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ABSTRACT
Supervised ASR models have reached unprecedented levels
of accuracy, thanks in part to ever-increasing amounts of
labelled training data. However, in many applications and
locales, only moderate amounts of data are available, which
has led to a surge in semi- and weakly-supervised learning
research. In this paper, we conduct a large-scale study eval-
uating the effectiveness of weakly-supervised learning for
speech recognition by using loosely related contextual infor-
mation as a surrogate for ground-truth labels. For weakly
supervised training, we use 50k hours of public English so-
cial media videos along with their respective titles and post
text to train an encoder-decoder transformer model. Our
best encoder-decoder models achieve an average of 20.8%
WER reduction over a 1000 hours supervised baseline, and
an average of 13.4% WER reduction when using only the
weakly supervised encoder for CTC fine-tuning. Our results
show that our setup for weak supervision improved both
the encoder acoustic representations as well as the decoder
language generation abilities.

Index Terms— End-to-end ASR, Weak-supervision

1 Introduction
Over the past few years, Automatic Speech Recognition
(ASR) has made great strides due to the successful applica-
tion of supervised Deep Learning (DL) techniques [1, 2, 3, 4].
However, one drawback of such approaches is the heavy re-
liance on large volume of supervision which can be difficult
to acquire for new domains. A good ASR system operat-
ing in real environments requires a large volume of training
data to marginalize out and deal with different acoustic con-
ditions of background noise, languages, accents, speakers,
and their emotional states. This practical need has led to
a surge in ASR research in unsupervised acoustic feature
learning [5, 6, 7, 8, 9, 10, 11, 12], as well as semi and
weakly-supervised learning [13, 14, 15, 16, 17, 18]. In [19],
the “island of confidence” technique was used to filter the
owner-uploaded video transcripts creating additional weakly-
supervised ASR training data. 1 million hours of audio were
transcribed using a teacher ASR model to train a production-
ready student model [15]. To improve performance in rare
words and proper nouns, [16] distilled top hypothesis gener-
ated by a contextually-biased ASR system as ground truth for
training an encoder-decoder ASR model.
This paper belongs to this last category with a focus on public

social media videos, which provide interesting challenges and
opportunities for ASR research. On one hand, these videos
contain a diverse range of speakers, dialects, topics, and
acoustic conditions making automatic recognition difficult.
On the other hand, parallel audio, visual and text information
(e.g. video title, post text, and comments) is available for
social media videos over which joint multi-modal learning
is possible. This work focuses solely on utilizing video title
and post text as additional contextual information for acoustic
model training.
The relationship between contextual text and audio associ-
ated with a video ranges from weak semantic relatedness to,
sometimes, overlap of exact words, phrases, or quotes taken
verbatim from the audio. Training an ASR model to generate
such related context information from audio signals exposes
it to a large volume of diverse training examples, even if they
are far from the exact speech content of audio. The downside
is that the audio content may not be related or represented
at all in the contextual text, let alone being monotonically
aligned to the audio content. In this study, we evaluate the
effectiveness of using contextual text from videos as weak
labels for large-scale ASR training, and outline a proposal to
overcome the aforementioned problems, achieving an average
of 20.8% WER reduction over an encoder-decoder baseline
system trained only on 1000h of supervised data, and 13.4%
when we transfer only the encoder part of the model to be
fine-tuned using the Connectionist Temporal Classification
(CTC) loss [20].

2 Weakly supervised training

2.1 Datasets

We use two sets of training data: (i) {X,Y s} ∈ Ds is the
supervised data where X and Y s are pairs of audio features
and label sequences. (ii) {X,Y w} ∈ Dw is the weakly-
supervised dataset where X and Y w are pairs of audio fea-
tures and the corresponding contextual text. The targets Y s
and Y w are sequences of sub-word units [21].

2.2 The proposed approach

Our proposed acoustic model training centers around utiliz-
ing distant, weak supervision from contextual text surround-
ing social media videos. We use an encoder-decoder approach
[22, 23] for maximizing the conditional probability of gener-
ating the contextual text sequence Y w given X an input se-



quence of mel-scale log filterbank features where xi ∈ Rd

Fw = p(Y w|X; θw)

=

M∏
i=1

p(ywi |yw1 , yw2 , ..., ywi−1, x1, x2, ..., xT ; θ
w)

The attention-based encoder-decoder approach fits well with
the proposed training approach since it offers flexible align-
ment and unconstrained coverage between input and output
sequences. Other ASR training approaches aren’t suitable
given the abstractive relationship between Y w and X . The
hybrid HMM-NN approach requires a low-level sub-second
alignment between input audio and output targets, while the
CTC approach assumes a monotonic alignment between in-
puts and outputs, and it constrains the maximum possible
length of the output sequence by the length of the input se-
quence. The final objective function is F = Fw + Fs where
the supervised term, Fs = p(Y s|X; θs), is also maximized
using the encoder-decoder approach. We share the full model
for both types of data, where θw = θs = {θenc, θdec} com-
bines the parameters in the audio encoder and the language
generation and attention parameters in the decoder. During
training, we alternate, with some mixing ratio, between mini-
batches sampled from the two training sets Ds and Dw.

2.3 The main assumptions
We are making two main assumptions in the proposed train-
ing approach:
(1) |Dw| >> |Ds|, and the diversity of acoustic conditions
represented in Dw is much larger than that in the super-
vised data Ds. Therefore, training on Dw has the potential
to improve the final model’s ability to generalize better to
new speakers and recording conditions compared to a base-
line model trained only on Ds. To test the importance of
this assumption, in our experiments, we present results for
pre-training the ASR model using 50x, 10x, and 2x of the
supervised data size.
(2) Maximizing p(Y w|X; θ) can be used as a proxy for max-
imizing p(Y s|X, θ). This is a rather strong assumption since
the best ASR system will not generate a commentary for its
speech inputs and vice versa. In other words, θw∗, the optimal
model parameters maximizing the conditional likelihood of
Dw, may not equal an optimal ASR model’s parameters θs∗.
To test this assumption, we explore three specific questions:
(i) Given an input sequence X , how close is the user-
generated commentary Y w to Y s, the true audio content,
under some semantic measure of relatedness? We use the set
intersection of words in Y w and hypothesis generated using a
baseline ASR as a proxy for relatedness. In our experiments,
we test multiple levels of strictness for enforcing this condi-
tion.
(ii) Does maximizing p(Y w|X; θ) improve p(Y s|X, θ) dur-
ing all phases of model optimization? We distinguish between
three learning phases during model optimization: (a) An ini-
tial burn-in phase (b) A final fine-tune phase (c) An
intermediate train-main phase. More details about these
three phases are in Section 2.5. We hypothesize that the

Fig. 1: A block diagram of one transformer block.

maximum transfer between Fw and Fs happens during the
train-main intermediate phase of learning.
(iii) Does training the ASR model on Dw benefit all model
components equally? Does it hurt some of them? To answer
this question, we evaluate the impact of weakly supervised
training on two ASR supervised fine-tuning setups: (a) One
that utilizes both θenc and θdec from weak-supervision i.e, the
acoustic and the language modeling components, for the final
ASR model fine-tuning. (b) A second ASR setup where we
only use θenc for initializing an acoustic-only model that is
subsequently fine-tuned with a CTC loss function [20] using
an independently trained and fixed language modeling com-
ponent. Using these two setups, we can distinguish gains due
to better encoder acoustic representation from better language
generation abilities learned by the decoder component.

2.4 The model architecture
We use transformer blocks as building blocks in our encoder-
decoder ASR model [24, 25, 26], shown in figure 1, and fol-
low the convolutional transformer architecture from [27]. For
joint encoding of input content and position, the encoder input
applies convolutional blocks each consisting of 2-D convolu-
tion, LN, ReLU non-linearity, and max-pooling layers:

[c1, c2, ..., cτ ] = 2DConvBlocks([x1, x2, ..., xT ])

The encoder then applies multiple transformer blocks. Multi-
headed self-attention (MHSA) is the core component of trans-
former blocks. Self-attention (SA) represents each time step
of the sequence C ∈ Rτ×d as a sum of all other time steps
weighted by the inner products of their representations where
each time step acts as a query qt, a key kt, and a value vt.
Scores for each time step are scaled by the inverse square root
of the dimension d over which the inner product is computed.
A softmax operation is applied over all possible key indices,
to encourage soft competition between different time steps,
followed by a dropout operation to the combination weights:

SA(Q,K, V ) = Dropout
(
Softmax(QKT /

√
d)
)
∗ V

Multi-head attention (MHA) extends self-attention by repeat-
ing it number-of-heads times, H , using different linear pro-
jections for each head, and concatenating their outputs:

MHA(Q,K, V ) = ConcatHh=1

(
SA(Qwhq ,Kw

h
k , V w

h
v )
)
∗wo

{whq , whk , whv} ∈ Rd×di project Q, K, and V matrices dif-
ferently for each head to the desired inner product dimension



di. wo ∈ RHdi×d projects the concatenated self-attention
vectors to the output dimension d. Following the MHA sub-
block, each transformer block applies a fully connected feed-
forward sub-block, which is composed of two linear trans-
formers and a ReLU non-linearity in between, to each time
step. To avoid vanishing gradients, residual connections are
added around the MHA and the fully connected sub-blocks,
and Layer Normalization (LN) operations are applied before
them. The only difference between the encoder and decoder
architectures is the use of a 1-d convolution operation to rep-
resent previously generated output tokens [y1, y2, ..., yi−1].
The decoder component uses two transformer blocks each
with multi-head cross attention for summarizing the final en-
coder representations. The dot-product cross-attention makes
neither coverage nor monotonicity assumptions about the re-
lationship between the input and output sequences. Similar
to story and dialogue response generation [28, 29], segments
of the input sequence can be covered in the output sequence
once, multiple times or none at all, and similarly for segments
of the output sequence.

2.5 The training process

In our experiments, we study the impact of the three training
phases introduced in 2.3: (1) An initial supervised burn-in
phase in which the decoder cross-attention learns to properly
communicate gradient information to adjust encoder acoustic
features. (2) A training phase driven by a mixture of the su-
pervised and the weakly supervised loss functions, we refer
to it as the train-main phase, in which the model expands
its inventory of audio features and mappings between acoustic
and linguistic cues. (3) A final supervised-only fine-tune
phase which utilizes either the full encoder-decoder model
trained in the train-main step, or the encoder component
to be refined by the CTC loss. Given the transformer’s ability
to reconstruct input sequences in any desired arbitrary order,
an extra transformer block is optionally added to the encoder
layers before fine-tuning to smooth out the transition from the
encoder-decoder cross-entropy loss to the CTC loss which en-
forces monotonicity between input and output sequence.

3 Experiments
Data: Both the supervised and weakly-supervised (WS)
datasets used in this study are sampled from our in-house
datasets. Our supervised dataset consists of 1000 hours of
data sampled from public English videos that are anonymized.
We use this data exclusively in the burn-in and fine-tune
stages of training, and on a fraction of minibatches in
train-main determined by the mixing ratio, as well as
for training the baseline ASR model.
Our weakly-supervised dataset consists of 4M public English
videos that are 30 to 60 seconds in duration with contextual
text between 60 to 700 characters, totaling 50,000 hours. We
restrict our target context to video titles and post text only.
Because the relevance of the contextual text to the audio
content might greatly impact the expected gain, we filter the
weakly supervised data based on the set intersection between
contextual text and the baseline ASR hypothesis considering

only words of length more than 3 characters, to create two
additional sets: (1) A 2,300 hours subset with an intersec-
tion of 14 words or more (2) A 12,800 hours subset with an
intersection of 6 words or more. To test the impact of qual-
ity of contextual text while keeping acoustic richness same,
we create two additional subsets: (3) A 2,300 hours subset
randomly sampled from the 50,000 hour original set (4) A
12,800 hours subset randomly sampled from the 50,000 hour
original set. Additionally, to measure the impact of contex-
tual information for weak supervision in terms of labeled
data size, we create: (5) A 2,000 hours set of supervised data
that is disjoint to the 1000 hours set used for the baseline.
For performance evaluation, we use three test sets, clean
with 1.3K videos (20 hours), noisy with 1.3K videos (20
hours), and extreme with 13K videos (77 hours) which is
more acoustically and phonetically challenging. For hyper-
parameter tuning and model selection, we use a dev-noisy
subset which consists of 600 videos (9 hours). For inference
using the encoder-only model, we use a 5-gram language
model which is estimated from 1M utterances containing
about 120k distinct tokens.
Experimental setup: The input speech is encoded into 80
dimensions of mel-scale log filterbank features computed
over 16ms and shift of 10ms. The encoder two 2-D convo-
lution blocks uses kernel size=3 and output features of 64
and 128 for each block respectively. The max-pooling layers
sub-sample the input time steps and frequency channels by a
factor of 4. All encoder and decoder transformer blocks, 10
and 2 blocks respectively, use 1k hidden dimension, 16 heads,
4k projection layer before the ReLU nonlinearity, and dropout
rate of 0.15. The decoder part uses 4 1-D convolutional lay-
ers with kernel size=3 and output features of 256. Supervised
labels and contextual text is encoded into 5k sub-word output
vocabulary [21]. We use the AdaDelta algorithm [30] with
fixed learning rate=1.0 and gradient clipping at 10.0 where
total gradients are scaled by the number of utterances in each
minibatch. During train-main we save checkpoints every
5k model updates and average the last 20 checkpoints to ini-
tialize the fine-tune phase. We also average the last 20
checkpoints of fine-tuning before decoding. We use a beam
size=20 for encoder-decoder model inference without any ex-
ternal language model. We use the 5-gram LM for decoding
the CTC fine-tuned models.
Results: Table 1 presents the main results of this study on the
three test conditions showing an average WER reduction of
20.8% for the encoder-decoder setup and 13.4% for the CTC
setup compared to the baseline supervised model. For all
experiments shown in table 1, the burn-in phase had 15k
model updates, train-main had 400k updates with almost
one third of the minibatches sampled from the supervised
data (mixing ratio=0.3). Supervised fine-tune phase used
22k model updates for the encoder-decoder architectures and
150k updates for the encoder-only CTC loss.

While using the full 50,000h weakly supervised data im-
proves upon the baseline system, filtering it for relevant con-
tent provided the best performance almost across all setups.
Both models show improvement from using more weakly



Encoder-Decoder CTC
clean noisy extreme clean noisy extreme

Supervised baseline

1000h 22.8 30.2 42.1 21.6 28.5 37.6

Weakly supervised models

2300h 20.9 27.5 38.2 19.2 25.8 35.2
12,800h 18.6 25.5 34.8 18.7 25.2 34.2
50,000h 18.3 25 34.6 18.6 24.5 34.2

Weakly supervised filtered by relevance

2300h 19.3 26.3 37 18.7 25.2 34.6
12,800h 17.6 24.3 33.7 18.2 24.8 33.7

Extra true labels instead of weak supervision

2000h 18.8 25.8 35 18.7 25.1 34

Table 1: WERs of the enc-dec and CTC fine-tuned models on the
test sets clean, noisy and extreme for different train data sizes

Burn-in phase N Y
Mixing ratio 0 0.3 0 0.3

50,000h 27.6 27.3 24.7 25.4
Filtered 12,800h 28.7 26.1 24.4 25

Table 2: WERs of fine-tuned CTC model on dev-noisy under
different conditions of burn-in and mixing ratio

supervised data, however the encoder-decoder model’s gains
are slightly higher given that large weak supervision data
improves both their acoustic encoder representations and
decoder generation abilities, relative to the CTC fine-tuned
model which uses a fixed n-gram language model and benefits
only from the improved encoder representations.

An interesting observation is that, using weak super-
vision, the encoder-decoder setups are almost as good or
slightly better than their corresponding encoder-only setups,
even though encoder-decoder models don’t use any external
language model. This suggests that weak supervision via
context generation was enough to realize a language model-
ing capability similar to that of the n-gram LM used for the
encoder-only models. The best weakly supervised systems
are consistently better than using an additional 2000 hours
of labeled data for the train-main phase. This magnifies
the value of weak supervision on reducing the requirement
for ASR data labeling. One problem of using weak super-
vision that is not aligned with the input sequence is that
the decoder won’t be able to refine encoder representations
easily. Hence we included supervised mixing and/or initial
burn-in phase during our weakly supervised train-main
phase. Table 2 shows the effect of both techniques on the
learned representations of the encoder-only setup trained by
the CTC loss. Comparing cases either with burn-in or mixing
shows that mixing helps a bit, however, supervised burn-in
is much more important than mixing for encoder represen-
tations. When burn-in is on, spending almost one third of

Enc-Dec fine-tuning 50,000h Filtered 12,800h

N 26.4 25.3
Y 25.7 24.8

Table 3: The impact of fine-tuning encoder-decoder model on
dev-noisy

the mini-batches during train-main visiting supervised
data seems to hurt performance because the model has less
chance to observe the more diverse and larger weakly super-
vised data. Table 3 shows that the encoder-decoder model is
ready for recognition with good performance even without
the final fine-tune phase, but it still benefits from the 22k
updates of supervised fine-tuning which, we believe, polish
its decoder cross-attention input audio sequences to be more
monotonic.

4 Discussion and Related Work
Our work builds on the success of sequence-to-sequence
learning for ASR, both the CTC-based [31, 32, 4] and the
attention-based [23, 22] variants, by replacing the ground-
truth target sequences with semantically related weak super-
vision. This study is primarily motivated by [33, 34] where
hashtag prediction of social media images is successfully used
for large CNN pre-training for many image classification and
object detection tasks. There is a growing body of research in
self-supervised pre-training of models on surrogate tasks for
general language representation which have shown great suc-
cess in several downstream NLP tasks [35, 36]. Grounding
language learning and generation [37, 38, 39, 17, 40], spoken
keyword spotting, and audio representation [18, 41] on visual
cues motivated this work where, similar to this study, inputs
and outputs are loosely related with no guarantees of cover-
age. Weak semantic labels showed significant improvements
in phonetic learning in a model of infant language acquisi-
tion and vocal commands learning for dysarthric speakers
[42, 43]. This work belongs to the growing line of research
focusing on reducing the reliance on supervised labels for
building ASR systems through unsupervised unit discovery
and acoustic representation learning [5, 6, 7, 8, 9, 10, 11, 12],
multi- and cross-lingual transfer learning in low-resource
conditions [44, 45, 46, 47, 48, 49], and semi-supervised
learning [13, 14, 15, 16].

5 Conclusion and Future work
We presented a large-scale weakly supervised training method
for speech recognition systems that uses contextual social
media information – titles and post text – as a surrogate for
transcriptions. An encoder-decoder approach was trained to
generate the contextual labels, which are semantically related
to the spoken audio content, but have neither monotonicity
nor full coverage. Our best models achieved averages of
20.8% and 13.4% WER reduction over supervised baselines.
In the future, we would like to combine compare and in-
vestigate synergies between semi-supervised student-teacher
modeling with our weak-supervision method.
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