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ABSTRACT
There are increasing interests in learning low-dimensional and
dense node representations from the network structure which is
usually high-dimensional and sparse. However, most existing meth-
ods fail to consider semantic meanings of links. Different links may
have different semantic meanings because the similarities between
two nodes can be different, e.g., two nodes share common neighbors
and two nodes share similar interests which are demonstrated in
node-generated content. In this paper, the former type of links are
referred to as structure-close links while the latter type are referred
to as content-close links. These two types of links naturally indicate
there are two types of characteristics that nodes expose in a social
network. Hence, we propose to learn two representations for each
node, and render each representation responsible for encoding the
corresponding type of node characteristics, which is achieved by
jointly embedding the network structure and inferring the type of
each link. In the experiments, the proposed method is demonstrated
to be more effective than five recent methods on four social net-
works through applications including visualization, link prediction
and multi-label classification.
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1 INTRODUCTION
Social networks can meet and even create social needs for human
beings as it is very convenient for people to reach out and get con-
nected to others. We can analyze data regarding social network
involvement to help improve networks and user experiences. This
may explain why there are increasing interests from both industry
and academia in personalizing services to users’ interests, behaviors
and attributes [14] [5], detecting communities [10, 33], recommend-
ing products [23, 43] or friends [12, 34–36]. However, the network
representation, e.g., adjacency matrix, is usually high-dimensional
and spare. High-dimensionality makes it inefficient to train data
miningmodels while sparsitymakes it not easy to generalize trained
models for future usage.

Recently, network embedding [11, 21, 25, 37–39] has been uti-
lized to learn low-dimensional and dense node representations ba-
sically by embedding the network structure in a certain Euclidean
space. Although being demonstrated effective to preserve the net-
work structure, almost all existing methods fail to consider semantic
meanings of links in a social network where different links may
have different semantic meanings. Semantically different links re-
sult from different reasons for which links are established and the
reasons can be of various types in practice, e.g., two persons share
a common university friend and two persons are fans of Star Wars.
Hence, semantically different links may indicate nodes expose dif-
ferent types of information in a social network, e.g., the former
example mentioned above may indicate the two persons expose
information about their education while the latter example may
indicate they expose information about their interests. As a result,
it is more reasonable to embed the network structure with the
semantic meanings of each link considered.

In this paper, we thus take the first step towards exploring seman-
tic meanings of social links in the context of network embedding.
Specifically, we propose to categorize social links according to their
semantic meanings and learn node representations with seman-
tic concepts. Inspired by homophily principle [18] which suggests
links exist between nodes with similarities, we categorize links
according to the type of similarities two nodes share. As the first
work, this paper only considers two types of coarse-grained simi-
larities, i.e., common neighbors and similar interests demonstrated
in node-generated content, which represent two most frequently
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Figure 1: Structure-close link between node 1 and node 4
while content-close link between node 4 and node 5. Capi-
tal letters in cloud-like box denote node-generated content.

used types of similarity measurement, i.e., topology-based similari-
ties and node content-based similarities, for two nodes to have a
link [1, 15]. If two nodes share common neighbors, the link can be
referred to as a structure-close link while if they share interests, the
link can be referred to as a content-close link as illustrated in Fig. 1. It
is worthy of noting that a particular link can be both structure-close
and content-close since the two nodes can have common neighbors
and share similar content at the same time.

We further generalize the concept of structure-close links be-
tween two nodes that are close in the network structure, e.g., two
nodes can be close when they are connected by third-order links
or even fourth-order links (second-order links exist between two
nodes sharing common neighbors). But we do not set a threshold
for the order of links to define the structure-close links because the
threshold is not that important in this paper.

The existence of two types of semantic meanings of links sug-
gests that it may not be proper to learn a single representation for
each node because they may indicate the existence of two types
of node characteristics, e.g., education and interests mentioned
above. Education represents the type of characteristics that are
intrinsic to nodes while interests represent the type nodes acquire
from the particular social environment. The problem with a single
representation is determined by the nature of network embedding,
i.e., nodes connected by links should be close in the embedding
space of interest. Accordingly, two nodes with different types of
characteristics may be wrongly presented to be close.

For example, in Fig. 1, since node 5 is connected to node 4 and
node 4 is connected to node 1, the representation of node 5 may also
be close to node 1 in the embedding space, which may suggest node
5 and node 1 have a potential link. However, if the structure-close
link between node 1 and node 4 is established because they share
many university alumni while node 5 is not one of the alumni, node
1 and node 5 are not much likely to have a link because they also do
not share interests. In this example, we make several assumptions
about the links and node-generated content. One may question the
assumption that node 1 and node 4 are connected by a structure-
close link but do not share content. To validate this assumption, we
present density of cosine similarity between tweets of two users
connected by a structure-close link whose nodes share neighbors
in a Twitter network described in Section 6 and corresponding
cumulative density in Fig. 2. We can see there is a large portion of
links whose nodes share little or even no common content.

In this paper, we thus propose to learn two representations for
each node and render each representation responsible for encoding
a particular type of node characteristics. Since content-close links
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Figure 2: Similarity density plot and cumulative density plot

mainly result from sharing similar interests, we name node charac-
teristics exposed in these links as interests, and the corresponding
representation as interest representation. For structure-close links
resulting from sharing neighbors, we may think each node has
an idea of whom the other node is by referring to its neighbors.
Hence, we name the other type of node characteristics as identity
and the corresponding representation as identity representation.
The proposed method is thus referred to as interest and identity
representation learning (IIRL).

With the two representations, the problem faced by learning a
single representation mentioned above can be solved as follows:
node 1 and 4 are presented to be close in the embedding space cor-
responding to identity representations while node 4 and 5 are close
in the space for interest representations. As a result, node 1 may
not be close to node 5 because they are far away from each other
in both of the spaces. Moreover, with these two salient semantic
meanings, the two representations can make natural data mining
tasks, e.g., link prediction and classification, more interpretable
than single representations without semantic meanings [8].

The idea of learning two representations imposes twomajor chal-
lenges. Firstly, unlike learning a single representation that preserves
both interest-related and identity-related characteristics, IIRL has
to make sure that these two types of characteristics are preserved
where they should be. But each link can be both structure-close and
content-close. Hence, the challenge is how to infer the type of node
characteristics exposed in each link so that the network structure
and semantic meanings of links are well preserved in node repre-
sentations. Secondly, besides the network structure, we also need
to encode node-generated content into interest representations.

To address the first challenge, we infer the responsibility weight
for each type of node characteristics given a particular link. The
responsibility weights are estimated because characteristics in a
particular link can be an arbitrarymixture of interest-related charac-
teristics and identity-related ones. For the second challenge, we use
node content as guidance while learning the interest representation
as the content has the ground truth about node interests.

The contributions of the paper are summarized as follows:
1. To our best knowledge, this is the first work to explore se-

mantic meanings of social links in network embedding.
2. We propose IIRL to learn two representations for each node

by embedding the network structure and node-generated
content where the network structure is gracefully embedded
via joint link type inference.

3. We shed light on understanding social behaviors of individ-
ual users and an entire social network as a by-product of
embedding social networks.



4. Via comprehensive evaluation on four social networks, we
show data mining models built on the two representations
are more accurate as well as more interpretable .

2 RELATEDWORK
The development of recent network embedding starts with Deep-
Walk [21], which employs Skip-gram [19], a language model, to
present pairs of nodes reached in truncated random walks to be
close in the embedding space. With the success of DeepWalk, there
emerge a series of Skip-gram based methods, such as TADW [40] to
embed both network structure and node attributes, and node2vec
[11] to explore diverse neighborhoods of each node.

There are also many other kinds of methods. LINE [25] is pro-
posed to embed large-scale networks by directly presenting pairs
of nodes with first-order or second order connections to be close.
GraRep [6] models first-order up to a pre-defined k-order proxim-
ities into transition matrices, and then factorizes each transition
matrix using SVD. A recent method [41] concludes that modeling
high-order proximities can improve the quality of node represen-
tations, and then makes improvement to aforementioned models.
Besides simply preserving the network structure, some methods
also preserve network properties, such as HOPE [20] preserving
asymmetric transitivities and M-NMF [30] preserving communi-
ties. Some methods [7] [24] [37] [9] even embed heterogeneous
networks including more than one types of nodes and edges. Deep
learning models have also been applied for network embedding
[29]. Most of the methods above are unsupervised learning meth-
ods. Semi-supervised methods [28] [42] [13] have also been studied
since representations with label information can perform better in
subsequent classification tasks.

However, none of the methods mentioned above consider se-
mantic meanings of links in a social network.

3 PRELIMINARIES
DEFINITION 1. A social network with node-generated con-
tent is denoted as G (N ,E,A), where N is a set of nodes, E is a set
of weighted or unweighted, directed or undirected edges. The type of
node characteristics, i.e., interest-related characteristics and identity-
related characteristics, in each edge is unknown. A ∈ RM×L is a term
frequency matrix of attributes extracted from the content whereM is
the number of nodes and L is the number of attributes. It is assumed
that each node content is non-empty.

As a network embeddingmodel, IIRL learns node representations
through embedding first-order linkage information and non-linkage
information of G (N ,E,A) in an Euclidean space. More specifically,
each pair of nodes connected by an edge is presented to be close
while each pair not connected is presented apart. Since there are
two representations for each node, i.e., identity representation and
interest representation, there are two corresponding spaces. The
closeness of two nodes in the identity space is quantified as follows:

DEFINITION 2. The closeness of two nodes in the identity Eu-
clidean space is quantified as the probability of a structure-close edge
between them, where the probability is defined as follows:

p (ei ju ) =
1

1 + exp{−u⊤i u j }
, (1)

where ei ju is a structure-close edge, ui ∈ RDu and u j ∈ RDu are col-
umn vectors of identity representations for nodes i and j , respectively,
and Du is the dimension of the identity Euclidean space. In the rest of
the paper, the closeness is referred to as identity closeness.

Eq. (1) is symmetric in terms of node representations. For directed
edges, the asymmetric property is not considered as LINE [25] and
EOE [37] do. We may consider it in future work. Interest closeness
is similarly defined. The closenesses can be quantified in this way
because larger probabilities indicate larger inner products of two
vectors, and the inner product is a measurement of closeness of two
points in Euclidean space. Moreover, the closeness quantified in
this way is to facilitate the formulation of an optimization objective
presented in the following section.

Although the definition of closeness is similar to that of LINE(1st)
[25] and EOE [37], IIRL further assigns a responsibility weight to the
type of node characteristics in each edge, which is reflected on the
overall closeness. The overall closeness of two nodes is summarized
over weighted identity closeness and weighted interest closeness
as follows:

p (ei j ) = πi jup (ei ju ) + πi jvp (ei jv ), (2)
where p (ei jv ) quantifies interest closeness, ei jv is a content-close
edge, and πi ju and πi jv are defined as follows:

DEFINITION 3. Identity proportion of a linkage relationship de-
noted as πi ju quantifies the responsibility weight of identity-related
characteristics in the link between node i and node j . Similarly, inter-
est proportion of a linkage relationship denoted as πi jv quantifies
the responsibility weight of interest-related characteristics. As there
are only two types of node characteristics as indicated in the intro-
duction, πi ju + πi jv = 1.

According to Eq. (2), to correctly estimate the responsibility
weights of the linkage relationship between two nodes, interest pro-
portion is expected to be larger than identity proportion when the
probability estimated by interest representations is larger than that
estimated by identity representations, and vice versa. Otherwise,
the weighted sum of the probability is less optimal. This expec-
tation is consistent with our intuition that the stronger one out
of two characteristics is more likely to dominate the relationship
of two persons, e.g., the same attitude to Golden State Warriors
or Cleveland Cavaliers may be more likely than the same born
state, even the same university of two US citizens to dominate their
relationships. And this intuition sheds light on how IIRL infers the
link type.

4 IIRL MODEL
To obtain optimal node representations and link types for embed-
ding the network structure, the optimization objective can be formu-
lated according tomaximum likelihood estimation since closeness is
quantified by a concept of probability. Hence, the network structure
embedding is formally formulated as the following problem:

max
U ,V ,π

∏
ei j ∈E

p (ei j )
∏

ehk<E
(1 − p (ehk ))

s .t . πi ju + πi jv = 1&πhku + πhkv = 1,
(3)

where U ∈ RM×Du and V ∈ RM×Dv is the matrix of identity
representations and interest representations, respectively, and π
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Figure 3: An illustration of embedding a toy network by IIRL and the expected embedding results. It is assumed that links
among node 1, 2, 3, and 4 are structure-close links while links among node 4, 5 and 6 are content-close links. Moreover, the
link between node 1 and 3 is also a content-close link. The middle box illustrates the application of IIRL on edge (5,6) and
node 5 with its content. Circles in blue denote identity representations while circles in green denote interest representations.
a5 is node attribute vector of node 5, and | | · | |22 is ℓ-2 norm.

is the collection of πi ju , πi jv , πhku and πhkv . πhku and πhkv are
similar to πi ju , πi jv but node h and k are not connected.

By taking negative natural logarithm of Eq. (3), the problem is
equivalent to the following minimization problem:

min
U ,V ,π

−
∑
ei j ∈E

wi j logp (ei j ) −
∑

ehk<E
log(1 − p (ehk ))

s .t . πi ju + πi jv = 1&πhku + πhkv = 1,
(4)

wherewi j ∈ R is the weight of edge ei j to reflect to link strength,
and does not violate the original objective as indicated in Eq. (3).
The number of ehk can be largely reduced by negative sampling to
reducemodel complexity as LINE [25] does, and themodel performs
well with negative sampling as shown in the experiments.

We also illustrate the proposed network structure embedding by
a four-layer feedforward neural network model as presented in the
middle dashed box of Fig. 3. The input are node representations. By
manipulating the connections between the input layer and the first
hidden layer, the first hidden layer realizes dimension-wise multipli-
cation of identity representations of two nodes and multiplication
of interest representations. The second hidden layer produces iden-
tity closeness and interest closeness by employing sigmoid function
as the activation function. The output layer produces the overall
closeness by summarizing weighted closenesses shown in Eq. (2).

Since user-generated content explicitly indicates user’s interests,
the interest representation of each node should comply with its con-
tent. To achieve this purpose, we regularize interest representations
to node content through the following minimization:

min
V ,P
| |VP −A| |2F , (5)

where P ∈ RDv×L is a projection matrix, and | | · | |2F is Frobenius
norm. The intuition behind the equation is that the user interests
should be well represented by the interest representationV through
the projection matrix P . As the first work to explore semantic
meanings of social links, the paper assumes the content is non-
trivial. Hence, attribute selection is not performed.

By directly combining Eq. (4) for structure embedding and Eq.
(5) for content embedding, the overall loss can be drawn as follows:

L (U ,V ,P ,π ) = −
∑
ei j ∈E

wi j logp (ei j ) −
∑

ehk<E
log(1 − p (ehk ))

+ | |VP −A| |2F + λ | |U | |
2
F + λ | |V | |

2
F + λ | |P | |

2
F

s .t . πi ju + πi jv = 1&πhku + πhkv = 1,
(6)

where | |U | |2F , | |V | |
2
F , and | |P | |

2
F are regularization terms, and λ ∈ R

is a regularization coefficient.
Since larger probabilities of edges indicate larger inner products

of node representations suggested by Eq. (1), nodes connected by
edges are expected to be close in the embedding space. More specif-
ically, nodes connected by structure-close edges should be close in
the identity space such as node 1, 2, 3, and 4 in Fig. 3 while nodes
connected by content-close edges should be close in the interest
space such as node 4 and 5, node 5 and 6. Moreover, node 1 and 3
are close in both identity space and interest space. In this sense, the
network structure is well preserved in node representations.

5 THE OPTIMIZATION ALGORITHM
L (U ,V ,P ,π ) is not jointly convex over the four input variables.
Hence, we replace it with a sequence of easier optimizations by
an alternating optimization algorithm [4]. More specifically, the
minimization problem can be alternatingly solved with respect to
one of the four variables at a time with other variables fixed. We
then solve each variable according to the corresponding problem.

Problem (1): The optimization problem forU orV can be solved
by gradient-based algorithms, e.g., gradient descent and L-BFGS.
The derivative w.r.tU can be obtained as follows:

∂L (U ,V ,P ,π )

∂ui
= −

∑
ei j ∈E

wi jπi ju exp{−uTi u j }u j
p (ei j ) (1 + exp{−uTi u j })

2
+ 2λui

−
∑
eik<E

πiku exp{−u
T
i uk }uk

(p (eik ) − 1) (1 + exp{−uTi uk })
2
,

(7)



where eik is the same concept as ehk .
Problem (2): Similarly, the derivative w.r.t V is as follows:

∂L (U ,V ,P ,π )

∂vi
= −

∑
ei j ∈E

wi jπi jv exp{−vTi v j }v j

p (ei j ) (1 + exp{−vTi v j })2

−
∑
eik<E

πikv exp{−v
T
i vk }vk

(p (eik ) − 1) (1 + exp{−vTi vk })
2

+ 2(vTi P − a
T
i )P

T + 2λvi

(8)

Problem (3):With respect to P , the optimization objective turns
into solving the following problem:

min
P
| |VP −A| |2F + λ | |P | |

2
F , (9)

Hence, the optimal P can be easily obtained by setting the derivative
of Eq. (9) with respect to P to zero, where the derivative is quantified
as the following formulation:

2VTVP − 2VTA + 2λP . (10)

By setting Eq. (10) to zero, the optimal P is quantified by the fol-
lowing equation:

P = (VTV + λI )−1VTA, (11)
where I ∈ RL×L is an identity matrix.

Problem (4):W.r.t. π , rather than solving it directly, it is easier
to optimize unconstrained "softmax weights" defined as follows:

πi ju =
exp{ξi ju }

exp{ξi ju } + exp{ξi jv }
, (12)

where ξi ju ∈ R and ξi jv ∈ R. As a result, the problem turns into
solving ξi ju and ξi jv , which can be solved by gradient descent.

Hence, the derivative w.r.t ξi ju is expressed as follows:

∂L (U ,V ,P ,π )

∂ξi ju
=

wi j
[
p (vi ,v j ) − p (ui ,u j )

]

p (ei j )
[
exp{ξi ju − ξi jv } + 2 + exp{ξi jv − ξi ju }

] ,

(13)
and ∂L (U ,V ,P ,π )

∂ξi jv
is similar to ∂L (U ,V ,P ,π )

∂ξi ju
except that the nom-

inator iswi j
[
p (ui ,u j ) − p (vi ,v j )

]
.

Similarly, the derivatives w.r.t ξhku and w.r.t ξhkv are expressed
as follows: ∂L (U ,V ,P ,π )

∂ξhku
=

p (vh ,vk ) − p (uh ,uk )

(p (ehk ) − 1)
[
exp{ξhku − ξhkv } + 2 + exp{ξhkv − ξhku }

] , (14)

and ∂L (U ,V ,P ,π )
∂ξhkv

is similar to ∂L (U ,V ,P ,π )
∂ξhku

except that the nom-
inator is p (uh ,uk ) − p (vh ,vk ).

The workflow of jointly solving these four variables is presented
in Algorithm 1. Algorithm 1 starts with pre-trainingU andV , which
is performed to obtain good initialization values for U and V as
introduced below, and the parameter k is used in the pre-training.
The parameter negative ratio is the ratio of the number of ehk to that
of ei j as used in negative sampling by LINE [25]. It is observed that
Algorithm 1 works well with this parameter in the experiments. For
all gradient descents, the learning rate in each iteration is obtained
by backtracking line search [2].

Algorithm 1: The optimization algorithm
Input :G (N ,E,A), D, ξi ju and ξi jv , negative ratio, λ, and k
Output :U , V , and π

Pre-trainingU and V ;
while (not converge) do

FixingU , V , π , find the optimal P with the Eq. (11);
FixingU , V , P , find the optimal π with gradient descent;
Fixing V , P , π , find the optimalU with gradient descent;
FixingU , P , π , find the optimal V with gradient descent;

returnU , V , and π

Pre-training is important as it can initialize amodel to a point in
parameter space that renders the learning process more effective [3].
In our case, to make the learning process more effective,U should
be pre-trained to take values reflecting identity-related information
as expected, and V should take values reflecting interest-related
information. As identity-related information may only be recovered
from the network structure given G (N ,E,A), we thus pre-trainU
by embedding the network structure without considering the link
type. Based on the proposed network structure embedding, the loss
function for pre-trainingU can be quantified as follows: L(U ) =

−
∑
ei j ∈E

wi j log(p (ui ,u j ))−
∑

ehk<E
log(1−p (uh ,uk ))+λ | |U | |2F , (15)

where p (ui ,u j ) and p (uh ,uk ) are quantified in the same way as Eq.
(1). We can solve L(U ) by gradient descent, and the derivative is
obtained as follows: ∂L(U )

∂u i
=

−
∑
ei j ∈E

wi j exp{−u⊤i u j }
1 + exp{−u⊤i u j }

×u j +
∑

ehk <E

uk
1 + exp{−u⊤i uk }

+ 2λ (u i ), (16)

As for V , because we may not know which links are content-
close, we thus pre-train V by embedding node content. To make
this problem simple, we construct a k-nearest neighbor graph of the
nodes so that the method for pre-trainingU can be directly applied
to pre-train V . The links in the kNN graph are established from
each node to its first-k neighbors with a weight of 1. The similarity
of two nodes is quantified by cosine similarity of their content.

Complexity: Referring to the derivatives, the complexity of
Algorithm 1 is dominated by learning node representations from the
network structure and the term frequency matrix constructed from
node content. Taking the identity representations as an example,
the complexity of learning from the network structure is O (Du |E |)
due to negative sampling and the complexity of learning from the
term frequency matrix is O (Du |N |L) where L is the number of
terms. Since social networks are usually sparse, the scalability to
large-scale networks can be guaranteed.

Convergence: Algorithm 1 is essentially a block-wise coordi-
nate descent algorithm [27] withU , V , π and P as block variables.
So convergence can be guaranteed based on the general proof of
convergence for block-wise coordinate descent. Moreover, in the
experiments, we observe Algorithm 1 converges fast in terms of
the outer iterations.



Network DBLP Twitter BlogCatalog Flickr
#Nodes 6482 9244 7857 6318
#Edges 19265 323922 137649 404085
#Attributes 8298 10360 5351 8523
#Groups 4 N/A 15 5

Type weighted
undirected

unweighted
directed

unweighted
undirected

unweighted
undirected

Table 1: Network statistics.

6 EMPIRICAL EVALUATION
6.1 Datasets
Four social networks studied in the experiments are as follows:
• DBLP [26]: We sample a co-authorship network of authors
who published as least 2 papers during the period from 2000
to 2009 from selected conferences, which are KDD, ICDM,
SDM, and PAKDD in DM field, AAAI, ICML, NIPS, IJCAI,
CVPR, and ECML in ML field, SIGMOD, VLDB, ICDE, PODS,
and EDBT in DB field, WWW, SIGIR, CIKM, WSDM, and
ECIR in IR field. Words of paper abstract are assigned as
the attributes of each author. Stop words and words with
frequency less than 6 are omitted.
• Twitter [17]: The dataset has directed links among users,
and words from tweets demonstrating user’s interests. We
sample users who have attributes no less than 20 and have
followed no less than 6 users, and sample the words with a
minimal frequency of 8.
• BlogCatalog [32]: The links among users are undirected
friendships. We aggregate tags on blogs as users’ attributes.
We sample users who published as least one blog belonging
to one of 15 popular categories, which are Art, Computers,
Music, Photography, Travel, Sports, Technology, Internet,
Humor, Business, Writing, Culture, Health, Finance, and
Film. The threshold of attributes for each user is set as 6, and
the threshold of the number of friends is 3. Attributes with
frequency less than 3 are omitted.
• Flickr[31]: The links between users are friendships, and the
attributes for each user are aggregated tags on their photos.
We sample users from five popular groups which are 7, 36, 77,
119, and 148. We sample users with minimal 30 attributes and
with minimal 10 friends, and set the threshold of frequency
for each feature as 25.

Network statistics are summarized in Table 1.

6.2 Experiment Settings
Five recent network embedding models are employed as baselines,
which are DeepWalk [21], LINE [25], and node2vec [11] for em-
bedding only the network structure, TADW [40] and EOE [37] for
embedding both the network structure and node content.

In the experiments, the dimension of both identity representation
and interest representation is set as 128 as used in all the baselines.
Because there are two representations for each node in both IIRL
and TADW, the two representations are concatenated as one repre-
sentation in the evaluation except for the representations of IIRL
used in link prediction. Though the dimension of node representa-
tion of both IIRL and TADW is two times of that of other baselines,
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Figure 4: Locations of Twitter nodes in different spaces.

a larger dimension actually does not bring advantages as suggested
in the parameter sensitivity of this paper, of LINE, of TADW, and
of EOE. Other settings are that ξi ju and ξi jv are initialized as 0.5,
k for pre-training is set as top 1% of all the nodes, negative ratio
is set as 5 as used in LINE, the regularization coefficient is set as 1,
commonly used settings are used in backtracking line search, and
the relative loss that determines the convergence of Algorithm 1 is
set as 0.001.

6.3 Representation Visualization
This section presents a visual evaluation of the effectiveness of the
identity representations and interest embeddings by visualizing
them in a two-dimension space. Firstly, we present locations of
11 nodes from the Twitter network in identity space and interest
space in Fig. 4, which is obtained by t-SNE [16]. The true user IDs
in Twitter for these 11 nodes are listed in the following Table 4. The
relationships between them are that 1&2, 3&4, and 5&6 have many
common friends, but have shown little or no similar interests. This
may suggest that links between themmay be purely structure-close.
6&7, 8&9, and 10&11 show similar interests but no or one common
neighbor, which may suggest the interest proportion of these links
is larger than identity proportion. Moreover, node 5, 6 and 7 is a
real example of the motivation scenario in Fig. 1 in the introduction.
As suggested by the model illustration in Fig. 3, 1&2, 3&4 and 5&6
should be close in the identity space and far away in the interest
space while 6&7, 8&9, and 10&11 should have the exactly opposite
pattern. Moreover, node 7 should be far away from node 5 in both
spaces even though they share node 6 as a common neighbor. By
examining Fig. 4, we find the representations work as expected.

Secondly, we visualize representations in network scale. The
DBLP co-authorship network is studied as it is a well-structured
professional network. The results are presented in Fig.5.

Co-authorships tend to take place within each research field,
but the selected four fields, i.e., DB, DM, ML, and IR, are closely
related. In other words, many co-authorships may be cross-filed,
which implies that the co-authorships alone may not be sufficient to
distinguish researchers from different fields. Hence, representations
learned from the network structure may not be able to visually
distinguish authors from one field to another. And this is indeed
demonstrated by all the models that can only embed the network
structure. But TADW, EOE, and the proposed IIRL work much
better by combining information of the network structure and of
the node content as illustrated in Fig. 5(5), Fig. 5(6), and Fig. 5(7),
respectively. This is because node content demonstrates research
interests, which are different among these four fields as illustrated
in Fig. 5(8) and Fig. 5(9).
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Figure 5: Visualization of representations learned from the DBLP co-authorship network. Points of different colors denote
authors from different research fields, where red color represents Data Mining, green color represents Database, light blue
represents Information Retrieval, and dark blue represents Machine Learning. The filed of each author is determined as the
one where he/she published the most papers.

The proposed IIRL and TADW perform a slightly better than
EOE, which may because research interests are directly combined
with representations learned from the network structure in IIRL
and TADW while EOE can only incorporate interests in an implicit
way. Though it is not easy to visually tell which one of IIRL and
TADW performs better, the way of IIRL to combine the network
structure and node content is more reasonable. TADW performs
the combination by approximating the entire network structure
through node content. Analogously, IIRL performs the approxima-
tion selectively, which is motivated by the fact that different edges
have different proportions of interest characteristics and identity
characteristics. IIRL performs the selection through inferring re-
sponsibility weights so that node characteristics can be embedded
in appropriate representations other than are blindly embedded in
identity representations or interest ones. The effectiveness of this
selective embedding is demonstrated by the observation that final
interest representations in Fig. 5(9) perform better than pre-trained
ones in Fig. 5(8). The performance of how correctly IIRL infers
responsibility weights is evaluated via link type inference below.

6.4 Link Type Inference
As there is no ground truth about the identity proportion and
interest proportion of each edge given G (N ,E,A), we define four
types of links in terms of common neighbors and the relationship
in interests in Table 2. The neighbor relationship is defined in the
pre-training section. Type I corresponds to purely structure-close
social links, Type I I corresponds to purely content-close social links,
and Type I I I corresponds to both structure-close and content-close
links while Type IV remains uncertain as there is no clear clue
about the type of node characteristics. Bottom of Table 1 lists the
statistics of four types of links of the Twitter network.

It is worthy of noting that the distribution of Twitter links over
the four types depends on the choice of the number k in the k-
nearest neighbor network. The number k determines the number

Type I Type II Type III Type IV
Sharing
neighbors ✓ ✗ ✓ ✗

Not sharing
neighbors ✗ ✓ ✗ ✓

Neighbor in
interests ✗ ✓ ✓ ✗

Non-neighbor
in interests ✓ ✗ ✗ ✓

Twitter 208598 845 108475 6014
Table 2: Four types of social links in terms of the common
neighbors and the relationship in interests.

Predicted
Type I

Predicted
Type I I Recall Rate

True Type I 181751 26847 87.13%
True Type I I 640 205 75.73%
Precision 99.65% 99.24%
Table 3: Confusion matrix for link type inference.

of links composed of nodes with neighbor relationship in interests.
Here, the k is set as 1% of nodes, a commonly used number for
constructing kNN networks in network embedding [22]. As a result,
the number of neighbor links is 109320, taking up 33.7% of all the
links. The number is reasonable as there more than 60% of links
whose endpoint vertices share few interests as indicated by small
similarities (e.g., ≤ 0.2) in the cumulative density plot of Fig. 2.

We can quantitatively evaluate how IIRL correctly infers Type
I and Type I I links in a way that Type I links should have larger
values of πi ju while Type I I links should have larger values of
πi jv . For Type I I I links, we may not be able to do a quantitative
evaluation but we can do a qualitative evaluation based on the



Types User ID (R. N.) #C. F. N. I. Common Attributes πi ju πi jv
4119741 (1), 32423136 (2) 22 ✗ @TheAtlantic 0.82 0.18

Type I 155969606 (3), 65913144 (4) 23 ✗ N/A 0.89 0.11
618593 (5), 157218534 (6) 9 ✗ N/A 0.87 0.13

Type I I 157218534 (6), 387210978 (7) 0 ✓ #StarWars, @darthvader, @DepressedDarth 0.15 0.85
85815410 (8), 23508439 (9) 1 ✓ #Cowboys, #Patriots, #NFLDraft 0.12 0.88
11348282 (10), 77351627 (11) 1 ✓ #gamedev, @jonjones, @polycount, @GearboxSoftware 0.28 0.72

Table 4: Representatives of Type I and Type I I links, where R. N. is acronym of Reference Number used in Section 6.3, #C. F. is
acronym of #Common Friends, and N. I. is acronym of Neighbor in Interests.
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Figure 6: PDF plot and CDF plot

difference between πi ju and πi jv , which should not be too large
because there may not be a dominant factor for Type I I I links.

The confusion matrix on inferring Type I and Type I I social
links is presented in Table 3. It shows both Type I and Type I I links
can be accurately inferred, and the performance on inferring Type
I links is better. To verify this performance, three representatives
of accurately predicted Type I links and three of Type I I links are
presented in Table 4. We can see from Table 4 that all estimated
πi ju and πi jv are consistent with link types. Also, for Type I links,
besides there are many common friends shared by the two users,
the friendship is bi-directional, which largely supports the claim
that two users connected by structure-close links may have an idea
of whom each other is in the real world.

To evaluate the performance on inferring Type I I I links, we
present the distribution of absolute differences between πi ju and
πi jv and the cumulative density plot in Fig. 6. The PDF plot shows
themajority of differences are small, and the CDF plot shows around
70% of differences are within 0.2. Because it is expected that Type
I I I links may not have a dominant type of characteristics, the iden-
tity proportions should take values similar to that of the interest
proportions. To this point, it is concluded that the proposed IIRL
model can accurately infer link types, and responsibility weights.

6.5 Social Profiling
After inferring link types, we can build social profiles so as to un-
derstand users’ social behaviors and the social network. The social
profile of a user refers to information about his/her friendships
with other users. Social profiling is a by-product of learning repre-
sentations because IIRL is able to infer the type of social links of
which all the baselines, in contrast, are not capable.

According to the link types, we categorize users into five groups
as illustrated in Table 5, where only identity-exposing users are those
who only have structure-close links, and other terms are defined
similarly. It is worthy of noting that structure-close links here are

Twitter Flickr Blog DBLP
Only

identity-exposing 240 1359 403 1378

#Users

Only
interest-exposing 1837 1170 79 1937

More
Identity-exposing 3389 3876 5120 1486

More
Interest-exposing 3595 1227 590 1642

Equally exposing 116 259 126 39

#Links structure-close 218158 125220 352531 21568
content-close 105764 12429 53157 16962
Table 5: Social profiling for networks.

inferred by IIRL during the training process, and they are associ-
ated with relatively larger identity proportion πi ju compared with
interest proportion πi jv . Social profiles in network scale by sum-
marizing over users are also presented in Table 5. Two interesting
observations are drawn as follows:
• From the perspective of links, all networks show that more
social links are established between users who may know
each other in the real world because structure-close links
out-number content-close links. This suggests that the major
reason for people to involve in social networks may be to
maintain relationships with real-world friends. Also, all the
networks except the Twitter network agree with the conclu-
sion from the perspective of users. The reason behind the
Twitter network is explored below.
• Uni-directional relationships would encourage connections
between people who do not know each other. By referring
to the Twitter network, there are more interest-exposing
users, and the ratio of content-close links to structure-close
links is not that small compared with that in Flickr and
BlogCatalog. This is excepted because friendships are easier
to be acknowledged by one side than by both sides.

6.6 Link Prediction
Link prediction is usually performed by measuring similarities of
pairs of nodes [15]. Inner product of two node representations nor-
malized by sigmoid function is employed as the similarity measure-
ment for all the baselines. For IIRL, the similarity is the summary of
identity similarity and interest similarity weighted by identity pro-
portion and interest proportion. On Twitter, BlogCatalog, and Flickr
networks, we conduct 4 runs of experiments in which different ra-
tios of links are used as training links and the remaining ones as test



Models BlogCatalog Flickr Twitter DBLP
20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 100%

DeepWalk 69.92 76.44 79.32 81.32 71.79 77.04 78.30 78.69 96.25 97.62 97.68 97.80 73.26
TADW 67.12 70.67 73.02 74.97 62.59 65.04 68.10 70.16 94.25 95.24 95.82 96.90 66.26
LINE(1st) 53.61 73.70 65.36 79.60 61.31 66.31 69.10 70.83 92.56 95.90 97.02 97.70 62.45
LINE(2nd) 65.77 68.25 70.47 72.05 66.25 68.02 68.66 68.79 91.04 94.84 96.12 96.63 76.04
node2vec 73.69 76.99 77.75 78.54 71.20 70.80 70.71 71.75 96.12 97.64 97.68 97.68 71.59

EOE 78.28 83.36 86.81 88.94 74.10 77.36 78.69 79.39 96.93 97.79 98.01 98.09 76.19
IIRL 82.30 86.54 90.26 91.92 78.62 79.41 82.03 81.29 97.60 98.69 98.37 98.45 77.21

Table 6: AUC scores of link prediction tasks, where percentage numbers are percentages of links used as training links.

Models Micro-F1 Macro-F1
Blog Flickr DBLP Blog Flickr DBLP

DeepWalk 58.42 66.52 78.48 57.86 55.71 77.46
TADW 63.62 67.96 84.68 61.55 58.58 83.96
LINE(1st) 59.55 63.95 77.62 58.72 56.92 76.51
LINE(2nd) 57.60 66.07 75.93 56.95 56.55 75.45
node2vec 55.85 57.76 76.96 55.73 48.72 75.66

EOE 62.95 67.86 84.56 62.03 58.62 83.32
IIRL 66.08 68.79 85.30 63.53 59.36 84.77

Table 7: Micro-F1 and Macro-F1 of multi-label classification

links. On the DBLP co-authorship network, new co-authorships
occur from 2010 to 2012 are used as test links. For all networks,
the same number of negative links are randomly sampled for the
evaluation purpose. For IIRL, if a particular pair of nodes does not
appear during the training process, the identity proportion and
interest proportion are both set as initialized 0.5. The performance
measured on AUC score is presented in Table 6.

Table 6 shows the proposed IIRL model consistently outperforms
all baselines on all datasets. The reason behind the superior per-
formance of IIRL over DeepWalk, LINE and node2vec is that a
considerable number of links should be content-close as demon-
strated previously and IIRL can capture users’ interests exhibited
in user-generated content. The superior performance over TADW
is because not all links are content-close. Moreover, TADW even
under-performs DeepWalk except on the Twitter network which
has more content-close links than the other three networks. Hence,
it not appropriate to approximate the entire network structure by
node content like TADW but to approximate the content-close links
by node content like the proposed IIRL. The superior performance
over EOE is because interests are more explicitly employed in in-
ferring new interactions. Moreover, the unexpected consequence
of learning a single representation for two types of node character-
istics mentioned in the introduction may also explain the inferior
performance of all the baselines.

Interpretability on link prediction: Besides being more accu-
rate, IIRL can provide explanations for each piece of link prediction,
e.g., it is established because two users know each other in the
real world or because two users share similar interests. This can
be easily obtained by referring to identity similarity and interest
similarity because the larger similarity is expected to be associated
with the larger proportion as discussed in Definition 4.

6.7 Multi-label Classification
The groups are used as labels for the evaluation. We employ the
binary-relevance SVM with polynomial kernel as the classifier, and

100 200 300 400 500

(a) # Dimensions

50

55

60

65

70

75

80

A
U

C

IIRL

EOE

Line2

DeePWalK

node2vec

Line1

TADW

0 2 4 6 8 10
50

55

60

65

70

75

80

85

(b) k(%)

A
U

C

0 2 4 6 8 10

(c) # Iterations

74

76

78

80

82

84

A
U

C
 o

n
 F

lic
kr

5.2

5.4

5.6

5.8

6

6.2

6.4

L
o

ss
 F

u
n

ct
io

n

10
5

AUC

Loss Function

0 2 4 6 8 10

(d) # Iterations

72

73

74

75

76

77

78

A
U

C
 o

n
 D

B
L

P

1.15

1.2

1.25

1.3

1.35

1.4

1.45

L
o

ss
 F

u
n

ct
io

n

10
6

AUC
Loss Function

Figure 7: Sensitivity analysis and convergence analysis

the performance in terms of Micro-F1 and Macro-F1 obtained by
5-fold cross validation is presented in Table 7. Similarly, IIRL out-
performs all the baselines. An intuitive explanation for the superior
performance can be obtained from the visualization of the DBLP
network in Fig. 5. Specifically, as nodes of the same group are dis-
tributed closer to each other in IIRL than in baselines, the decision
boundary estimated in SVM can be more effective.

6.8 Parameter Sensitivity and Convergence
In this section, we study the performance w.r.t to the dimension of
representations and the number k used in kNN networks. Fig. 7(a)
presents the performance on the link prediction task for the DBLP
dataset w.r.t different dimensions of representations. It shows that
the proposed IIRL is not much sensitive to the dimension. Fig. 7(b)
presents the performance on the link prediction task for the DBLP
dataset w.r.t k. It shows that the number k should not be too small
(e.g., 0.1%) as well as too large (e.g., 10%).

We also study the convergence of Algorithm 1. Specifically, we
study the performance of the algorithm on link prediction for Flickr
when 80% of links used as training data and for DBLP w.r.t. the
number of outer iterations. The results are presented in Fig. 7 (c)
and Fig. 7 (d). It shows that the algorithm converges very fast and
may converge to stable performance after about 5 outer iterations.

7 CONCLUSION AND FUTUREWORK
In this paper, we explore semantic meanings of social links in net-
work embedding for the first time. We categorize social links ac-
cording to whether they are structure-close or content-close, and



propose IIRL to learn identity representations and interest represen-
tations. In the future, we plan to explore more fine-grained semantic
meanings of social links instead of two coarse-grained meanings.
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