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High-performance flash-based key-value stores in data-centers utilize large amounts of DRAM to cache hot

data. However, motivated by the high cost and power consumption of DRAM, server designs with lower

DRAM-per-compute ratio are becoming popular. These low-cost servers enable scale-out services by reduc-

ing server workload densities. This results in improvements to overall service reliability, leading to a decrease

in the total cost of ownership (TCO) for scalable workloads. Nevertheless, for key-value stores with large mem-

ory footprints, these reduced DRAM servers degrade performance due to an increase in both IO utilization

and data access latency. In this scenario, a standard practice to improve performance for sharded databases

is to reduce the number of shards per machine, which degrades the TCO benefits of reduced DRAM low-cost

servers. In this work, we explore a practical solution to improve performance and reduce the costs and power

consumption of key-value stores running on DRAM-constrained servers by using Storage Class Memories

(SCM).

SCMs in a DIMM form factor, although slower than DRAM, are sufficiently faster than flash when serving

as a large extension to DRAM. With new technologies like Compute Express Link, we can expand the memory

capacity of servers with high bandwidth and low latency connectivity with SCM. In this article, we use Intel

Optane PMem 100 Series SCMs (DCPMM) in AppDirect mode to extend the available memory of our existing

single-socket platform deployment of RocksDB (one of the largest key-value stores at Meta). We first designed

a hybrid cache in RocksDB to harness both DRAM and SCM hierarchically. We then characterized the per-

formance of the hybrid cache for three of the largest RocksDB use cases at Meta (ChatApp, BLOB Metadata,

and Hive Cache). Our results demonstrate that we can achieve up to 80% improvement in throughput and

20% improvement in P95 latency over the existing small DRAM single-socket platform, while maintaining a

43–48% cost improvement over our large DRAM dual-socket platform. To the best of our knowledge, this is

the first study of the DCPMM platform in a commercial data center.
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1 INTRODUCTION

High-performance storage servers at Meta come in two flavors. The first, 2P server, has two sock-
ets of compute and a large DRAM capacity, as shown in Figure 1(a), and provides excellent perfor-
mance at the expense of high power and cost. In contrast, 1P server (Figure 1(b)), has one socket of
compute and the DRAM-to-compute ratio is half of the 2P server. The advantages of 1P server are
reduced cost, power, and increased rack density [23]. For services with a small DRAM footprint,
1P server is the obvious choice. A large number of services at Meta fit in this category.

However, a class of workloads that may not perform adequately on a reduced DRAM server
and may not take advantage of the cost and power benefits of 1P server at Meta are flash-based
key-value stores. Many of these workloads use RocksDB [26] as their underlying storage engine.
RocksDB utilizes DRAM for caching frequently referenced data for faster access. A low DRAM-
to-storage capacity ratio for these workloads will lead to high DRAM cache misses, resulting in
increased flash IO pressure, longer data access latency, and reduced overall application through-
put. Flash-based key-value stores in Meta are organized into shards. An approach to improve the
performance of each shard on DRAM constrained servers is to reduce the number of shards per
server. However, this approach can lead to an increase in the total number of servers required,
lower storage utilization per server, and dilutes the total cost of ownership (TCO) benefits of
the 1P server. This leaves us with the difficult decision between 1P server, which is cost-effective
while sacrificing performance, or 2P server with outstanding performance at high cost and power.
An alternative solution that we explore in this article is using recent Intel Optane PMem 100 Series
SCMs (DCPMM) [45] to efficiently expand the volatile memory capacity for 1P server platforms.
We use SCM to build new variants of the 1P server platforms as shown in Figure 1(c). In 1P server

variants, the memory capacity of 1P server is extended by providing large SCM DIMMs alongside
DRAM on the same DDR bus attached to the CPU memory controller.

Storage Class Memory (SCM) is a technology with the properties of both DRAM and storage.
SCMs in DIMM form factor have been studied extensively in the past because of their attractive
benefits including byte-addressability, data persistence, cheaper cost/GB than DRAM, high density,
and their relatively low power consumption. This led to abundant research focusing on the use
cases of SCM as memory and persistent storage. The works range from optimizations with varying
memory hierarchy configurations [32, 48, 49, 72, 89], novel programming models and libraries
[16, 79, 87], and file system designs [17, 20, 65] to adopt this emerging technology. Past research
was focused primarily on theoretical or simulated systems, but the recent release of DCPMM-
enabled platforms from Intel motivates studies based on production-ready platforms [6, 30, 47,
55, 68, 69, 80, 81, 85, 86]. The memory characteristics of DRAM, DCPMM, and flash are shown
in Table 1. Even though DCPMM has higher access latency and lower bandwidth than DRAM, it
has a much larger density, lower cost, lower power consumption, and its access latency is two
orders of magnitude lower than flash. Currently, DCPMM modules come in 128 GB, 256 GB, and
512 GB capacities, much larger than DRAM that typically ranges from 4 to 32 GB in a data-center
environment. Hence, we can get a tremendously larger density with DCPMM. In addition to using
DDR bus for SCM, with recent high bandwidth and low latency IO interconnect like Compute

Express Link (CXL) [1, 50], we can expand the memory capacity of our servers with SCM without
the limitations of DDR bus. If we efficiently (cost, power, and performance) use this memory as an
extension to DRAM, then this would enable us to build dense, flexible, servers with large memory
and storage, while using fewer DIMMs and lowering the TCO.

Although recent works demonstrated the characteristics of SCM [47, 85], the performance
gain achieved in large commercial data-centers by utilizing SCM remains unanswered. There are
open questions on how to efficiently configure DRAM and SCM to benefit large scale service
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Fig. 1. Server configurations with different DRAM sizes: (a) Server with 256 GB memory, high hit rate to

DRAM, and low IO utilization. (b) Server with reduced (64 GB) memory, lower DRAM hit rate, and increased

in IO utilization. (c) Server with reduced memory and SCM added to the memory controller, high hit rate to

DRAM and SCM due to optimized data placement, which decreases IO utilization.

Table 1. Example of Memory Characteristics of DRAM, SCM, and Flash Per Module Taken

from Product Specifications

Characteristics DRAM SCM Flash

Idle read latency (ns) 75 170 85,000
Read bandwidth (GB/s) 15 2.4 1.6

Power (mW/GB) 375 98 5.7
DRAM Relative Cost per GB 1 0.38 0.017

Granularity byte addressable byte addressable block-based
Device Capacity (GB) 32 128 2,048

deployments in terms of cost, power and performance. Discovering the use cases within a large-
scale deployment that profit from SCM has also been challenging. To address these challenges for
RocksDB, we first profiled all flash-based KV store deployments at Meta to identify where SCM
fits in our environment. These studies revealed that we have abundant read-dominated workloads,
which focused our design efforts on better read performance. This has also been established in
previous work [8, 11, 76] where faster reads improved overall performance for workloads serving
billions of reads every second. Then, we identified the largest memory consuming component of
RocksDB, the block cache used for serving read requests, and redesigned it to implement a hy-
brid tiered cache that leverages the latency difference of DRAM and SCM. In the hybrid cache,
DRAM serves as the first-tier cache accommodating frequently accessed data for fastest read ac-
cess, while SCM serves as a large second-tier cache to store less frequently accessed data. Then,
we implemented cache admission and memory allocation policies that manage the data transfer
between DRAM and SCM. To evaluate the tiered cache implementations, we characterize three
large production RocksDB use cases at Meta using the methods described in Reference [12] and
distilled the data into new benchmark profiles for db_bench [25]. Our results show that we can
achieve 80% improvement to throughput, 20% improvement in P95 latency, and 43–48% reduction
in cost for these workloads when we add SCM to existing server configurations. In summary, we
make the following contributions:

• We characterized real production workloads, identified the most benefiting SCM use case
in our environment, and developed new db_bench profiles for accurately benchmarking
RocksDB performance improvement.
• We designed and implemented a new hybrid tiered cache module in RocksDB that can

manage DRAM and SCM-based caches hierarchically, based on the characteristics of these
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memories. We implemented three admission policies for handling data transfer between
DRAM and SCM cache to efficiently utilize both memories. This implementation enables any
application that uses RocksDB as its KV Store back-end to be able to easily use DCPMM.
• We evaluated our cache implementations on a newly released DCPMM platform, using com-

mercial data center workloads. We compared different DRAM/SCM size server configura-
tions and determined the cost, power, and performance of each configuration compared to
existing production platforms.
• We were able to match the performance of large DRAM footprint servers using small DRAM

and additional SCM while decreasing the TCO of read dominated services in a production
environment.

The rest of the article proceeds as follows. In Section 2, we provide a background of RocksDB,
the DCPMM hardware platforms, and brief description of our workloads. Sections 3 and 4 explain
the designs and implementation of the hybrid cache we developed. In Section 5, we explain the
configurations of our systems and the experimental setup. Our experimental evaluations and re-
sults are provided in Section 6. We then discuss future directions and related works in Sections 7
and 8, respectively, and we conclude in Section 9.

2 BACKGROUND

2.1 RocksDB Architecture

A Key-value database is a storage mechanism that uses key-value pairs to store data where the
key uniquely identifies values stored in the database. The high performance and scalability of
key-value databases promote their widespread use in large data centers [18, 26, 31, 74]. RocksDB
is a log-structured-merge [64] key-value store engine developed based on the implementation of
LevelDB [31]. RocksDB is an industry standard for high performance key-value stores [24]. At
Meta RocksDB is used as the storage engine for several data storage services.

2.1.1 RocksDB Components and Memory Usage. RocksDB stores key-value pairs in a Sorted

String Table (SST) format. Adjacent key-value data in SST files are partitioned into data blocks.
Other than the data block, each SST files contains Index and Filter blocks that help to facilitate effi-
cient lookups in the database. SST files are organized in levels, for example, Level0–LevelN, where
each level comprises multiple SST files. Write operations in RocksDB first go to an in-memory
write buffer residing in DRAM called the memtable. When the buffered data size in the memtable
reaches a preset size limit RocksDB flushes recent writes to SST files in the lowest level (Level0).
Similarly, when Level0 exhausts its size limit, its SST files are merged with SST files with overlap-
ping key-values in the next level and so on. This process is called compaction. Data blocks, and
optionally, index and filter blocks are cached (typically uncompressed) in an in-memory compo-
nent called the Block Cache that serves read requests from RocksDB. The size of the Block Cache
is managed by global RocksDB parameters. Reads from the database are attempted to be serviced
first from the memtable, then next from the Block Cache(s) in DRAM, and finally from the SST
files if the key is not found in memory. Further details about RocksDB are found in Reference [26].
The largest use of memory in RocksDB comes from the Block Cache, used for reads. Therefore, in
this work, we optimize the RocksDB using SCM as volatile memory for the Block Cache.

2.1.2 Benchmarking RocksDB. One of the main tools to benchmark RocksDB is db_bench [25].
Db_bench allows us to mock production RocksDB runs by providing features such as multiple
databases, multiple readers, and different key-value distributions. Recent work [12] has shown
how we can create realistic db_bench workloads from production workloads. To create evaluation
benchmarks for SCM, we followed the procedures given in References [12, 27].

ACM Transactions on Storage, Vol. 18, No. 2, Article 13. Publication date: March 2022.



Power-optimized Deployment of Key-value Stores Using Storage Class Memory 13:5

Fig. 2. Intel Optane memory operation modes overview.

2.2 Intel Optane DC Persistent Memory

Intel Optane DC Persistent Memory based on 3D XPoint technology [43, 59], is the first commer-
cially available non-volatile memory in the DIMM form factor and resides on the same DDR bus
as DRAM [45]. DCPMM provides byte-addressable access granularity, which differentiates it from
similar technologies that were limited to larger block-based accesses. This creates new opportuni-
ties for low latency SCM usage in data centers as either a volatile memory extension to DRAM or
as a low latency persistent storage media.

2.2.1 Operation Mode Overview. DCPMM can be configured to operate in one of two different
modes: Memory Mode and App Direct Mode [42]. Illustrations of the modes are shown in Figure 2.

In Memory Mode, as shown in Figure 2, the DRAM capacity is hidden from applications and
serves as a cache for the most frequently accessed addresses, while DCPMM capacity is exposed as
a single large volatile memory region. Management of the DRAM cache and access to the DCPMM
is handled exclusively by the CPU’s memory controller. In this mode applications have no control
of where their memory allocations are physically placed (DRAM cache or DCPMM).

In App Direct Mode, DRAM and DCPMM will be configured as two distinct memories in the
system and are exposed separately to the application and operating system. In this case, the appli-
cation and OS have full control of read and write accesses to each media. In this mode, DCPMM
can be configured as block-based storage with legacy file systems or can be directly accessed (via
DAX) by applications using memory-mapped files [4].

2.3 Meta RocksDB Workloads

For our experiments and evaluation, we chose the largest RocksDB use cases at Meta, which demon-
strate typical uses of key-value storage ranging from messaging services to large storage for pro-
cessing realtime data and metadata. Note than these are not the only workloads that benefit from
our designs. The descriptions of the services are as follows:

ChatApp: With over a billion active users, ChatApp is one of the most popular messaging ap-
plications in the world [38]. ChatApp utilizes ZippyDB as its remote data store. ZippyDB [7] is
a distributed KV store that implements Paxos on top of RocksDB to achieve data reliability and
persistence.

BLOB Metadata: The BLOB Metadata databases are also stored in ZippyDB and are an integral
part of the large blob storage service of Meta that serves billions of photos, videos, documents,
traces, heap dumps, and source code [60, 67]. BLOB Metadata maintains the mappings between
file names, data blocks and parity blocks, and the storage nodes that hold the actual blocks. These
databases are distributed and fault-tolerant.
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Fig. 3. DRAM, SCM, and SSD latency and BW characteristics. x-axis in log scale.

Hive Cache: Hive Cache is a high-query-throughput, low-latency (ms), peta-byte-scale key-value
storage service built on top of RocksDB [14]. Hive Cache reads from any category of Meta’s real-
time data aggregation services [77] in real-time or from a Hadoop Distributed File System [22]
table daily.

Inventory Cache: Inventory Cache contains a diverse collection of objects that might be dis-
played on a content feed [51]. It is updated rapidly and exhibits more writes than reads.

3 HYBRID-CACHE DESIGN CHOICES

3.1 Storage and Memory Characteristics

Our 1p and 2p servers are composed of DRAM memory with SSDs for storage. Our goal is to include
SCM in our server designs and evaluate its performance benefits. Before introducing SCM into our
systems, we studied the latency and bandwidth characteristics of the three components (DRAM,
SCM, and SSD). We used Intel Memory Latency Checker (MLC) [44] to study DRAM and SCM
characteristics and Flexible IO tester (FIO) [28] to study SSD characteristics. For all units, we
measured the latency versus BW for a single core machine with 32 GB DRAM, 128 GB SCM, and
2 TB SSD. We evaluated sequential read, random read, sequential read-write, and random read-
write with 1:1 ratio access patterns. To study DRAM and SCM latency we used a 500 MB workload
and characterized latency and bandwidth using different memory access delays to increase the BW
and for SSD we used a 500 MB workload with 4 KB access granularity using different queue depths
to increase the bandwidth. We observe that DRAM latency scales approximately linearly with BW
and has similar absolute latencies (75-120 ns) across both sequential (Figure 3(a)) and random
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(Figure 3(b)) read access patterns. Likewise, SSDs, although the latency scales are different (100–
750 μs), the latency versus BW characteristics follow the same trend for the sequential and random
read. However, for SSDs as the BW utilization increases latency increases exponentially. Hence,
optimizing the BW usage of SSDs to decrease latency will improve overall performance for latency-
sensitive applications such as RocksDB. For SCMs, we have 190–500 ns latency for sequential
access and 350–1400 ns for random access. SCMs BW versus latency curve is also exponential, with
the latency increasing exponentially, as we utilize higher BW. SCM shows unique characteristics
in that the granularity of access is a critical factor to bandwidth. So 256B sequential access is
significantly more performant than 64B random accesses. For mixed read and write (Figure 3(c) and
3(d)), SSDs and SCMs have much lower BW and higher latency than all read workloads. In general,
each media has a “knee of the curve” bandwidth target where it can be accessed with reasonable
latency. We want to target our usage to this ideal bandwidth for each media to maximize system
performance. It will also be beneficial to use SCMs for read-dominated workloads because of the
asymmetric read and write latencies/BW.

3.2 The Challenges of SCM Deployment

The first challenge of introducing SCM in RocksDB is identifying which of its components to map
to SCM. We chose the uncompressed block cache, because it has the largest memory usage in our
RocksDB workloads, and because our studies reveal that a number of our production workloads,
which are read-dominated, benefit from optimizing read operations by block-cache extension. We
also focused on the uncompressed block cache instead of the compressed ones, so that we can min-
imize CPU utilization increase when performing compression/decompression. This allowed us to
increase the size of SCM (block cache) without requiring additional CPU resources. We also chose
block cache over memtable, because SCM provides better read bandwidth than writes, hence help-
ing our read-demanding workloads. We then expanded the block-cache size by utilizing SCM as
volatile memory. We chose this approach because extending the memory capacity while reducing
the size of DRAM and the cost of our servers is the primary goal. Although we can benefit from
persisting block cache and memtable in SCM for fast cache warmup and fast write access, we left
this for future work.

The next challenge is how we should configure SCM to get the best performance. We have the
options of using memory mode, that does not require software architecture changes or app-direct
mode that necessitates modification in RocksDB but provides control of DRAM and SCM usage.
Figure 4 demonstrates how memory-mode compares to our optimized app-direct mode. As we
see in the figure, Optimized app-direct mode with various DRAM and SCM sizes, renders 20–60%
throughput improvement and 14–49% lower latency compared with memory mode. This insight
supports that our optimized implementation has a better caching mechanism than memory mode,
hence we focused our analysis on app-direct mode.

With app-direct, we can manage the allocation of RocksDB’s components (memtable, data, filter,
and index blocks) to DRAM or SCM. But, since we know the data access latency of SCM is slower
than DRAM (see Table 1), we have to consider its effect. We compared the throughput of allocating
the block cache to DRAM or SCM in app-direct mode in vanilla RocksDB to understand the impact
of the higher SCM access latency. As seen in Figure 5(a), the slower SCM latency creates 13%–57%
difference in throughput when we compare DRAM-based block cache to a naive SCM block cache
using app-direct mode. This result guided us to carefully utilize DRAM and SCM in our designs.
In single-socket machines such as 1P servers, we have one CPU and 32GB–64GB DRAM capacity.
Out of this DRAM, memtable, index, and filter blocks consume 10–15 GBs. The rest of DRAM and
the additional SCM can be allocated for block cache. We compared the naive SCM block-cache
implementation (all block cache allocated to SCM using app-direct) to a smarter and optimized
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Fig. 4. Throughput and latency comparison for

memory mode and our optimized hybrid cache in

app-direct mode for ChatApp.

Fig. 5. Throughput of ChatApp for DRAM vs. SCM

block cache (a) and for Naive SCM vs. optimized hy-

brid cache (b).

Fig. 6. Read/write ratio and throughput/cost for read dominant and write dominant workloads.

hybrid cache, where highly accessed data is allocated in DRAM and the least frequently access
in SCM. The results in Figure 5(b) show with optimized app-direct, we achieve up to 45% better
throughput compared to a naive SCM block cache. From this, we can determine that implementing
a hybrid cache compensates for the performance loss due to the higher SCM access latency. These
results together with the high temporal locality of our workloads (as discussed below) motivated
us to investigate a hybrid cache.

3.3 Metrics for Identifying Workloads

Below, we scrutinize the characteristics of our largest RocksDB workloads that guided our hybrid-
cache design.

Reads and writes to DB: As we discussed earlier, prior work showed that optimizing reads pro-
vides large impact in commercial data center workloads [8, 11, 76]. Our studies also show that
we have a large number of read-dominated workloads, therefore optimizing the block cache, used
for storing data for fast read access, will benefit a number of our workloads. In RocksDB, when a
key is updated in memtable it will be invalid in the block cache. Hence, if the workload has more
write queries than reads, then the data in the cache will become stale. Note that write-dominated
workloads will not be affected by our hybrid-cache designs, because we did not reduce any DRAM
buffer (memtable) in the write path. In our studies, we profiled deployed RocksDB workloads for
24 hours using an internal metrics collection tool to comprehend the read and write character-
istics. Figure 6(a) shows the workloads described in Section 3.1 reads more bytes from the DB
than it writes. To contrast, we evaluated one of our write-dominated workloads, Inventory Cache,
also seen in Figure 6(a). In Figure 6(b), we calculated the throughput per cost of 1P server vari-

ants with 32 GB DRAM and 256 GB SCM capacity normalized to throughput/cost of 1P server
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Fig. 7. Characteristics of ChatApp, BLOB Metadata, and Hive Cache. (a) Key-value access locality shows

power-law distribution. (b) Workloads have high cache hit rate and are performing more read that write to

the cache. (c) Workloads have more cache access than memtable.

with 64 GB DRAM capacity. The throughput/cost improvement of Inventory Cache for our largest
DRAM-SCM system cannot offset the additional cost due of SCM. Hence, we focus on exporting
read-dominated workloads to our hybrid systems.

Key-value temporal locality: Locality determines the cacheability of block data given a limited
cache size. A hybrid cache with a small DRAM size will only benefit us if we have a high temporal
locality in the workloads. In this case, significant access to the block cache will come from the
DRAM cache, and SCM will hold the bulk of less frequently accessed blocks. We used RocksDB
trace analyzer [27] to investigate up to 24 h query statistics of workloads running on production
2P server and evaluate locality as the distribution of the total database access counts to the total
keys accessed per database. Figure 7(a) shows that our workloads possess a power-law relationship
[15] between the number of key-value pair access counts and the number of keys accessed. We
can observe in the figure that 10% of the key-value pairs carry ~50% of the key-value accesses. This
makes a hybrid-cache design with small DRAM practical for deployment.

Workload cache utilization: For workloads even with high key-value access locality per data-
base, factors such as reuse distance (number of data access between accessing similar keys) and
cache pollution from sharing block cache among multiple shards within a workload can hinder
usage of block cache. While improving workloads for better cache utilization is outside of the
scope of our project, we studied the current cache utilization of our workloads to understand if a
large SCM block cache will give us performance benefits. High block-cache hit rate and high read-
to-write ratio in the block cache show the workload is effectively using the caching mechanism.
Another circumstance to consider is, despite high key-value locality, if frequently accessed blocks
are written to repeatedly, then the data will live in the memtable. Here, the workload will not ben-
efit from optimizing the block cache. To study this factor, we looked at the percentage of database
accesses that are served from block cache and memtable and chose workloads with dominating
block-cache accesses. Figure 7(b) shows the cache hit rate and read/write ratio of the cache. We can
observe from the figure that all workloads have a cache hit rate >90% and have more reads to the
cache than writes. Figure 7(c) shows that all workloads have more access to cache than memtable.

DB and cache sizes: The desirable DRAM and SCM cache sizes required to capture workload’s
locality is proportional to the size of the DB. Workloads with high key-value locality and large
DB sizes can achieve a high cache hit rate with limited cache sizes. But as the locality decreases
for large DB sizes, the required cache sizes will grow. In the extreme case of random key-value
accesses, all blocks will have similar heat, diluting the value of the DRAM cache and reducing
overall hybrid-cache performance asymptotically toward that of the SCM-only block cache. For
small DBs, locality might not play a significant role, because the majority of the DB accesses fit

ACM Transactions on Storage, Vol. 18, No. 2, Article 13. Publication date: March 2022.



13:10 H. T. Kassa et al.

Fig. 8. RocksDB components and memory allocation.

in a small cache. Such types of workloads will not be severely affected by DRAM size reduction,
and choosing the 1P server variants with large SCM capacity will be a waste of resources. In our
studies, after looking at various workloads in production, we choose our hybrid DRAM-SCM cache
configuration to accommodate several workloads with larger DB sizes (∼2 TB total KV storage per
server).

4 DRAM-SCM HYBRID-CACHE MODULE

In our RocksDB deployment, we placed the memtables, index blocks, and filter blocks in DRAM.
We then designed a new hybrid-cache module that allocates the block cache in DRAM and SCM.
The database SST files and logs are located in Flash. The overview of RocksDB components allo-
cation in the memory system is shown in Figure 8(a). Our goal in designing the new hybrid-cache
module is to utilize DRAM and SCM hierarchically based on their read access latency and band-
width characteristics. In our design, we aim to place hot blocks in DRAM for the lowest latency
data access, and colder blocks in SCM as a second tier. The dense SCM-based hybrid block cache
provides a larger effective capacity than practical with DRAM alone leading to higher cache hit
rates. This dramatically decreases IO bandwidth requirements to the SST files on slower underly-
ing flash media.

The block cache is an integral data structure that is completely managed by RocksDB. Similarly,
in our implementations, the new hybrid-cache module is fully managed by RocksDB. This module
then is an interface between RocksDB and the DRAM and SCM block caches, and fully manages
the caches’ operations. The overall architecture of the hybrid cache is shown in Figure 8(c). The
details of its internal components are as follows:

4.1 Block-cache Lists

The hybrid cache is a new top-level module in RocksDB that maintains a list of underlying block
caches in different tiers. The list of caches are extended from the existing RocksDB block cache
with LRU replacement policy. Note that in our implementations, we have DRAM and SCM cache,
but the module can manage more than these two caches such as multiple DRAM and SCM caches
in a complex hierarchy.

4.1.1 Block-cache Architecture and Components. The internal structures of DRAM and SCM
caches, which are both derived from the block cache, are shown in Figure 8(c). The block-cache
storage is divided into cache entries and tracked in a hashtable. Each cache entry holds a key,
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data block, metadata such as key size, hash, current cache usage, and a reference count of the
cache entry outside of the block cache. The data block is composed of multiple key-value pairs
as shown in Figure 8(b). Binary searches are performed to find a key-value pair in a data block.
The data block size is configurable in RocksDB. In our case, the optimal size was 16 KB. As the
number of index blocks decreases, we can increase the data block size. As a result, with 16 KB, we
were able to reduce the number of index blocks making room for data blocks within our limited
DRAM capacity. Every block cache has configs that are configured externally. This includes size,
a threshold for moving data, a pointer to all other caches for data movement, and the memory
allocator for the cache. The cache maintains an LRU list that tracks cache entries in order from
most to least recently used. The helper functions are used for incrementing references, checking
against the reference threshold, transferring blocks from one cache to another, checking size limits,
and so on. For the components listed above, we extended and modified RocksDB to support tiered
structure, different kinds of admission policies, and we designed new methodologies to enable
data movement between different caches and to support memory allocation to different memory
types.

4.1.2 Data Access in the Block Cache. A block is accessed by a number of external components
to the block cache, such as multiple reader clients of the RocksDB database. The number of external
referencers is tracked by the reference count. Mapping to a block is created when it is referenced
externally, this will increment the reference count. Whereas when the referencer no longer needs
a block, mapping is released, and the reference count is decremented. If a block has zero external
references, then it will be in the hashtable and tracked by the LRU list. If a block gets referenced
again, then it will be removed from the LRU list. Note that in the LRU list, newly released blocks
with no external references are on the top of the LRU list as the most recently used blocks, and
when blocks are evicted, the bottom least recently used blocks are evicted first. The block cache is
used for read-only data, hence it doesn’t deal with any dirty data management. Therefore, when
transferring data between DRAM and SCM, we do not have to deal with dirty data.

4.2 Cache Admission Policies

Identifying and retaining blocks in DRAM/SCM based on their access frequencies requires proac-
tive management of data transfer between DRAM, SCM, and flash. Hence, we developed the
following block-cache admission policies.

4.2.1 DRAM First Admission Policy. In this admission policy, new blocks read from flash are first
inserted into the hashtable of the DRAM cache. The block-cache data structures are size limited.
Hence when the size of the blocks allocated in the DRAM cache exceeds the size limits, the oldest
entries tracked by the DRAM LRU list are moved to the next-tier cache (SCM cache) by the data
mover function of the DRAM cache, using the SCM cache’s memory allocator. On lookups, both
the DRAM and SCM caches are searched until the cache block is found. If it is not found, then it
will initiate a flash read. Similar to the DRAM cache when the capacity of the SCM cache exceeds
the limit, the oldest entries in the LRU list of the SCM cache are freed to accommodate new cache
blocks evicted from the DRAM cache.

4.2.2 SCM First Admission Policy. In this admission policy, new blocks read from flash are first
inserted in the hashtable of the SCM cache. Unlike the DRAM first admission policy, this policy
has a configurable threshold for moving data from the SCM cache to the DRAM cache. When the
external references of cache entries in the SCM cache surpasses the reference threshold, blocks are
considered to be hot and will be migrated to the DRAM cache for faster access. The data movement,
in this case, is handled by the data mover function of the SCM cache. When the capacity of both the
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DRAM and SCM caches are full, the oldest LRU blocks are evicted from both caches. In the DRAM
cache, LRU entries are moved back to the SCM cache, whereas in the SCM cache, the LRU entries
are freed to accommodate new block insertions. On lookup, both the DRAM and SCM caches are
searched until the cache block is found.

4.2.3 Bidirectional Admission Policy. In Bidirectional admission policy, similar to the DRAM
first admission policy, new data blocks are inserted into the DRAM cache. As the capacity of
DRAM and SCM cache reach the limit, the oldest LRU entries are evicted to SCM cache from the
DRAM cache and are freed for the case of SCM cache. The difference between DRAM-first and
Bidirectional cache is, after the oldest LRU entries are evicted from DRAM to SCM cache, if the
external reference to an entry surpasses a preset threshold it is transferred back to the DRAM
cache. This property allows us to re-capture fast access performance for blocks with inconsistent
temporal access patterns.

In the hybrid cache, we can set the three of the admission policies, or we can easily extend
a new policy by configuring how to insert, lookup, and move data in the list of block caches.
These configs are global parameters in the top-level hybrid cache and are used by the block-cache
operations manager and list of block caches. Optionally the thresholds for moving data in SCM first
and Bidirectional policies can be set to change values based on the current usage of the caches. But
in our experiments, we did not see benefit with changing values. We also performed an analysis
with different sizes of cache thresholds, and we show the optimal threshold for SCM first and
Bidirectional in our evaluations.

4.3 Hybrid-cache Configs

The hybrid-cache configurations are set outside of the module by RocksDB, and include pointers
to configs of all block caches, the number of block caches, ids, tier numbers of the caches, and
admission policy to use. Configs are used during instantiation and at run time to manage database
operations.

4.4 Block-cache Operation Management

This unit redirects external RocksDB operations such as insert, lookup, update, and so on to the
target block cache based on the admission policy. For example, it decides if an incoming insert
request should go to the DRAM or SCM cache.

5 SYSTEMS SETUP AND IMPLEMENTATION

5.1 DRAM-SCM Cache Implementation

We configured Intel DCPMMs in App Direct mode using the IPMCTL [46] tool in our experiments.
We used Linux Kernel 5.2 that brings support for a volatile use of DCPMM by configuring a hot-
pluggable memory region called KMEM DAX. We then used NDCTL 6.7 [3], a utility for managing
SCM in the Linux Kernel, to create namespaces in DCPMM in devdax mode. This mode provides
direct access to DCPMM and is faster than filesystem-based access. We then used DAXCTL [3]
utility for configuring DCPMM in system-ram mode so that DCPMM will be available in its own
volatile memory NUMA node. To implement a hybrid DRAM-SCM cache, we used memkind library
[2], which enables partitioning of the heap between multiple kinds of memories such as DRAM and
SCM in the application space. After the system is configured with DRAM and DCPMM memory
types, we modified RocksDB block cache to take two types of memory allocators using memkind.
We use MEM_KIND_DAX_KMEM kind for SCM cache and a regular memory allocator for DRAM.
The overview of our implementation is shown in Figure 9.
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Fig. 9. DRAM-SCM cache configuration with libmemkind.

Table 2. System Setup: Hardware Specs and Software Configs

Specification System config

Application version RocksDB 6.10
OS CentOS-8

Linux kernel version 5.2.9
CPU model Intel Xeon Gold 6252 @ 2.10 GHz

Socket/Cores per socket 2/24
Threads total 96
L1I/L1D cache 32 KB
L2/L3 cache 1 MB/35.75 MB

Memory controllers total 4
Channels per controller 3

Slots per channel 2
DRAM size DDR4 192 GB (16 GB X 12 DIMM slots)
SCM size DDR-T 1.5 TB (128 GB X 12 DIMM slots)

SSD model Samsung 983 DCT M.2 NVMe SSD
SSD size/filesystem 2 TB/xfs

5.2 Evaluation Hardware Description

In our evaluations, we used an Intel Wolf Pass-based [40] system, utilizing two CPU sockets pop-
ulated with Intel Cascade Lake processors [41]. Each CPU has two memory controllers with three
channels each, and two DIMM slots per channel, for a total of 24 DIMM slots. DIMM slots were
populated by default in a 2-2-2 configuration, with 12 total 16 GB PC4-23400 ECC Registered DDR4

DRAM DIMMs and 12 total 128GB Intel Optane PMem 100 DIMMs. This makes up a total of 192 GB
DRAM and 1.5TB of SCM per system. Backing storage for the RocksDB database was a Samsung

983 DCT M.2 SSD. The detailed specification is listed in Table 2.

5.3 Meta Server Designs

The Meta platforms used for TCO analysis are the 2P server platform based on the OCP Tioga Pass
specification [62], and the 1P server platform based on the OCP Twin Lakes specification [63]. In
addition, we propose several 1P server variants utilizing differing capacities of DRAM and SCM.
The detailed specifications and relative costs of these platforms compared to the baseline 2P server

platform are listed in Tables 3 and 4. Platform costs are calculated based on current OCP solution
provider data [36, 37] and DCPMM cost relative to DRAM provided in References [5, 33]. The
relative cost of DRAM and DCPMM are predicted to maintain similar trends over time [33]. We
calculated the cost by adding the cost of individual modules. For DRAM and SCM, we used 16 and
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Table 3. OCP Tioga Pass (2P Server) and OCP Twin Lakes Platforms (1P Server) Details

Specification OCP Tioga Pass Config OCP Twin Lakes Config

CPU model Xeon Gold 6138 Xeon D-2191
Sockets/cores per socket 2/20 1/18

Threads total 80 36
Memory controllers total 4 2
Channels per controller 3 4

DRAM size DDR4 256 GB DDR4 64 GB
SSD size 2 TB 2 TB

Table 4. DRAM and SCM Cache in Server Configuration and Memory Sizes Used

Block Cache in Our Experiments

Configuration 2P serv. 1P serv. 64–128 32–128 32–256

DRAM size 256 64 64 32 32
SCM size 0 0 128 128 256

DRAM Block-cache size 150 40 40 12 12
SCM Block-cache size 0 0 100 100 200

Other Rocksdb components 10–15 10–15 10–15 10–15 10–15
Codebase 5 5 5 5 5

2P rel. cost 1 0.43 0.5 0.46 0.53

128 GB modules, respectively. In the TCO calculations although introducing SCM adds additional
power cost, when we consider the overall power of the system including CPU, NIC, and SSD, the
increase of power even for our largest 1P server becomes minimal. We have a power budget for a
rack of servers with some power slack and the slight rise in power for SCM is sufficiently below
our rack power budget.

5.4 Cache and Memory Configurations

To experiment with SCM benefits when added to existing configurations, we examined server
configurations with different sizes of DRAM and SCM. The configurations we used are shown in
Table 4. Our experiments verified that 1P server has significant performance loss compared to 2P

server. The prominent questions here are how much benefit can we achieve by adding SCM to 1P

servers, and can we still maintain the TCO benefits of 1P server platform. Hence, we used the 1P

server with 64 DRAM and no SCM as the baseline for our evaluations. We then evaluated how
much performance we can gain by adding 128 GB SCM to the baseline. Since we are interested in
DRAM constrained server configurations, we also evaluate the performance gain when we further
reduce DRAM to 32 GB while adding 128 or 256 GB SCM. This gives us the four server configura-
tions provided in Table 4. Although we experimented with 64 GB of SCM, as seen in Section 3, to
understand the performance of different SCM sizes, DCPMM is not available as a 64GB module, so
we did not consider it in the evaluation below. To run all of the server configurations, we limited
the memory usage of the DRAM and SCM for the workloads to the sizes given in Table 4. We
also use 1 CPU in our experiments, because 1P servers are single-socket machines. We aimed to
maximize block-cache allocation to evaluate our DRAM-SCM hybrid cache. To do this, we studied
the memory usage of other components in RocksDB when it runs in our production servers. We
then subtracted these usages from total memory and assigned the rest of the memory for the Block
cache. The block-cache sizes we used in our evaluations are illustrated in Table 4.
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Fig. 10. Throughput and application read latency comparison using only DRAM for block cache, using only

SCM for block cache, and hybrid DRAM-SCM admission policies (DRAM first, SCM first, and Bidirectional)

for ChatApp using all server configurations in Table 4. (a) Throughput comparisons (db operations/s) for

admission policies. Here the baseline is 64–0 configs. (b) P50, P95, and P99 latencies for all admission policies

and server configs compared to 64–0 server.

5.5 Workload Generation

To generate workloads, we first selected random sample hosts running ChatApp, BLOB Metadata,
and Hive Cache in production deployments to collect query statistics traces, being careful to select
leaders for use cases relying on Paxos. Note that hosts running the same services manifest similar
statistics. Then we followed the methodology in References [12, 27] to model the workloads. We
also extended these methodologies [12, 27] to scale workloads to match the production deploy-
ments. The db_bench workloads we developed mirror the following characteristics of production
RocksDB workloads.

KV-pair locality: This is characterized by fitting real workload trace profiles to a probability
cumulative function using power distributions in MATLAB [56] based on the power-law charac-
teristics of the workloads (see Figure 7(a)).

Value distribution: The granularity of value accessed is modeled using Pareto distribution from
workload statistics in MATLAB [58].

Query composition: The percentage of get, put, and seek quires are incorporated in the db_bench
profiles.

DB, key, and value sizes: We added the average values of the number of keys per database, key,
and value size from collecting data from our production servers to create a realistic DB sizes in the
db_bench profile.

QPS: The QPS in db_bench is modeled using sine distributions [57] based on trace collected in the
production host.

Scaled db_bench profiles: After generating the workloads db_bench profile for a singe database,
we scaled the workloads by running multiple RocksDB instances, simulating the number of pro-
duction shards per workload on a single host. These shards share the same block cache. In RocksDB
there exists multiple readers and writers to the database. To imitate this property, we run multiple
threads reading and writing to the set of shards in the db_bench process.

6 EVALUATION

6.1 Throughput and Latency Comparison for Admission Policies

In Figure 10, we compare the throughput achieved for five different categories: DRAM Only: The
Block Cache is only allocated in DRAM. SCM Only: The Block Cache is only allocated in SCM
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using app-direct mode. DRAM First: The DRAM first policy discussed in Section 4. SCM First

1 and 2: The SCM first policy discussed in Section 4 with two threshold values. SCM 1st 1, with
threshold value of 2 and SCM 1st 2 with the optimal threshold, which is 6. Bidirectional: The
Bidirectional policy discussed in Section 4 with the optimal threshold value, which is 4.

In Figure 10(a), we demonstrate the throughput differences of all admission policies for Chat-
App. The results show that using only SCM for block cache provides 15% throughput improvement
for the 128 GB SCM configurations and 25% improvement for the 256 GB SCM compared to the
baseline (a server configuration with 64 GB DRAM and no SCM). If we look at Figure 10(b), be-
cause of latency differences between SCM and DRAM, then getting data only from SCM worsens
the P50 application read latencies. Therefore, we conclude that while the default RocksDB SCM
implementation may decrease flash IO utilization, it will have a net negative impact on Meta ap-
plication performance due to the 2×–4×worse P50 latency observed. We can also see in the figure
for all the server configurations DRAM first policy achieves the best performance. For 64–128 and
32–128 configurations, SCM first and Bidirectional get close in throughput benefit to DRAM first,
but when there is a large block cache, like in the 32–256 configuration DRAM first attains the best
result. This is because, in DRAM-first, data transfer between DRAM and SCM cache only occurs
once, when DRAM cache evicts data to SCM. But in the case of SCM and Bidirectional policies,
data transfer occurs when DRAM evicts data to SCM and when hot blocks are transferred from
SCM to DRAM. This creates more bandwidth consumption across the DDR bus resulting in perfor-
mance degradation, especially for configurations with large block-cache sizes. For larger DRAM
capacities, SCM first 1, SCM first 2, and Bidirectional policies have comparable throughput, be-
cause the large DRAM size reduces data evictions to SCM. But as DRAM is reduced (in 32–128),
SCM 1st throughput falls quickly, because it will move data from SCM to DRAM with a low acti-
vation threshold. When we increase DCPMM capacity in the 32–256 case, data transfer increases
even for SCM 2 and Bidirectional policies, hence the DRAM first policy is the overall performance
winner. If we look at read latencies shown in Figure 10(b), then the P50 latency remains similar
for DRAM first compared to 64–0 configurations. The reason for this is that P50 latencies are pri-
marily governed by DRAM accesses. The effect of data transfer from flash instead of SCM can be
observed in the P95 and P99 latencies, where the DRAM First policy does significantly better than
other policies and the default configuration with no SCM. BLOB Metadata and Hive Cache (not
shown here) also attain the best performance with DRAM first policy.

6.2 Performance Comparison of DRAM First Policy for All Workloads

Figure 11 shows the throughput and latency comparison of ChatApp, BLOB Metadata, and Hive
Cache for DRAM first admission policy (the best admission policy for all workloads) for
all server configurations. As seen in the figure, our hybrid block-cache implementation provides
throughput improvement for all the workloads. As seen in Figures 11(a), 11(b), and 11(c), through-
put is increased up to 50–80% compared to the baseline 1P server’s 64–0 due to the addition of SCM.
The throughput increase is correlated to the total size of the block cache. Note that increasing the
SCM or DRAM capacity further than 256 GB will require either more DIMM slots or higher density
DIMMs, with different price/performance/reliability considerations. The size of the database also
impacts locality and the maximum throughput benefit, as discussed in Section 3. Because BLOB
Metadata has a larger DB size than ChatApp or Hive Cache the throughput benefit is expected to
be smaller for each configuration. Looking at application level read latency in Figures 11(d), 11(e),
and 11(f), we observe that P50 latency is relatively stable for ChatApp and BLOB Metadata. While
P50 latency does improve for Hive Cache, the absolute magnitude of the improvement is less sig-
nificant than the improvements to tail latency. P95 and P99 show an overall improvement of 20%
and 10%, respectively, for all services. The P50 latencies primarily reflect situations where the data
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Fig. 11. Throughput and application read latency comparison for ChatApp, BLOB Metadata and Hive Cache

for DRAM first admission policy using all server configurations shown in Table 4. (a–c) Throughput compar-

isons (db operations/s). Here the baseline is 64–0 configs. (d–f) absolute P50, P95, and P99 latencies for all

workloads and server configs.

Fig. 12. P50 write latency for all workloads.

is obtained from DRAM. The benefit of SCM is reflected in P95 and P99 scenarios where in one
case the data is in SCM, while the default case the data is in flash storage.

P50 Write latencies for all workloads is shown in Figure 12. In all cases, P50 write latency stays
similar, since we are only optimizing the block cache used for reads, while writes always go to the
memtables, residing in DRAM. We see a slight increase in 64–128 configuration, because, in this
size of DRAM, we have an extra copy of blocks between DRAM and SCM that increases bandwidth
utilization and hence slightly increases the latency. P95 and P99 latency also stay similar for all
configurations.

6.3 IO Bandwidth, Cache, and CPU Utilization

Figure 13 illustrates the cache hit rate, IO bandwidth, and latency improvement of DRAM first
policy for ChatApp. As seen in Figure 13(a), the higher capacity of the block cache (sum of DRAM
and SCM cache) leads to a higher cache hit rate. We show in Figure 13(a), that for ChatApp the hit
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Fig. 13. Cache utilization, IO read bandwidth, IO read latency, IO wait, and CPU utilization of ChatApp for

DRAM 1st admission policy.

rate increases up to 30% and the increase is correlated to the cache size. BLOB Metadata and Hive
Cache (not shown here) also follow a similar pattern of increasing hit rates.

Another important indicator explaining throughput gain is SSD bandwidth utilization. As the
cache hit rate increases for the server configurations with SCM it translates to less demand for
read access from the SSD, and therefore decreased IO read bandwidth. Figure 13(b) shows for
ChatApp adding SCM reduces SSD read bandwidth by up to 0.8 GB/s, or roughly 25% of the SSD’s
datasheet max read bandwidth. Figure 13(c) shows the file read latency improvement for all server
configurations relative to 64–0. Decreased demand for read IO bandwidth improves the P50 latency
by up to 20%. Latencies at higher percentiles stay the same, because there are still scenarios where
the IO queue will be saturated with reads, which drives worst-case latency. But for the majority of
the requests, latencies are improved because of the decrease in IO bandwidth. The other workloads
also show similar patterns. Figure 13(d) shows the CPU utilization for all server configurations.
We observe that the CPU utilization increases as the block-cache size increases. This is due to the
increase in CPU activity as we increase amount of data accessed with low IO wait latency from the
cache. One thing to note is, even though CPU utilization increase for our new 1P server variants,
we can still safely service the workloads with 1 CPU even in the largest 256 SCM configuration.

6.4 Cost, Performance, and Power

In the above sections, we aim to understand the performance achieved for different DRAM and
SCM variations of the 1P server configuration. The large capacity of SCM per DIMM slot enables
us to dramatically increase the memory capacity of the platform without impacting the server
motherboard design. As seen in Table 4 adding SCM increases the cost of a server. Figure 14(a) es-
timates the performance per cost compared to baseline 1P server (64–0) configuration. We observe
in the figure that the 32–256 configuration gives the best cost relative to performance across all
workloads. In this configuration the 23% cost increase over the 64–0 baseline produces a 50%–80%
performance improvement. To a smaller degree the 64–128 and 32–128 configurations also provide
performance-relative cost benefits over the standard 1P server. Notable is the fact that the benefit
across these two configurations is nearly identical due to the proportional difference in DRAM cost
versus performance increase. If future DRAM/SCM hardware designs provide additional flexibil-
ity across capacity and pricing, then we may discover new configurations that achieve even larger
TCO benefits. We show performance per watt for 1P server variants relative to 1P server (64–0) in
Figure 14(b). Similarly to the performance per cost, the performance benefit of adding SCM still
offsets the increase in power per platform compared to 1P server (64–0). We achieve 30%–55% more
performance/watt with 1P server variants, making SCM a power-optimized solution.

In Figure 15, we present a throughput comparison between the 2P server and the various 1P

server configurations. The figure shows that increasing the amount of SCM brings throughput
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Fig. 14. Throughput/cost and throughput/watt of ChatApp,

BLOB Metadata, and Hive Cache normalized to 64–0 1P servers

throughput/cost.

Fig. 15. Throughput of 1P and its variants

compared to 2P servers.

Table 5. Performance Equivalent TCO Relative to 2P

Server types 2P server 1P server 1P (32–256)

Relative TCO 1.0 0.72–0.86 0.52–0.57
Relative power 1.0 0.6–0.82 0.4–0.46

closer to parity with the 2P server for a minimal increase in relative cost. While the baseline 1P

server (64–0) configuration only achieves 50–60% of the performance of a 2P server, the 32–256
1P variant raises relative performance to 93–102%. By dividing the relative cost of the platforms
(Table 4) by their relative performance (Figure 15) for each workload, we derive the performance-
equivalent TCOs in Table 5. In the case of the 32–256 configuration, improving 1P performance
with SCM improves the relative TCO to 0.52–0.57 of the 2P server. Therefore, we demonstrate that
deploying SCM configurations of 1P servers instead of 2P servers results in an overall cost savings

of 43%–48% across some of the largest RocksDB workloads at Meta.
The relative power of 1P and variants relative to 2P is shown in Figure 15. Adding SCM increases

power by up to 13% for the 32–256 1P variant compared to 1P. But, because we can improve per-
formance by 50–80% the overall number of servers required per service will be much less than 1P

hence reducing total power consumption. To examine the power benefits of SCM, we compared
the maximum power for 2P, 1P, and 32–256 1P variant. Table 5 shows relative power reduction of
1P and variants relative to 2P. From the table, we can see that with SCM, we can reduce the overall
power requirement of services by 54%–60%. Even when we compare it with the 64–0 server, the
performance gain allows us to deploy fewer racks, hence it’s an overall power benefit. Note that
the additional SCM increases power per server, this increase in power enforces us to reduce the
number of servers per rack, since we have fixed power budges per rack.

Even though the performance and cost of using SCMs are impressive for the chosen workloads,
and the performance gain can be translated to other read-dominated workloads in our environ-
ment, a discussion on whether we should have a deployment of SCMs in Meta at scale is outside
the scope of this article. We briefly discuss some additional challenges of mass-scale deployment:

Workloads: Section 3 talks about the class of applications that would benefit from SCM. We have
also identified a number of write-heavy workloads at Meta that would not benefit from SCMs.

Reliability: Since SCMs are not widely available in the market, the reliability of SCMs is a concern
until they have been proven in mass deployments.

SKU diversification: Adding a new hardware configuration into the fleet requires considera-
tion of other costs like maintaining a separate code path and creating a new validation and
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sustainability workflow. This complexity and cost will be added to the practical TCO of any new
platform deployment.

6.5 General Takeaway

From this project, we learned three key design factors to consider for SCM deployment in data
centers.

(1) Performance: SCMs have significantly higher accesses latency and lower bandwidth than
DRAM. We cannot replace DRAM with SCM without understanding the workloads that are
going to run on SCM. It is beneficial to understand the locality of the workload to map highly
accessed data in DRAM and low accessed data in SCM to efficiently hide the performance
differences between DRAM and SCM.

(2) Cost: The cost of SCM drives the deployment of SCM. The cost of SCM should scale with
the cost of DRAM to be an alternative solution to DRAM. We should always evaluate the
performance of our workload for DRAM and SCM and compare how the cost difference
gives us TCO benefits. For example, as shown in Figure 6(b), for inventory Cache workload,
though we get added performance with SCM when we compare the performance per cost,
the advantage of adding SCM becomes minimum.

(3) SKU: In general, it is favorable for deployment at scale to limit the number of different hard-
ware platforms. While it would be possible to design a new platform with SCM specifically
tailored to one workload and fine-tune performance per workload to get higher performance,
it would not likely be practical due to constraints on placement, disaster recovery, and break-
ing fungibility with previous hardware generations. Hence, it is important to consider SCM
benefits across the sum of all workloads and impact to global hardware deployment.

This is a work of a particular Systems research group within Meta. Even though it shows benefits
in performance and cost for SCMs, the hardware roadmap of Meta is determined by a large number
of complex factors. Therefore the results and use cases illustrated in this article may not necessarily
lead to vast deployment of SCM within the Meta infrastructure.

7 DISCUSSION AND FUTURE WORK

In the previous section, we demonstrated KV Stores based on RocksDB are examples of the poten-
tial advantages of SCM in a large data center. In the future, we want to experiment with extend-
ing the memory capacity of other large memory footprint workloads using SCM. Some candidate
large-scale workloads that will profit from large memory capacity are Memcached [29, 61] and
graph cache [11]. Memcached is a distributed in-memory key-value store deployed in large data
centers. Optimizing Memcached to utilize SCM will enable an extension of memory beyond the
capacity of DRAM. Graph cache is a distributed read-optimized storage for social graphs that ex-
ploits memory for graph structure-aware caching. These workloads are read-dominated and have
random memory accesses that can benefit from the high density and byte-addressable features of
SCM. Although in this article, we did not leverage the persistent capability of SCM for RocksDB
uncompressed block cache, in the future, we want to study the benefits of fast persistent SCM
for the memtable and SST files. We also want to explore with SCM is its performance via emerg-
ing connectivity technology such as CXL [1]. The workloads we analyzed in this article are more
latency-bound than memory bandwidth-bound, but for high memory bandwidth-demanding ser-
vices, sharing DRAM and SCM on the same bus will create interference. In such cases having ded-
icated SCM access via CXL will avoid contention, but at the same time will potentially increase
data access latency, requiring careful design consideration.
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8 RELATED WORK

Performance analysis and characterization in DCPMM: Recent studies proved the poten-
tial of commercially available Intel Optane memory for various application domains. References
[30, 70] have determined the performance improvement of DCPMM in memory and app-Direct
modes for graph applications. References [68, 69] evaluated the performance of DCPMM platform
as volatile memory compared to DRAM for HPC applications. DCPMM performance for database
systems were shown in References [71, 75, 78, 83, 86] both as a memory extension and for persist-
ing data. Works such as References [39, 47, 80, 85] also shows the characteristics and evaluations
of DCPMM when working alone or alongside of DRAM. Specifically, Reference [85] has identified
the deviation of DCPMM characteristics from earlier simulation assumptions. While these works
shed light on the usage of DCPMM for data-intensive applications, in our work, based on the mem-
ory characteristic findings of these work, we analyzed the performance of DCPMM for large data
data-center production workloads. Our work focused on utilizing the DCPMM platform to the
best of its capability and study its possible usage as a cost-effective memory extension for future
data-center system designs.

Hybrid DRAM-SCM systems: Previous works studied hybrid DRAM-SCM systems to under-
stand how we can utilize these memories with different characteristics together and how they in-
fluence the existing system and software designs. References [9, 35, 66, 84] have shown the need for
a redesign of existing key-value stores and database systems to take into account the access latency
differences between DRAM and SCM. Similarly, by noting the latency differences in these mem-
ories, we carefully place hot blocks in DRAM and colder blocks in SCM in our implementations.
When deploying hybrid memory, another question that arises is, how to manage data placement be-
tween DRAM and SCM. In these aspects, Reference [73] demonstrated efficient page migration be-
tween DRAM and SCM based on the memory access pattern observed in the memory controller. In
addition, References [10, 13, 19, 34, 52–54, 82, 88] perform data/page transfer by profiling and track-
ing information such as memory access patterns, read/write intensity to a page/data, resource uti-
lization by workloads, and memory features of DRAM and SCM, in hardware, OS, and application
level. These works aim to generalize usage of DRAM and SCM to various workloads without involv-
ing the application developer, hence requiring hardware and software monitoring that is transpar-
ent to the application developers. But in our case, the RocksDB application-level structure exposes
separate reads and writes paths and frequency of access of data block. These motivated us to imple-
ment our designs in software without requiring any additional overhead in the OS and hardware.

RocksDB performance improvements: Reference [21] demonstrated how to decrease the mem-
ory footprint of MyRocks, which is built on top of RocksDB, using block access-based non-volatile

memory (NVM) by implementing secondary block cache. While their methods also decrease
DRAM size required in the system, the block-based nature of NVM increases read amplification.
This is because, the key-value size in RocksDB is significantly less than the size of the block,
whereas in our methods, using byte addressable SCM avoids such issues.

9 CONCLUSION

The increasing cost of DRAM has influenced data centers to design servers with lower DRAM-per-
compute ratio. These servers have shown to decrease the TCO for scalable workloads. Neverthe-
less, this type of system design diminishes the performance of large memory footprint workloads
that relies on DRAM to cache hot data. Key Value stores based on RocksDB is one such class of
workloads that is affected by the reduction of DRAM size. In this article, we propose using Intel
Optane PMem 100 Series SCMs (DCPMM) in AppDirect mode to extend the available memory for
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RocksDB to mitigate performance loss in smaller DRAM designs while still maintaining the de-
sired lower TCO of smaller DRAM systems. We carefully studied and redesigned the block cache
to utilize DRAM for the placement of hot blocks and SCM for colder blocks. Our evaluations show
up to 80% improvement to throughput and 20% improvement in P95 latency over the existing small
DRAM platform when we utilize SCM alongside DRAM, while still reducing the cost by 43–48%
compared to large DRAM designs. To our knowledge, this is the first article that demonstrates prac-
tical cost-performance trade-offs for potential deployment of DCPMM in commercial datacenters.
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