and computational efficiency measured
in FLOPs7. In a second set of experiments, we also study
SSCN performance on the NYU Depth (v2) dataset [16].

6.1. Dataset

The ShapeNet segmentation dataset [23] comprises 16
different object categories (plane, chair, hat, etc.), each of
which is composed of up to 6 different parts. For instance,
a “plane” is segmented into “wings”, “engine”, “body”, and
“tail”. Across all object categories, the dataset contains a
total of 50 different object part classes. Each object is rep-
resented as a 3D point cloud that was obtained by sampling
points uniformly from the surface of the underlying CAD
model. Each point cloud contains between 2, 000 and 3, 000
points. To increase the size of the validation set, we re-split
the training and validation sets using the first bit of the MD5
hash of the point cloud files to obtain a training set with
6,955 examples and a validation set with 7,052 examples.
The test set contains 2,874 examples.

6We note that this is a slight abuse of the term “submanifold”. We
emphasize that the data on which these networks are applied may contain
multiple connected components, and even a mixture of 1D and 2D objects
embedded in 3D space.

7We ignore the FLOPs from the final classification layer.

View type IoU accuracy

Aligned 63.5%
Random pose 47.8%

Table 3: Accuracy of segmentation classifiers based on
shape-context features on (1) the original ShapeNet dataset
and (2) a variant of the dataset in which objects are ran-
domly rotated. The results show that removing the align-
ment of the ShapeNet objects via random 3D rotations
makes the segmentation problem more challenging.

In the original dataset, the objects are axis-aligned: for
instance, rockets always point along the z-axis. To make the
problem more challenging, we perform a random 3D trans-
lation and rotation on each point cloud before classifying it.
The results in Table 3 show that removing the alignment,
indeed, makes the segmentation task more challenging.

To evaluate the accuracy of our models, we adopt the
intersection-over-union (IoU) metric of [23]. The IoU is
computed for each part per object category and averaged
over parts and examples for the category to produce a
“per-category IoU”. This way of averaging the IoU scores
rewards models that make accurate predictions even for
object-parts that are very small: small parts have the same
weight in the accuracy measure as larger parts. The final
accuracy measure is obtained by taking a weighted average
of the per-category IoUs, using the fraction of training ex-
amples per category as weights.

6.2. Details of Experimental Setup

In all experiments, the same data pre-processing proce-
dure is used. Specifically, each point cloud is centered and
re-scaled to fit into a sphere with diameter S; scale S de-
termines the size of the voxelized representation. We use
S ∈ {16, 32, 48} in our experiments. At scale S = 48, the
voxels are approximately 99% sparse. In experiments with
dense convolutional networks, we place the sphere with ran-
dom translations and rotations in a grid of size S. For SS-
CNs, we place the sphere similarly in a grid of size 4S. To
voxelize the point cloud, we measure the number of points
per voxel and normalize them so that non-empty voxels
have an average density of one.

Networks are trained using the same optimization hy-
perparameters, unless otherwise noted. We use stochastic
gradient descent (SGD) with a momentum of 0.9, Nesterov
updates, and L2 weight decay of 10−4. The initial learning
rate is set to 0.1, and the learning rate is decayed by a fac-
tor of e−0.04 after every epoch. We train all networks for
100 epochs using a batch size of 16. We train a single net-
work on all 16 object categories jointly using a multi-class
negative log-likelihood loss function over all 50 part labels.



(a) Submanifold sparse FCN. (b) Submanifold sparse U-Net.
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Figure 4: Illustrations of our submanifold sparse FCN (a) and U-Net (b) architectures. Dark blue boxes represents one or
more “pre-activated” SSC(·, ·, 3) convolutions, which may have residual connections. Red boxes represent size-2, stride-2
downsampling convolutions; green deconvolutions “invert” these convolutions. Purple upsampling boxes perform “nearest-
neighbor” upsampling. The final linear and softmax layers are applied separately on each active input voxel.

We experiment with two types of SSCN network archi-
tectures. The first architecture (C3) operates on a single spa-
tial resolution by stacking SSC(·, ·, 3) convolutions; we use
with 8, 16, 32, or 64 filters per layer, and 2, 4, or 6 layers.
The second architecture type comprises FCNs and U-Nets
with three layers of downsampling. These networks have 8,
16, 32, or 64 filters in the first layer, and double the number
of filters each time the data is downsampled. For the convo-
lutional blocks in these networks, we use stacks of 1, 2, or
3 SSC convolutions, or stacks of 1, 2, or 3 residual blocks.

Details on testing. At test time, we only compute softmax
probabilities for part labels that actually appear in the object
that is being segmented, i.e., we assume the models know
the category of the object they are segmenting. Softmax
probabilities for irrelevant part classes are set to zero (and
the distribution over part labels is re-normalized).

For each of the three network types (C3, FCN, and U-
Net), we train a range of models with varying sizes, as de-
scribed above, and monitor their accuracy on the validation
set. For each network type, we select the networks that cor-
respond to local maxima in the accuracy vs. FLOPs curve,
and report test set accuracies for those networks. Akin to
multi-crop testing that is commonly in image classification,
we ensemble model predictions over multiple views: we
generate k different views of the object by randomly rotat-
ing them, and average the model predictions for each point
over the k different views of the object.

6.3. Baselines

In addition to SSCNs, we consider three baseline mod-
els in our experiments: (1) shape contexts [1], (2) dense
3D convolutional networks, and (3) multi-view 2D convo-
lutional networks [21]. We describe the details of the four
baseline models separately below.

Shape contexts. Inspired by [1], we define a vox-
elized shape context vector. Specifically, we define
a ShapeContext layer as a special case of the
SSC(1, 27, 3, 1) submanifold convolution operator: we set
the weight matrix of the operator to be a 27×27 identity
matrix so that it accumulates the voxel intensities in its
3×3×3 neighborhood. We scale the data using average
pooling with sizes 2, 4, 8, and 16 to create four additional
views. Combined, this produces a 135-dimensional feature
vector for each voxel. This feature vector is fed into a non-
convolutional multi-layer perceptron (MLP) with two hid-
den layers, followed by a 50-class softmax classifier. The
MLPs have 32, 64, 128, 256, or 512 units per layer. At test
time, we use multi-view testing with k=3.

Dense 3D convolutional networks. For dense 3D convo-
lutional networks, we simply considered dense versions of
the SSCN networks. Due to computational constraints, we
restricted the FCN and U-Net convolutional blocks to a sin-
gle C3-layer. We trained some of the models with a reduced
learning rate due to numerical instabilities we observed dur-
ing training. Again, we use K = 3 multi-view testing.

Convolutional networks on multi-view 2D projections.
This baseline model discards the inherent 3D structure
of the data by projecting the point cloud into a two-
dimensional view by assuming infinite focal length, apply-
ing a 2D convolutional network on this projection, and av-
eraging the predictions over multiple views. An immediate
advantage of this approach is that well-studied models from
2D vision can be used out-of-the-box without further adap-
tations. Moreover, the computational cost scales with the
surface area, rather than the volume of the point cloud.

In our implementation of this approach, we first convert
the point clouds into a 3D grid of size S×S×S as we



(a) Comparison with baseline methods. (b) Comparison between architectures (see 6.2). (c) SSCN with different scales, S.

Figure 5: Average interaction-over-union (IoU) on the test set of SSCNs trained for 3D semantic segmentation on the
ShapeNet competition data set (higher is better).

did for the previous baseline. We then project to a plane
of size S × S, i.e., a face of the cube, with two feature
channels. One feature channel is the first visible, non-zero
voxel along the corresponding column. The second channel
is the distance to the visible voxel, normalized to the range
[0, 2], analogous to the depth channel of an RGB-D image.
Our network architectures are two-dimensional versions of
the dense 3D convolutional networks described above.

During training, a random projection of the point cloud
is passed into the model. Points in the point cloud that fall
into the same voxel are given the same prediction. Some
voxels are occluded by others—the network receives no in-
formation on the occluded voxels. We modify the multi-
view testing procedure to take into account the occlusion of
voxels. Similar to before, predictions are performed using
a weighted sum over k random projections. We found that
2D networks require more views to obtain high accuracy
and use up to k=10 views. Voxels that are observed in the
2D projection are given a weight of 1. The weight of oc-
cluded voxels decays exponentially with the distance to the
voxel that occludes them which guarantees a prediction for
each point, even if that point is occluded in all views.

6.4. Results

In Figure 5, we report the average IoU on the ShapeNet
test set of a range of differently sized variants of: (1) the
three baseline models and (2) our submanifold C3, FCNs,
and U-Nets. The average IoU is shown as a function of the
number of multiplication-addition operations (FLOPs) re-
quired by the models for computing the predictions. Please
note that the results in the figure are not directly comparable
with those in [23] because we are testing the models in the
more challenging “random-pose” setting.

SSCNs vs. baselines. Figure 5(a) compares SSCNs with
the three baselines.8 The results show that shape context
features, multi-view 2D ConvNets, and dense 3D ConvNets
perform roughly on par in terms of accuracy per FLOP.
SSCN networks outperform all baseline models by a sub-
stantial margin. For instance, at 108 FLOPs, the average
IoU of SSCNs is 6-8% higher than that of the baselines.
Importantly, our results show that restricting information to
travel along submanifolds in the data does not hamper the
performance of SSCNs, whilst it does lead to considerable
computational and memory savings that can be exploited to
train larger models with better accuracies.

Ablation. In Figure 5(b), we compare the three SSCN ar-
chitectures presented in Section 6.2. We observe that SS-
CNs involving downsampling and upsampling operations
(FCNs and U-Nets) outperform SSCNs operating on a sin-
gle spatial resolution and we conjecture that this is due to
the increased receptive field obtained by downsampling.

Figure 5(c) shows the performance of SSCNs at three
different scales S (using all three architectures: C3, FCN,
and U-Net). We observe that the performance of SSCNs is
similar for different values of S, in particular, for low num-
bers of FLOPs. At a higher number of FLOPs, the models
operating at a larger scale perform slightly better.

6.5. Results on Competition Data

To compare SSCNs with the entries to the competition
in [23], we also trained an FCN-SSCN on the aligned point
clouds. In this experiment, we performed data augmenta-

8The number of FLOPs reported for shape contexts may be slightly
misleading: the computational costs of calculating shape context features
is not reflected in the number of FLOPs, as it involves integer arithmetic.



Figure 6: Two examples of RGB-D images from the NYU
Depth dataset (v2) [16]. Each example comprises an RGB
image (left) and a corresponding depth image (right).

tion using random affine transforms. We set S=24 and use
64 filters in the input layer, three levels of downsampling,
and two residual blocks per spatial resolution. The results
of 10-view testing are compared with the competition en-
tries in Table 1. With a test error of 85.98%, our network
outperforms other methods by ≥0.49% IoU.

6.6. Semantic Segmentation of Scenes

We also performed experiments on the NYU Depth
dataset (v2) [16] for semantic segmentation of scenes rather
than objects. The dataset contains 1, 449 RGB-D im-
ages, which are semantically segmented into 894 different
classes. Figure 6 shows two examples from the dataset:
each example comprises an RGB image and the associated
depth map. Following [6, 14], we crop the images and re-
duce the number of classes to 40. To assess the performance
of our models, we measure their pixel-wise classification
accuracy. We compare our models to a 2D FCN [14].

We perform experiments with two differently sized
SSCN-FCN networks. Network A has 16 filters in the input
layer, and one SSC(·, ·, 3) convolution per level. Network B
has 24 filters in the input layer, and two SSC(·, ·, 3) convo-
lutions per level. Both networks use eight levels of down-
sampling. We increase the number of filters in the networks
when downsampling: in particular, we add 16 (A) or 24 (B)
features every time we reduce the scale.

We use the depth information to convert the RGB-D im-
ages into a 3D point cloud. Each point in the cloud has
the three (RGB) features that were normalized to the range
[−1, 1], and a fourth indicator features that is set to 1 for
each point in the point cloud. The indicator feature is
needed to model the case in which a voxel is active but all
three colour channels have a value of zero. During training,

Network k Accuracy FLOPs Memory

2D FCN [14] 1 61.5% 28.50G 135.7M

SSCN-FCN A 1 64.1% 1.09G 5.2M
4 66.9% 4.36G 20.7M

SSCN-FCN B 1 66.4% 4.50G 11.6M
4 68.5% 17.90G 46.4M

Table 4: Semantic segmentation performance of five differ-
ent convolutional networks on the NYU Depth test set (v2)
on 40 classes. The table displays the pixel-wise classifica-
tion accuracy, the computational costs (in FLOPs), and the
memory requirements (c.f. Table 2) of each of the models.

we perform data augmentation by applying random affine
transformations to the point cloud. Before voxelizing the
point cloud, we downscale by a factor of two, and place the
points into the model’s receptive field. We form voxels by
averaging the feature vectors of the points corresponding to
the voxel. At test time, we experiment with both single-
view and multi-view predictions (i.e., with k=1 and k=4).

The results of our experiments on the NYU Depth
dataset (v2) are presented in Table 4. In line with our previ-
ous results, the results in the table show that SSCNs outper-
form 2D FCN in terms of pixel accuracy by up to 7%. At
the same time, SSCNs also substantially reduce the compu-
tational requirements of the prediction model.

To verify that SSCN-FCN-A actually uses depth infor-
mation, we repeat the previous experiment whilst setting all
the depth values to zero; this prevents the SSCN from ex-
ploiting depth information. We observe: (1) a reduction of
FLOPs by 60%, as there are fewer active voxels; and (2) a
drop in accuracy from 64.1% to 50.8%, which demonstrates
that SSCNs do use 3D structure when performing segmen-
tation. This confirms that SSCN-FCN-A, indeed, uses depth
information for making predictions.

7. Conclusions

In this paper, we introduced submanifold sparse convo-
lutional networks (SSCNs) for the efficient processing of
high-dimensional, sparse input data. We demonstrated the
efficacy of SSCNs in a series of experiments on semantic
segmentation of three-dimensional point clouds. Specif-
ically, our empirical evaluation of SSCN networks shows
that they outperform a range of state-of-the-art approaches
for this problem, both when identifying parts within an ob-
ject and when recognizing objects in a larger scene. More-
over, SSCNs are computationally efficient compared to al-
ternative approaches. Our software toolbox for constructing
SSCNs is publicly available at https://github.com/
facebookresearch/SparseConvNet.

https://github.com/facebookresearch/ SparseConvNet
https://github.com/facebookresearch/ SparseConvNet
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