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Abstract

Risk management in dynamic decision problems is a primary concern in many
fields, including financial investment, autonomous driving, and healthcare. The
mean-variance function is one of the most widely used objective functions in risk
management due to its simplicity and interpretability. Existing algorithms for
mean-variance optimization are based on multi-time-scale stochastic approxima-
tion, whose learning rate schedules are often hard to tune, and have only asymptotic
convergence proof. In this paper, we develop a model-free policy search frame-
work for mean-variance optimization with finite-sample error bound analysis (to
local optima). Our starting point is a reformulation of the original mean-variance
function with its Legendre-Fenchel dual, from which we propose a stochastic
block coordinate ascent policy search algorithm. Both the asymptotic convergence
guarantee of the last iteration’s solution and the convergence rate of the randomly
picked solution are provided, and their applicability is demonstrated on several
benchmark domains.

1 Introduction

Risk management plays a central role in sequential decision-making problems, common in fields such
as portfolio management [Lai et al., 2011], autonomous driving [Maurer et al., 2016], and health-
care [Parker, 2009]. A common risk-measure is the variance of the expected sum of rewards/costs and
the mean-variance trade-off function [Sobel, 1982; Mannor and Tsitsiklis, 2011] is one of the most
widely used objective functions in risk-sensitive decision-making. Other risk-sensitive objectives
have also been studied, for example, Borkar [2002] studied exponential utility functions, Tamar
et al. [2012] experimented with the Sharpe Ratio measurement, Chow et al. [2018] studied value
at risk (VaR) and mean-VaR optimization, Chow and Ghavamzadeh [2014], Tamar et al. [2015b],
and Chow et al. [2018] investigated conditional value at risk (CVaR) and mean-CVaR optimization
in a static setting, and Tamar et al. [2015a] investigated coherent risk for both linear and nonlinear
system dynamics. Compared with other widely used performance measurements, such as the Sharpe
Ratio and CVaR, the mean-variance measurement has explicit interpretability and computational
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advantages [Markowitz et al., 2000; Li and Ng, 2000]. For example, the Sharpe Ratio tends to lead to
solutions with less mean return [Tamar et al., 2012]. Existing mean-variance reinforcement learning
(RL) algorithms [Tamar et al., 2012; Prashanth and Ghavamzadeh, 2013, 2016] often suffer from
heavy computational cost, slow convergence, and difficulties in tuning their learning rate schedules.
Moreover, all their analyses are asymptotic and no rigorous finite-sample complexity analysis has
been reported. Recently, Dalal et al. [2018] provided a general approach to compute finite sample
analysis in the case of linear multiple time scales stochastic approximation problems. However,
existing multiple time scales algorithms like [Tamar et al., 2012] consist of nonlinear term in its
update, and cannot be analyzed via the method in Dalal et al. [2018]. All these make it difficult to
use them in real-world problems. The goal of this paper is to propose a mean-variance optimization
algorithm that is both computationally efficient and has finite-sample analysis guarantees. This paper
makes the following contributions: 1) We develop a computationally efficient RL algorithm for
mean-variance optimization. By reformulating the mean-variance function with its Legendre-Fenchel
dual [Boyd and Vandenberghe, 2004], we propose a new formulation for mean-variance optimization
and use it to derive a computationally efficient algorithm that is based on stochastic cyclic block
coordinate descent. 2) We provide the sample complexity analysis of our proposed algorithm. This
result is novel because although cyclic block coordinate descent algorithms usually have empirically
better performance than randomized block coordinate descent algorithms, yet almost all the reported
analysis of these algorithms are asymptotic [Xu and Yin, 2015].

Here is a roadmap for the rest of the paper. Section 2 offers a brief background on risk-sensitive
RL and stochastic variance reduction. In Section 3, the problem is reformulated using the Legendre-
Fenchel duality and a novel algorithm is proposed based on stochastic block coordinate descent.
Section 4 contains the theoretical analysis of the paper that includes both asymptotic convergence
and finite-sample error bound. The experimental results of Section 5 validate the effectiveness of the
proposed algorithms.

2 Backgrounds

This section offers a brief overview of risk-sensitive RL, including the objective functions and
algorithms. We then introduce block coordinate descent methods. Finally, we introduce the Legendre-
Fenchel duality, the key ingredient in formulating our new algorithms.

2.1 Risk-Sensitive Reinforcement Learning

Reinforcement Learning (RL) [Sutton and Barto, 1998] is a class of learning problems in which an
agent interacts with an unfamiliar, dynamic, and stochastic environment, where the agent’s goal is to
optimize some measures of its long-term performance. This interaction is conventionally modeled
as a Markov decision process (MDP), defined as the tuple (S,A, P0, P

a
ss′ , r, γ), where S and A are

the sets of states and actions, P0 is the initial state distribution, P ass′ is the transition kernel that
specifies the probability of transition from state s ∈ S to state s′ ∈ S by taking action a ∈ A,
r(s, a) : S × A → R is the reward function bounded by Rmax, and 0 ≤ γ < 1 is a discount factor.
A parameterized stochastic policy πθ(a|s) : S ×A → [0, 1] is a probabilistic mapping from states to
actions, where θ is the tunable parameter and πθ(a|s) is a differentiable function w.r.t. θ.

One commonly used performance measure for policies in episodic MDPs is the return or cumulative
sum of rewards from the starting state, i.e., R =

∑τ
k=1 r(sk, ak), where s1 ∼ P0 and τ is the first

passage time to the recurrent state s∗ [Puterman, 1994; Tamar et al., 2012], and thus, τ := min{k >
0 | sk = s∗}. In risk-neutral MDPs, the algorithms aim at finding a near-optimal policy that
maximizes the expected sum of rewards J(θ) := Eπθ [R] = Eπθ

[∑τ
k=1 r(sk, ak)

]
. We also define

the square-return M(θ) := Eπθ [R2] = Eπθ
[(∑τ

k=1 r(sk, ak)
)2]

. In the following, we sometimes
drop the subscript πθ to simplify the notation.

In risk-sensitive mean-variance optimization MDPs, the objective is often to maximize J(θ) with a
variance constraint, i.e.,

max
θ
J(θ) = Eπθ [R] s.t. Varπθ (R) ≤ ζ, (1)

where Varπθ (R) = M(θ) − J2(θ) measures the variance of the return random variable R, and
ζ > 0 is a given risk parameter [Tamar et al., 2012; Prashanth and Ghavamzadeh, 2013]. Using the
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Lagrangian relaxation procedure [Bertsekas, 1999], we can transform the optimization problem (1)
to maximizing the following unconstrained objective function:

Jλ(θ) := Eπθ [R]− λ
(
Varπθ (R)− ζ) = J(θ)− λ

(
M(θ)− J(θ)2 − ζ

)
. (2)

It is important to note that the mean-variance objective function is NP-hard in general [Mannor and
Tsitsiklis, 2011]. The main reason for the hardness of this optimization problem is that although
the variance satisfies a Bellman equation [Sobel, 1982], unfortunately, it lacks the monotonicity
property of dynamic programming (DP), and thus, it is not clear how the related risk measures can be
optimized by standard DP algorithms [Sobel, 1982].

The existing methods to maximize the objective function (2) are mostly based on stochastic approxi-
mation that often converge to an equilibrium point of an ordinary differential equation (ODE) [Borkar,
2008]. For example, Tamar et al. [2012] proposed a policy gradient algorithm, a two-time-scale
stochastic approximation, to maximize (2) for a fixed value of λ (they optimize over λ by selecting its
best value in a finite set), while the algorithm in Prashanth and Ghavamzadeh [2013] to maximize (2)
is actor-critic and is a three-time-scale stochastic approximation algorithm (the third time-scale
optimizes over λ). These approaches suffer from certain drawbacks: 1) Most of the analyses of
ODE-based methods are asymptotic, with no sample complexity analysis. 2) It is well-known that
multi-time-scale approaches are sensitive to the choice of the stepsize schedules, which is a non-trivial
burden in real-world problems. 3) The ODE approach does not allow extra penalty functions. Adding
penalty functions can often strengthen the robustness of the algorithm, encourages sparsity and
incorporates prior knowledge into the problem [Hastie et al., 2001].

2.2 Coordinate Descent Optimization

Coordinate descent (CD)1 and the more general block coordinate descent (BCD) algorithms solve
a minimization problem by iteratively updating variables along coordinate directions or coordinate
hyperplanes [Wright, 2015]. At each iteration of BCD, the objective function is (approximately)
minimized w.r.t. a coordinate or a block of coordinates by fixing the remaining ones, and thus, an
easier lower-dimensional subproblem needs to be solved. A number of comprehensive studies on
BCD have already been carried out, such as Luo and Tseng [1992] and Nesterov [2012] for convex
problems, and Tseng [2001], Xu and Yin [2013], and Razaviyayn et al. [2013] for nonconvex cases
(also see Wright 2015 for a review paper). For stochastic problems with a block structure, Dang and
Lan [2015] proposed stochastic block mirror descent (SBMD) by combining BCD with stochastic
mirror descent [Beck and Teboulle, 2003; Nemirovski et al., 2009]. Another line of research on this
topic is block stochastic gradient coordinate descent (BSG) [Xu and Yin, 2015]. The key difference
between SBMD and BSG is that at each iteration, SBMD randomly picks one block of variables to
update, while BSG cyclically updates all block variables.

In this paper, we develop mean-variance optimization algorithms based on both nonconvex stochastic
BSG and SBMD. Since it has been shown that the BSG-based methods usually have better empirical
performance than their SBMD counterparts, the main algorithm we report, analyze, and evaluate
in the paper is BSG-based. We report our SBMD-based algorithm in Appendix C and use it as a
baseline in the experiments of Section 5. The finite-sample analysis of our BSG-based algorithm
reported in Section 4 is novel because although there exists such analysis for convex stochastic BSG
methods [Xu and Yin, 2015], we are not aware of similar results for their nonconvex version.

3 Algorithm Design

In this section, we first discuss the difficulties of using the regular stochastic gradient ascent to
maximize the mean-variance objective function. We then propose a new formulation of the mean-
variance objective function that is based on its Legendre-Fenchel dual and derive novel algorithms
that are based on the recent results in stochastic nonconvex block coordinate descent. We conclude
this section with an asymptotic analysis of a version of our proposed algorithm.

1Note that since our problem is maximization, our proposed algorithms are block coordinate ascent.
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3.1 Problem Formulation

In this section, we describe why the vanilla stochastic gradient cannot be used to maximize Jλ(θ)
defined in Eq. (2). Taking the gradient of Jλ(θ) w.r.t. θ, we have

∇θJλ(θt) = ∇θJ(θt)− λ∇θVar(R) = ∇θJ(θt)− λ
(
∇θM(θ)− 2J(θ)∇θJ(θ)

)
. (3)

Computing ∇θJλ(θt) in (3) involves computing three quantities: ∇θJ(θ),∇θM(θ), and
J(θ)∇θJ(θ). We can obtain unbiased estimates of ∇θJ(θ) and ∇θM(θ) from a single trajec-
tory generated by the policy πθ using the likelihood ratio method [Williams, 1992], as ∇θJ(θ) =
E[Rtωt(θ)] and∇θM(θ) = E[R2

tωt(θ)]. Note that Rt is the cumulative reward of the t-th episode,
i.e., Rt =

∑τt
k=1 rk, which is possibly a nonconvex function, and ωt(θ) =

∑τt
k=1∇θ lnπθ(ak|sk)

is the likelihood ratio derivative. In the setting considered in the paper, an episode is the trajectory
between two visits to the recurrent state s∗. For example, the t-th episode refers to the trajectory
between the (t-1)-th and the t-th visits to s∗. We denote by τt the length of this episode.

However, it is not possible to compute an unbiased estimate of J(θ)∇θJ(θ) without having access to
a generative model of the environment that allows us to sample at least two next states s′ for each
state-action pair (s, a). As also noted by Tamar et al. [2012] and Prashanth and Ghavamzadeh [2013],
computing an unbiased estimate of J(θ)∇θJ(θ) requires double sampling (sampling from two
different trajectories), and thus, cannot be done using a single trajectory. To circumvent the double-
sampling problem, these papers proposed multi-time-scale stochastic approximation algorithms, the
former a policy gradient algorithm and the latter an actor-critic algorithm that uses simultaneous
perturbation methods [Bhatnagar et al., 2013]. However, as discussed in Section 2.1, multi-time-scale
stochastic approximation approach suffers from several weaknesses such as no available finite-sample
analysis and difficult-to-tune stepsize schedules. To overcome these weaknesses, we reformulate the
mean-variance objective function and use it to present novel algorithms with in-depth analysis.

3.2 Block Coordinate Reformulation

In this section, we present a new formulation for Jλ(θ) that is later used to derive our algorithms
and do not suffer from the double-sampling problem in estimating J(θ)∇θJ(θ). We begin with the
following lemma.

Lemma 1. For the quadratic function f(z) = z2, z ∈ R, we define its Legendre-Fenchel dual as
f(z) = z2 = maxy∈R(2zy − y2).

This is a special case of the Lengendre-Fenchel duality [Boyd and Vandenberghe, 2004] that has been
used in several recent RL papers (e.g., Liu et al. 2015; Du et al. 2017). Let Fλ(θ) :=

(
J(θ) + 1

2λ

)2−
M(θ), which follows Fλ(θ) = Jλ(θ)

λ + 1
4λ2 − ζ. Since λ > 0 is a constant, maximizing Jλ(θ) is

equivalent to maximizing Fλ(θ). Using Lemma 1 with z = J(θ) + 1
2λ , we may reformulate Fλ(θ) as

Fλ(θ) = max
y

(
2y
(
J(θ) +

1

2λ

)
− y2

)
−M(θ). (4)

Using (4), the maximization problem maxθ Fλ(θ) is equivalent to

max
θ,y

f̂λ(θ, y), where f̂λ(θ, y) := 2y
(
J(θ) +

1

2λ

)
− y2 −M(θ). (5)

Our optimization problem is now formulated as the standard nonconvex coordinate ascent problem (5).
We use three stochastic solvers to solve (5): SBMD method [Dang and Lan, 2015], BSG method [Xu
and Yin, 2015], and the vanilla stochastic gradient ascent (SGA) method [Nemirovski et al., 2009].
We report our BSG-based algorithm in Section 3.3 and leave the details of the SBMD and SGA based
algorithms to Appendix C. In the following sections, we denote by βθt and βyt the stepsizes of θ and
y, respectively, and by the subscripts t and k the episode and time-step numbers.
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3.3 Mean-Variance Policy Gradient

We now present our main algorithm that is based on a block coordinate update to maximize (5). Let
gθt and gyt be block gradients and g̃θt and g̃yt be their sample-based estimations defined as

gyt = E[g̃yt ] = 2J(θt) +
1

λ
− 2yt , g̃yt = 2Rt +

1

λ
− 2yt, (6)

gθt = E[g̃θt ] = 2yt+1∇θJ(θt)−∇θM(θt) , g̃θt =
(

2yt+1Rt − (Rt)
2
)
ωt(θt). (7)

The block coordinate updates are

yt+1 = yt + βyt g̃
y
t and θt+1 = θt + βθt g̃

θ
t .

To obtain unbiased estimates of gyt and gθt , we shall update y (to obtain yt+1) prior to computing gθt at
each iteration. Now it is ready to introduce the Mean-Variance Policy Gradient (MVP) Algorithm 1.
Before presenting our theoretical analysis, we first introduce the assumptions needed for these results.

Algorithm 1 Mean-Variance Policy Gradient (MVP)

1: Input: Stepsizes {βθt } and {βyt }, and number of iterations N
Option I: {βθt } and {βyt } satisfy the Robbins-Monro condition
Option II: βθt and βyt are set to be constants

2: for episode t = 1, . . . , N do
3: Generate the initial state s1 ∼ P0

4: while sk 6= s∗ do
5: Take the action ak ∼ πθt(a|sk) and observe the reward rk and next state sk+1

6: end while
7: Update the parameters

Rt =

τt∑
k=1

rk ωt(θt) =

τt∑
k=1

∇θ lnπθt(ak|sk)

yt+1 = yt + βyt

(
2Rt +

1

λ
− 2yt

)
θt+1 = θt + βθt

(
2yt+1Rt − (Rt)

2
)
ωt(θt)

8: end for
9: Output x̄N :

Option I: Set x̄N = xN = [θN , yN ]>

Option II: Set x̄N = xz = [θz, yz]
>, where z is uniformly drawn from {1, 2, . . . , N}

Assumption 1 (Bounded Gradient and Variance). There exist constants G and σ such that

‖∇y f̂λ(x)‖2 ≤ G, ‖∇θf̂λ(x)‖2 ≤ G and E[‖∆y
t ‖22] ≤ σ2, E[‖∆θ

t ‖22] ≤ σ2,

for any t and x, where ‖ · ‖2 denotes the Euclidean norm, ∆y
t := g̃yt − g

y
t and ∆θ

t := g̃θt − gθt .

Assumption 1 is standard in nonconvex coordinate descent algorithms [Xu and Yin, 2015; Dang and
Lan, 2015]. We also need the following assumption that is standard in the policy gradient literature.
Assumption 2 (Ergodicity). The Markov chains induced by all the policies generated by the algo-
rithm are ergodic, i.e., irreducible, aperiodic, and recurrent.

In practice, we can choose either Option I with the result of the final iteration as output or Option II
with the result of a randomly selected iteration as output. In what follows in this section, we report an
asymptotic convergence analysis of MVP with Option I, and in Section 4, we derive a finite-sample
analysis of MVP with Option II.
Theorem 1 (Asymptotic Convergence). Let

{
xt = (θt, yt)

}
be the sequence of the outputs gener-

ated by Algorithm 1 with Option I. If {βθt } and {βyt } are time-diminishing real positive sequences
satisfying the Robbins-Monro condition, i.e.,

∑∞
t=1 β

θ
t = ∞,

∑∞
t=1 (βθt )

2
< ∞,

∑∞
t=1 β

y
t = ∞,

and
∑∞
t=1 (βyt )

2
<∞, then Algorithm 1 will converge such that limt→∞ E[‖∇f̂λ(xt)‖2] = 0.
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The proof of Theorem 1 follows from the analysis in Xu and Yin [2013]. Due to space constraint, we
report it in Appendix A.

Algorithm 1 is a special case of nonconvex block stochastic gradient (BSG) methods. To the best of
our knowledge, no finite-sample analysis has been reported for this class of algorithms. Motivated
by the recent papers by Nemirovski et al. [2009], Ghadimi and Lan [2013], Xu and Yin [2015],
and Dang and Lan [2015], in Section 4, we provide a finite-sample analysis for general nonconvex
block stochastic gradient methods and apply it to Algorithm 1 with Option II.

4 Finite-Sample Analysis
In this section, we first present a finite-sample analysis for the general class of nonconvex BSG
algorithms [Xu and Yin, 2013], for which there are no established results, in Section 4.1. We then
use these results and prove a finite-sample bound for our MVP algorithm with Option II, that belongs
to this class, in Section 4.2. Due to space constraint, we report the detailed proofs in Appendix A.

4.1 Finite-Sample Analysis of Nonconvex BSG Algorithms

In this section, we provide a finite-sample analysis of the general nonconvex block stochastic gradient
(BSG) method, where the problem formulation is given by

min
x∈Rn

f(x) = Eξ[F (x, ξ)]. (8)

ξ is a random vector, and F (·, ξ) : Rn → R is continuously differentiable and possibly nonconvex
for every ξ. The variable x ∈ Rn can be partitioned into b disjoint blocks as x = {x1, x2, . . . , xb},
where xi ∈ Rni denotes the i-th block of variables, and

∑b
i=1 ni = n. For simplicity, we use

x<i for (xi, . . . , xi−1), and x≤i,x>i, and x≥i are defined correspondingly. We also use ∇xi to
denote ∂

∂xi for the partial gradient with respect to xi. Ξt is the sample set generated at t-th iteration,
and Ξ[t] = (Ξ1, . . . ,Ξt) denotes the history of sample sets from the first through t-th iteration.
{βit : i = 1, · · · , b}∞t=1 are denoted as the stepsizes. Also, let βmax

t = maxi β
i
t , and βmin

t = mini β
i
t .

Similar to Algorithm 1, the BSG algorithm cyclically updates all blocks of variables in each iteration,
and the detailed algorithm for BSG method is presented in Appendix B.

Without loss of generality, we assume a fixed update order in the BSG algorithm. Let Ξt =
{ξt,1, . . . , ξt,mt} be the samples in the t-th iteration with size mt ≥ 1. Therefore, the stochastic
partial gradient is computed as g̃it = 1

mt

∑mt
l=1∇xiF (x<it+1, x

≥i
t ; ξt,l). Similar to Section 3, we define

git = ∇xif(x<it+1, x
≥i
t ), and the approximation error as ∆i

t = g̃it − git. We assume that the objective
function f is bounded and Lipschitz smooth, i.e., there exists a positive Lipschitz constant L > 0
such that ‖∇xif(x) − ∇xif(y)‖2 ≤ L‖x − y‖2, ∀i ∈ {1, . . . , b} and ∀x, y ∈ Rn. Each block
gradient of f is also bounded, i.e., there exist a positive constant G such that ‖∇xif(x)‖2 ≤ G,
for any i ∈ {1, . . . , b} and any x ∈ Rn. We also need Assumption 1 for all block variables, i.e.,
E[‖∆i

t‖2] ≤ σ, for any i and t. Then we have the following lemma.

Lemma 2. For any i and t, there exist a positive constant A, such that

‖E[∆i
t|Ξ[t−1]]‖2 ≤ Aβmax

t . (9)

The proof of Lemma 2 is in Appendix B. It should be noted that in practice, it is natural to take the
final iteration’s result as the output as in Algorithm 1. However, a standard strategy for analyzing
nonconvex optimization methods is to pick up one previous iteration’s result randomly according to a
discrete probability distribution over {1, 2, . . . , N} [Nemirovski et al., 2009; Ghadimi and Lan, 2013;
Dang and Lan, 2015]. Similarly, our finite-sample analysis is based on the strategy that randomly
pick up x̄N = xz according to

Pr(z = t) =
βmin
t − L

2 (βmax
t )2∑N

t=1(βmin
t − L

2 (βmax
t )2)

, t = 1, . . . , N. (10)

Now we provide the finite-sample analysis result for the general nonconvex BSG algorithm as in [Xu
and Yin, 2015].
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Theorem 2. Let the output of the nonconvex BSG algorithm be x̄N = xz according to Eq. (10). If
stepsizes satisfy 2βmin

t > L(βmax
t )2 for t = 1, · · · , N , then we have

E
[
‖∇f(x̄N )‖22

]
≤
f(x1)− f∗ +

∑N
t=1(βmax

t )2Ct∑N
t=1(βmin

t − L
2 (βmax

t )2)
, (11)

where f∗ = maxx f(x). Ct = (1− L
2 β

max
t )

∑b
i=1 L

√∑
j<i(G

2 + σ2) + b
(
AG+ L

2 σ
2
)
, where

G is the gradient bound, L is the Lipschitz constants, σ is the variance bound, and A is defined in (9).

As a special case, we discuss the convergence rate with constant stepsizes O(1/
√
N) in Corollary 1,

which implies that the sample complexity N = O(1/ε2) in order to find ε-stationary solution of
problem (8).

Corollary 1. If we take constant stepsize such that βit = βi = O(1/
√
N) for any t, and let

βmax := maxi β
i, βmin := mini β

i, then we have E
[
‖∇f(x̄N )‖22

]
≤ O

(√
f(x1)−f∗+C

N

)
, where

Ct in Eq. (11) reduces to a constant C defined as C = (1− L
2 β

max)
∑b
i=1 L

√∑
j<i(G

2 + σ2) +

b
(
AG+ L

2 σ
2
)
.

4.2 Finite-Sample Analysis of Algorithm 1

We present the major theoretical results of this paper, i.e., the finite-sample analysis of Algorithm 1
with Option II. The proof of Theorem 3 is in Appendix A.

Theorem 3. Let the output of the Algorithm 1 be x̄N as in Theorem 2. If {βθt }, {β
y
t } are constants

as in Option II in Algorithm 1, and also satisfies 2βmin
t > L(βmax

t )2 for t = 1, · · · , N , we have

E
[
‖∇f̂λ(x̄N )‖22

]
≤ f̂∗λ − f̂λ(x1) +N(βmax

t )2C

N(βmin
t − L

2 (βmax
t )2)

(12)

where f̂∗λ = maxx f̂λ(x), and

C =(1− L

2
βmax
t )(L2βmax

t (G2 + σ2) + L(2G2 + σ2)) +AG+ Lσ2 + 2L(1 + Lβmax
t )(3σ2 + 2G2).

Proof Sketch. The proof follows the following major steps.

(I). First, we need to prove the bound of each block coordinate gradient, i.e., E[‖gθt ‖22] and E[‖gyt ‖22],
which is bounded as

(βmin
t − L

2
(βmax
t )2)E[‖gθt ‖22 + ‖gyt ‖22]

≤E[f̂λ(xt+1)]− E[f̂λ(xt)] + (βmax
t )2AMρ + L(βmax

t )2σ2 + 2Lβmax
t (βmax

t + L(βmax
t )2)(3σ2 + 2G2).

Summing up over t, we have

N∑
t=1

(βmin
t − L

2
(βmax
t )2)E[‖gθt ‖22 + ‖gyt ‖22]

≤f̂∗λ − f̂λ(x1) +

N∑
t=1

[(βmax
t )2AG+ L(βmax

t )2σ2 + 2Lβmax
t (βmax

t + L(βmax
t )2)(3σ2 + 2G2)].

(II). Next, we need to bound E[‖∇f̂λ(xt)‖22] using E[‖gθt ‖22 + ‖gyt ‖22], which is proven to be

E[‖∇f̂λ(xt)‖22] ≤ L2(βmax
t )2(G2 + σ2) + Lβmax

t (2G2 + σ2) + E[‖gθt ‖22 + ‖gyt ‖22].

(III). Finally, combining (I) and (II), and rearranging the terms, Eq. (12) can be obtained as a special
case of Theorem 2, which completes the proof.
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Figure 1: Empirical results of the distributions of the return (cumulative rewards) random variable.

5 Experimental Study

In this section, we evaluate our MVP algorithm with Option I in three risk-sensitive domains: the
portfolio management [Tamar et al., 2012], the American-style option [Tamar et al., 2014], and the
optimal stopping [Chow and Ghavamzadeh, 2014; Chow et al., 2018]. The baseline algorithms are the
vanilla policy gradient (PG), the mean-variance policy gradient in Tamar et al. [2012], the stochastic
gradient ascent (SGA) applied to our optimization problem (5), and the randomized coordinate ascent
policy gradient (RCPG), i.e., the SBMD-based version of our algorithm. Details of SGA and RCPG
can be found in Appendix C. For each algorithm, we optimize its Lagrangian parameter λ by grid
search and report the mean and variance of its return random variable as a Gaussian.2 Since the
algorithms presented in the paper (MVP and RCPG) are policy gradient, we only compare them with
Monte-Carlo based policy gradient algorithms and do not use any actor-critic algorithm, such as those
in Prashanth and Ghavamzadeh [2013] and TRPO [Schulman et al., 2015], in the experiments.

5.1 Portfolio Management

The portfolio domain Tamar et al. [2012] is composed of the liquid and non-liquid assets. A liquid
asset has a fixed interest rate rl and can be sold at any time-step k ≤ τ . A non-liquid asset can be sold
only after a fixed period of W time-steps with a time-dependent interest rate rnl(k), which can take
either rlow

nl or rhigh
nl , and the transition follows a switching probability pswitch. The non-liquid asset also

suffers a default risk (i.e., not being paid) with a probability prisk. All investments are in liquid assets at
the initial time-step k = 0. At the k-th step, the state is denoted by x(k) ∈ RW+2, where x1 ∈ [0, 1]
is the portion of the investment in liquid assets, x2, · · · , xW+1 ∈ [0, 1] is the portion in non-liquid
assets with time to maturity of 1, · · · ,W time-steps, respectively, and xW+2(k) = rnl(k)−E[rnl(k)].
The investor can choose to invest a fixed portion η (0 < η < 1) of his total available cash in the
non-liquid asset or do nothing. More details can be found in Tamar et al. [2012]. Figure 1(a) shows
the results of the algorithms. PG has a large variance and the Tamar’s method has the lowest mean
return. The results indicate that MVP yields a higher mean return with less variance compared to the
competing algorithms.

5.2 American-style Option

An American-style option Tamar et al. [2014] is a contract that gives the buyer the right to buy or
sell the asset at a strike price W at or before the maturity time τ . The initial price of the option is
x0, and the buyer has bought a put option with the strike price Wput < x0 and a call option with the
strike price Wcall > x0. At the k-th step (k ≤ τ ), the state is {xk, k}, where xk is the current price
of the option. The action ak is either executing the option or holding it. xk+1 is fuxk w.p. p and
fdxk w.p. 1− p, where fu and fd are constants. The reward is 0 unless an option is executed and the
reward for executing an option is rk = max(0,Wput − xk) + max(0, xk −Wcall). More details can
be found in Tamar et al. [2014]. Figure 1(b) shows the performance of the algorithms. The results
suggest that MVP can yield a higher mean return with less variance compared to the other algorithms.

2Note that the return random variables are not necessarily Gaussian, we only use Gaussian for presentation
purposes.
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5.3 Optimal Stopping

The optimal stopping problem [Chow and Ghavamzadeh, 2014; Chow et al., 2018] is a continuous
state domain. At the k-th time-step (k ≤ τ , τ is the stopping time), the state is {xk, k}, where xk
is the cost. The buyer decide either to accept the present cost or wait. If the buyer accepts or when
k = T , the system reaches a terminal state and the cost xk is received, otherwise, the buyer receives
the cost ph and the new state is {xk+1, k + 1}, where xk+1 is fuxk w.p. p and fdxk w.p. 1 − p
(fu > 1 and fd < 1 are constants). More details can be found in Chow and Ghavamzadeh [2014].
Figure 1(c) shows the performance of the algorithms. The results indicate that MVP is able to yield
much less variance without affecting its mean return.

We also summarize the performance of these algorithms in all three risk-sensitive domains as Table 1,
where Std is short for Standard Deviation.

Table 1: Performance Comparison among Algorithms

Portfolio Management American-style Option Optimal Standing
Mean Std Mean Std Mean Std

MVP 29.754 0.325 0.2478 0.00482 -1.4767 0.00456
PG 29.170 1.177 0.2477 0.00922 -1.4769 0.00754

Tamar 28.575 0.857 0.2240 0.00694 -2.8553 0.00415
SGA 29.679 0.658 0.2470 0.00679 -1.4805 0.00583

RCPG 29.340 0.789 0.2447 0.00819 -1.4872 0.00721

6 Conclusion
This paper is motivated to provide a risk-sensitive policy search algorithm with provable sample com-
plexity analysis to maximize the mean-variance objective function. To this end, the objective function
is reformulated based on the Legendre-Fenchel duality, and a novel stochastic block coordinate ascent
algorithm is proposed with in-depth analysis. There are many interesting future directions on this
research topic. Besides stochastic policy gradient, deterministic policy gradient [Silver et al., 2014]
has shown great potential in large discrete action space. It is interesting to design a risk-sensitive
deterministic policy gradient method. Secondly, distributional RL [Bellemare et al., 2016] is strongly
related to risk-sensitive policy search, and it is interesting to investigate the connections between
risk-sensitive policy gradient methods and distributional RL.

Acknowledgments

Bo Liu, Daoming Lyu, and Daesub Yoon were partially supported by a grant (18TLRP-B131486-02)
from Transportation and Logistics R&D Program funded by Ministry of Land, Infrastructure and
Transport of Korean government. Yangyang Xu was partially supported by NSF grant DMS-1719549.

References
Beck, A. and Teboulle, M. (2003). Mirror descent and nonlinear projected subgradient methods for

convex optimization. Operations Research Letters, 31:167–175.

Bellemare, M. G., Dabney, W., and Munos, R. (2016). A distributional perspective on reinforcement
learning. In International Conference on Machine Learning.

Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific Belmont.

Bhatnagar, S., Prasad, H., and Prashanth, L. (2013). Stochastic Recursive Algorithms for Optimization,
volume 434. Springer.

Borkar, V. (2002). Q-learning for risk-sensitive control. Mathematics of operations research,
27(2):294–311.

Borkar, V. (2008). Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University
Press.

9



Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.

Chow, Y. and Ghavamzadeh, M. (2014). Algorithms for CVaR optimization in MDPs. In Advances
in Neural Information Processing Systems, pages 3509–3517.

Chow, Y., Ghavamzadeh, M., Janson, L., and Pavone, M. (2018). Risk-constrained reinforcement
learning with percentile risk criteria. Journal of Machine Learning Research.
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Appendix

A Theoretical Analysis of Algorithm 1

Now we present the theoretical analysis of Algorithm 1, with both asymptotic convergence and
finite-sample error bound analysis. For the purpose of clarity, in the following analysis, x is defined
as x := [y, θ]>, where x1 := y, x2 := θ. Similarly, git (resp. βit) is used to denote gyt (resp. βyt ) and
gθt (resp. βθt ), where g1

t := gyt , g
2
t := gθt (resp. β1

t := βyt , β
2
t := βθt ). Let βmax

t = max{β1
t , β

2
t },

βmin
t = min{β1

t , β
2
t }, and ‖ · ‖2 denotes the Euclidean norm.

A.1 Asymptotic Convergence Proof Algorithm 1

In this section, we provide the asymptotic convergence analysis for Algorithm 1 with Option I, i.e.,
the stepsizes are chosen to satisfy the Robbins-Monro condition and the output is the last iteration’s
result. We first introduce a useful lemma, which is follows from Lemma 2.

Lemma 3. Under Assumption 1, we have

E[〈∇y f̂λ(xt),∆
y
t 〉] =0

E[〈∇θf̂λ(xt),∆
θ
t 〉] ≤βmax

t AG,

where A is defined in Eq (9).

Proof. Let Ξt denote the history of random samples from the first to the t–th episode, then xt is
independent of ∆i

t conditioned on Ξt−1 (since xt is deterministic conditioned on Ξt−1). Then we
have

E[〈∇y f̂λ(xt),∆
y
t 〉] = EΞt−1 [E[〈∇y f̂λ(xt),∆

y
t 〉|Ξt−1]]

=EΞt−1
[〈E[∇y f̂λ(xt)|Ξt−1],E[∆y

t |Ξt−1]〉] = 0, (13)

E[〈∇θf̂λ(xt),∆
θ
t 〉] = EΞt−1 [E[〈∇θf̂λ(xt),∆

θ
t 〉|Ξt−1]]

=EΞt−1
[〈E[∇θf̂λ(xt)|Ξt−1],E[∆θ

t |Ξt−1]〉]
≤EΞt−1 [‖E[∇θf̂λ(xt)|Ξt−1]‖2 · ‖E[∆θ

t |Ξt−1]‖2]

≤βmax
t AEΞt−1

[‖E[∇θf̂λ(xt)|Ξt−1]‖2]

≤βmax
t AE[‖∇θf̂λ(xt)‖2] ≤ βmax

t AG, (14)

where the second equality in both Eq.(13) and Eq.(14) follows from the conditional independence
between xt and ∆i

t, the second inequality in Eq.(14) follows from Assumption 1, and the last
inequality in Eq.(14) follows from the Jensen’s inequality and G is the gradient bound.

Then, we introduce Lemma 4, which is essential for proving Theorem 1.

Lemma 4. For two non-negative scalar sequences {at} and {bt}, if
∑∞
t=1 at = +∞ and∑∞

t=1 atbt < +∞, we then have
lim
t→∞

inf bt = 0.

Further, if there exists a constant K > 0 such that |bt+1 − bt| ≤ atK, then

lim
t→∞

bt = 0.

The detailed proof can be found in Lemma A.5 of [Mairal, 2013] and Proposition 1.2.4 of [Bertsekas,
1999]. Now it is ready to prove Theorem 1.

Proof of Theorem 1. We define Γ1
t := f̂(x1

t , x
2
t )− f̂(x1

t+1, x
2
t ),Γ

2
t := f̂(x1

t+1, x
2
t )− f̂(x1

t+1, x
2
t+1)

to denote the block update. It turns out that for i = 1, 2, and Γit can be bounded following the
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Lipschitz smoothness as

Γit ≤〈git, xit − xit+1〉+
L

2
‖xit − xit+1‖22

=− βit〈git, g̃it〉+
L

2
(βit)

2‖g̃it‖22

=− (βit −
L

2
(βit)

2)‖git‖22 +
L

2
(βit)

2)‖∆i
t‖22 − (βit − L(βit)

2)〈git,∆i
t〉

=− (βit −
L

2
(βit)

2)‖git‖22 +
L

2
(βit)

2‖∆i
t‖22

− (βit − L(βit)
2)(〈git −∇xi f̂λ(xt),∆

i
t〉+ 〈∇xi f̂λ(xt),∆

i
t〉) (15)

where the equalities follow the definition of ∆i
t and the update law of Algorithm 1. We also have the

following argument

− (βit − L(βit)
2)〈git −∇xi f̂λ(xt),∆

i
t〉

≤|βit − L(βit)
2|‖∆i

t‖2‖git −∇xi f̂λ(xt)‖2
≤L|βit − L(βit)

2|‖∆i
t‖2‖xt+1 − xt‖2

≤L|βit − L(βit)
2|‖∆i

t‖2

√√√√ 2∑
j=1

‖βjt g̃
j
t ‖22

≤L(βit + L(βit)
2)βmax

t

‖∆i
t‖2 +

2∑
j=1

(‖gjt ‖22 + ‖∆j
t‖22)

 , (16)

where the first inequality follows from Cauchy-Schwarz inequality, the second inequality follows
from the Lipschitz smoothness of objective function f̂λ, the third inequality follows from the update
law of Algorithm 1, and the last inequality follows from the triangle inequality. Combining Eq. (15)
and Eq. (16), we obtain

Γit ≤− (βit −
L

2
(βit)

2)‖git‖22 +
L

2
(βit)

2‖∆i
t‖22

− (βit − L(βit)
2)〈∇xi f̂λ(xt),∆

i
t〉

+ L(βit + L(βit)
2) · βmax

t

‖∆i
t‖22 +

2∑
j=1

(‖gjt ‖22 + ‖∆j
t‖22)

 . (17)

Summing Eq. (17) over i, then we obtain

f̂λ(xt)− f̂λ(xt+1) (18)

≤−
2∑
i=1

(βit −
L

2
(βit)

2)‖git‖22 −
2∑
i=1

(βit − L(βit)
2)〈∇xi f̂λ(xt),∆

i
t〉

+

2∑
i=1

L
2

(βit)
2‖∆i

t‖22 + L(βit + L(βit)
2)βmax

t (‖∆i
t‖22 +

2∑
j=1

(‖gjt ‖22 + ‖∆j
t‖22))

 .

We also have the following fact,

E[〈∇y f̂λ(xt),∆
y
t 〉] =0

E[〈∇θf̂λ(xt),∆
θ
t 〉] ≤βmax

t AG.

We prove this fact in Lemma 3 as a special case of Lemma 2, and the general analysis can be found in
Lemma 1 in [Xu and Yin, 2015]. Taking expectation w.r.t. t on both sides of the inequality Eq. (18),
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we have

E[f̂λ(xt)]− E[f̂λ(xt+1)]

≤−
2∑
i=1

(βit −
L

2
(βit)

2)E[‖git‖22] + (βθt − L(βθt )2)βmax
t AG

+

2∑
i=1

L
2

(βit)
2E[‖∆i

t‖22] + L(βit + L(βit)
2)βmax

t (E[‖∆i
t‖22] +

2∑
j=1

(E[‖gjt ‖22] + E[‖∆j
t‖22]))



≤−
2∑
i=1

(βmin
t − L

2
(βmax
t )2)E[‖git‖22] + (βmax

t )2AG

+ (L(βmax
t )2σ2 + 2Lβmax

t (βmax
t + L(βmax

t )2)(3σ2 + 2G2)), (19)

where the first inequality follows from Eq. (13) and Eq. (14), and the second inequality follows from
the boundedness of E[‖∆i

t‖2] and E[‖git‖2].

Rearranging Eq. (19), we obtain

2∑
i=1

(βmin
t − L

2
(βmax
t )2)E[‖git‖22]

≤E[f̂λ(xt+1)]− E[f̂λ(xt)] + (βmax
t )2AMρ + L(βmax

t )2σ2

+ 2Lβmax
t (βmax

t + L(βmax
t )2)(3σ2 + 2G2). (20)

By further assuming 0 < inft
{βθt }
{βyt }

≤ supt
{βθt }
{βyt }

< ∞, it can be verified that {βmax
t } and {βmin

t }
also satisfy Robbins-Monro condition. Note that f̂λ is upper bounded, summing Eq. (20) over t and
using the Robbins-Monro condition of {βθt }, {β

y
t }, {βmax

t }, {βmin
t }, we have

∞∑
t=1

βmin
t E[‖git‖22] <∞, ∀i. (21)

Furthermore, let ξ1
t = (x1

t , x
2
t ) and ξ2

t = (x1
t+1, x

2
t ), then

|E[‖git+1‖22]− E[‖git‖22]| ≤E[‖git+1 + git‖2 · ‖git+1 − git‖2]

≤2LMρE[‖ξit+1 − ξit‖2]

=2LMρE

√∑
j<i

‖βjt+1g̃
j
t+1‖22 +

∑
j≥i

‖βjt g̃
j
t ‖22


≤2LMρβ

max
t E

√∑
j<i

‖g̃jt+1‖22 +
∑
j≥i

‖g̃jt ‖22


≤2LMρβ

max
t

√
E[
∑
j<i

‖g̃jt+1‖22 +
∑
j≥i

‖g̃jt ‖22]

≤2LMρβ
max
t

√
2(G2 + σ2), (22)

where the first inequality follows from Jensen’s inequality, the second inequality follows from the
definition of gradient boundG and the gradient Lipschitz continuity of f̂λ, the third inequality follows
from the Robbins-Monro condition of {βyt } and {βθt }, and the last two inequalities follow Jensen’s
inequality in probability theory.
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Combining Eq. (21) and Eq. (22) and according to Lemma 4, we have limt→∞ E[‖git‖2] = 0 for
i = 1, 2 by Jensen’s inequality. Hence,

E[‖∇y f̂λ(xt)‖2] =E[‖gyt ‖2]

E[‖∇θf̂λ(xt)‖2] ≤E[‖∇θf̂λ(xt)− gθt ‖2] + E[‖gθt ‖2]

≤L · E[‖yt+1 − yt‖2] + E[‖gθt ‖2]

≤Lβmax
t E[‖g̃yt ‖2] + E[‖gθt ‖2]

≤Lβmax
t

√
G2 + σ2 + E[‖gθt ‖2]

where the first inequality follows from the triangle inequality, the second inequality follows from the
Lipschitz continuity of f̂λ, and the last inequality follows from the same argument for Eq. (22). Also,
note that limt→∞ βmax

t = 0, limt→∞ L
√
G2 + σ2 < ∞, and limt→∞ E[‖git‖2] = 0, so that when

t→∞, Lβmax
t

√
G2 + σ2 + E[‖gyt ‖2] + E[‖gθt ‖2]→ 0. This completes the proof.

Remark 1. Different from the stringent two-time-scale setting where one stepsize needs to be “quasi-
stationary” compared to the other [Tamar et al., 2012], the stepsizes in Algorithm 1 does not have
such requirements, which makes it easy to tune in practice.

A.2 Finite-Sample Analysis of Algorithm 1

The above analysis provides asymptotic convergence guarantee of Algorithm 1, however, it is desirable
to know the sample complexity of the algorithm in real applications. Motivated by offering RL
practitioners confidence in applying the algorithm, we then present the sample complexity analysis
with Option II described in Algorithm 1, i.e., the stepsizes are set to be a constant, and the output is
randomly selected from {x1, · · · , xN} with a discrete uniform distribution. This is a standard strategy
for nonconvex stochastic optimization approaches [Dang and Lan, 2015]. With these algorithmic
refinements, we are ready to present the finite-sample analysis as follows. It should be noted that
this proof is a special case of the general stochastic nonconvex BSG algorithm analysis provided in
Appendix B.2.

Proof of Theorem 3. The proof of finite-sample analysis starts from the similar idea with asymptotic
convergence. The following analysis follows from Eq. (20) in the proof of Theorem 1, but we are
using step size {βθt }, {β

y
t } are constants which satisfy 2βmin

t > L(βmax
t )2 for t = 1, · · · , N in this

proof.

Summing Eq. (20) over t, we have
N∑
t=1

2∑
i=1

(βmin
t − L

2
(βmax
t )2)E[‖git‖22] (23)

≤f̂∗λ − f̂λ(x1) +

N∑
t=1

[(βmax
t )2AG+ L(βmax

t )2σ2 + 2Lβmax
t (βmax

t + L(βmax
t )2)(3σ2 + 2G2)].

Next, we bound E[‖∇f̂λ(xt)‖22] using E[‖gθt ‖22 + ‖gyt ‖22]

E[‖∇f̂λ(xt)‖22] =E[‖∇θf̂λ(xt)‖22 + ‖∇y f̂λ(xt)‖22]

≤E[‖∇θf̂λ(θt, yt)−∇θf̂λ(θt, yt+1) +∇θf̂λ(θt, yt+1)‖22 + ‖gyt ‖22]

≤E[‖∇θf̂λ(θt, yt)− gθt ‖22 + ‖gθt ‖22 + 2〈∇θf̂λ(θt, yt)− gθt , gθt 〉+ ‖gyt ‖22]

≤E[‖∇θf̂λ(θt, yt)− gθt ‖22 + 2〈∇θf̂λ(θt, yt)− gθt , gθt 〉] + E[‖gθt ‖22 + ‖gyt ‖22]

≤E[L2‖yt+1 − yt‖22 + 2L‖yt+1 − yt‖2 · ‖gθt ‖2] + E[‖gθt ‖22 + ‖gyt ‖22]

≤E[L2(βyt )2‖g̃yt ‖22 + 2Lβyt ‖g̃
y
t ‖2 · ‖gθt ‖2] + E[‖gθt ‖22 + ‖gyt ‖22]

≤L2(βyt )2(G2 + σ2) + 2Lβyt E[‖g̃yt ‖2 · ‖gθt ‖2] + E[‖gθt ‖22 + ‖gyt ‖22]

≤L2(βyt )2(G2 + σ2) + Lβyt E[‖g̃yt ‖22 + ‖gθt ‖22] + E[‖gθt ‖22 + ‖gyt ‖22]

≤L2(βmax
t )2(G2 + σ2) + Lβmax

t (2G2 + σ2) + E[‖gθt ‖22 + ‖gyt ‖22]. (24)
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Then, combine Eq. (24) with Eq. (23)

N∑
t=1

(βmin
t − L

2
(βmax
t )2)E[‖∇f̂λ(xt)‖22]

≤
N∑
t=1

(βmin
t − L

2
(βmax
t )2)E[L2(βmax

t )2(G2 + σ2) + Lβmax
t (2G2 + σ2) + ‖gθt ‖22 + ‖gyt ‖22]

≤f̂∗λ − f̂λ(x1) +

N∑
t=1

[(βmin
t − L

2
(βmax
t )2)(L2(βmax

t )2(G2 + σ2)

+ Lβmax
t (2G2 + σ2)) + (βmax

t )2AG+ L(βmax
t )2σ2 + 2Lβmax

t (βmax
t + L(βmax

t )2)(3σ2 + 2G2)]

≤f̂∗λ − f̂λ(x1) + (βmax
t )2

N∑
t=1

[(1− L

2
βmax
t )(L2βmax

t (G2 + σ2) + L(2M2
ρ + σ2)) +AG+ Lσ2

+ 2L(1 + Lβmax
t )(3σ2 + 2G2)].

Rearrange it, we obtain

E[‖∇f̂λ(xz)‖22] ≤ f̂∗λ − f̂λ(x1) +N(βmax
t )2C

N(βmin
t − L

2 (βmax
t )2)

,

where

C =(1− L

2
βmax
t )(L2βmax

t (G2 + σ2) + L(2G2 + σ2)) +AG+ Lσ2 + 2L(1 + Lβmax
t )(3σ2 + 2G2).

Remark 2. In Theorem 3, we have proven the finite-sample analysis of Algorithm 1 with Option
II, i.e., constant stepsizes and randomly picked solution. Note that the error bound in Eq. (12) can
be simplified as O(1/(Nβmin

t )) +O(βmax
t ). Especially, if βmax

t = βmin
t = βθt = βyt are set to be

Θ(1/
√
N), then the convergence rate of Option II in Algorithm 1 is O(1/

√
N).

B Proofs in Convergence Analysis of Nonconvex BSG

This section includes proof of Lemma 2 and Algorithm 2. We first provide the pseudo-code for
nonconvex BSG method as Algorithm 2.

B.1 Proof of Lemma 2

Proof of Lemma 2. We prove Lemma 2 for the case of discrete ξ, note that the proof still holds for
the case of continuous ξ just by using probability density function to replace probability distribution.
Without the loss of generality, we assume a fixed update order in Algorithm 2: πit = i, for all
i and t. Let Ξt = {ξk,1, ξk,2, . . . , ξk,mt} be any mini-batch samples in the t-th iteration. Let
g̃iΞt,t = 1

mt

∑mt
j=1∇xiF (x<it+1, x

≥i
t ; ξt,j) and giΞt,t = ∇xif(x<it+1, x

≥i
t ), and xiΞt,t+1 = xit−βit g̃iΞt,t.

Then we have

E[g̃iΞt,t|Ξ[t−1]] =EΞt

 1

mt

mt∑
j=1

∇xiF (x<iΞt,t+1, x
≥i
t ; ξt,j)


=

∑
ξ1,...,ξmt

Pr(Ξt = {ξ1, ξ2, . . . , ξmt})
1

mt

mt∑
j=1

∇xiF (x<iΞt,t+1, x
≥i
t ; ξj), (26)
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Algorithm 2 The nonconvex BSG Algorithm
Input: Initial point x1 ∈ Rn, step sizes {βit : i = 1, · · · , b}∞k=1, positive integers {mt}∞k=1 that
indicate the mini-batch sizes, and iteration limit N .

1: for k = 1, 2, . . . , N do
2: Sample mini batch Ξt = {ξt,1, ξt,2, . . . , ξt,mt}.
3: Specify update order πit = i, i = 1, · · · , b, or randomly shuffle {i = 1, · · · , b} to

{π1
t , π

2
t , . . . , π

b
t}.

4: for i = 1, 2, . . . , b do
5: Compute the stochastic partial gradient for the πitth block as

g̃it =
1

mt

mt∑
j=1

∇
xπ
i
t
F (x

π<it
t+1 , x

π
≥i
t
t ; ξt,j).

6: Update πitth block

x
πit
t+1 = x

πit
k − β

i
t g̃
i
t.

7: end for
8: end for
9: Return x̄N = xz randomly according to

Pr(z = t) =
βmin
t − L

2 (βmax
t )2∑N

t=1(βmin
t − L

2 (βmax
t )2)

, t = 1, . . . , N. (25)

and

E[giΞt,t|Ξ[t−1]] =EΞt

[
∇xif(x<iΞt,t+1, x

≥i
t )
]

=
∑

ξ′1,...,ξ
′
mt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt})∇xif(x<iΞ′t,t+1, x
≥i
t )

=
∑

ξ′1,...,ξ
′
mt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt})
∑
ξl

Pr(ξ = ξl)∇xiF (x<iΞ′t,t+1, x
≥i
t ; ξl)

=
∑

ξ′1,...,ξ
′
mt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt})
∑

ξ1,...,ξmt

Pr(Ξt = {ξ1, ξ2, . . . , ξmt})

1

mt

mt∑
j=1

∇xiF (x<iΞ′t,t+1, x
≥i
t ; ξj). (27)

Combine (26) and (27), we can obtain the expectation of ∆i
t as

E[∆i
t|Ξ[t−1]] =E[g̃it − git|Ξ[t−1]]

=
∑

ξ′1,...,ξ
′
mt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt})
∑

ξ1,...,ξmt

Pr(Ξt = {ξ1, ξ2, . . . , ξmt})

1

mt

mt∑
j=1

(∇xiF (x<iΞt,t+1, x
≥i
t ; ξj)−∇xiF (x<iΞ′t,t+1, x

≥i
t ; ξj))

=
∑

ξ′1,...,ξ
′
mt

∑
ξ1,...,ξmt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt}) Pr(Ξt = {ξ1, ξ2, . . . , ξmt})

1

mt

mt∑
j=1

(∇xiF (x<iΞt,t+1, x
≥i
t ; ξj)−∇xiF (x<iΞ′t,t+1, x

≥i
t ; ξj)). (28)

Note that, since the objection function is Lipschitz smoothness, F (x; ξ) is also Lipschitz smoothness
if Pr(ξ) > 0, and we use L to denote the maximum Lipschitz constant for all Pr(ξ) > 0. Similarly,
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we can also obtain the gradient of F (x; ξ) is also bounded using same analysis, and we use G to
denote the maximum bound for all Pr(ξ) > 0. Using these two fact, we have

‖∇xiF (x<iΞt,t+1, x
≥i
t ; ξj)−∇xiF (x<iΞ′t,t+1, x

≥i
t ; ξj)‖2

≤L‖x<iΞt,t+1 − x
<i
Ξ′t,t+1‖2

≤
∑
l<i

L‖xlΞt,t+1 − xlΞ′t,t+1‖2

≤
∑
l<i

Lβlt‖g̃lΞt,t − g̃
l
Ξ′t,t
‖2

≤2LbGβmax
t . (29)

Combine (28) and (29), we complete the proof as

E[∆i
t|Ξ[t−1]]

≤
∑

ξ′1,...,ξ
′
mt

∑
ξ1,...,ξmt

Pr(Ξ′t = {ξ′1, ξ′2, . . . , ξ′mt}) Pr(Ξt = {ξ1, ξ2, . . . , ξmt})2LbGβmax
t

=2LbGβmax
t ,

where the last equation follows from the Law of total probability. This completes the proof.

B.2 Proof of Theorem 2

Let βmax
t := maxi β

i
t , β

min
t := mini β

i
t . To establish the convergence rate analysis, we start with

Lemma 5.

Lemma 5. Let uk be a random vector that only depends on Ξ[t−1]. If ut is independent of ∆i
t, then

E[〈ut,∆i
t〉] ≤ Aβmax

t E[‖ut‖2],

where A is defined in Eq (9).

Now, it is ready to discuss the main convergence properties of the nonconvex Cyclic SBCD algorithm
(Algorithm 2) and provide the rate of convergence for that.

Proof of Lemma 5. We can obtain the result of Lemma 5 by follows

E[〈ut,∆i
t〉] =EΞ[t−1]

[
E[〈ut,∆i

t〉|Ξ[t−1]]
]

(a)
=EΞ[t−1]

[
〈E[ut|Ξ[t−1]],E[∆i

t|Ξ[t−1]]〉
]

≤EΞ[t−1]

[
‖E[ut|Ξ[t−1]]‖2 · ‖E[∆i

t|Ξ[t−1]]‖2
]

≤Aβmax
t EΞ[t−1]

[
‖E[ut|Ξ[t−1]]‖2

]
(b)
≤Aβmax

t E [‖ut‖2] ,

where (a) follows from the conditional independence between ut and ∆i
t, and (b) follows from

Jensen’s inequality.

Proof of Theorem 2. From the Lipschitz smoothness, it holds that

f(x≤it+1, x
>i
t )− f(x<it+1, x

≥i
t )

≤〈git, xit+1 − xit〉+
L

2
‖xit+1 − xit‖22

=− βit〈git, g̃it〉+
L

2
(βit)

2‖g̃it‖22

=− (βit −
L

2
(βit)

2)‖git‖22 +
L

2
(βit)

2‖∆i
t‖22 − (βit − L(βit)

2)〈git,∆i
t〉 (30)
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where all the equations follow the definition of ∆i
t and the update law of Algorithm 2.

Summing (30) over i, then we obtain

f(xt+1)− f(xt) ≤ −
b∑
i=1

(βit −
L

2
(βit)

2)‖git‖22 +

b∑
i=1

L

2
(βit)

2‖∆i
t‖22 −

b∑
i=1

(βit − L(βit)
2)〈git,∆i

t〉.

(31)

Use Lemma 5, we also have the following fact,

E[〈git,∆i
t〉] ≤ βmax

t AG. (32)

Taking expectation over (31), we have

E[f(xt+1)]− E[f(xt)]

≤−
b∑
i=1

(βit −
L

2
(βit)

2)E[‖git‖22] +

b∑
i=1

(βit − L(βit)
2)βmax

t AG+

b∑
i=1

L

2
(βit)

2E[‖∆i
t‖22]

≤− (βmin
t − L

2
(βmax
t )2)

b∑
i=1

E[‖git‖22] +

b∑
i=1

(
(βmax
t )2AG+

L

2
(βit)

2σ2

)
, (33)

where the first inequality follows from (32), and the second inequality follows from the boundedness
of E[‖∆i

t‖2] and E[‖git‖2].

Rearranging (33), we obtain

(βmin
t − L

2
(βmax
t )2)

b∑
i=1

E[‖git‖22] ≤ E[f(xt)]− E[f(xt+1)] +

b∑
i=1

(
(βmax
t )2AG+

L

2
(βit)

2σ2

)
.

(34)

Also, we have

E[‖∇xif(xt)‖2] ≤E[‖∇xif(xt)− git‖2] + E[‖git‖2]

(a)
≤LE[‖x<it+1 − x<it ‖2] + E[‖git‖2]

(b)
≤LE

√∑
j<i

‖βjt g̃
j
t ‖22

+ E[‖git‖2]

≤Lβmax
t E

√∑
j<i

‖g̃jt ‖22

+ E[‖git‖2]

(c)
≤Lβmax

t

√
E[
∑
j<i

‖g̃jt ‖22] + E[‖git‖2]

(d)
≤Lβmax

t

√∑
j<i

(G2 + σ2) + E[‖git‖2], (35)

where (a) follows from the Lipschitz smoothness of f , (b) follows from xjt+1 = xjt − β
j
t g̃
j
t , (c)

follows from Jenson’s inequality, and (d) follows from the boundedness of gradient and boundedness
of variance.

Summing (35) over i, we can obtain

E[‖∇f(xt)‖22] =

b∑
i=1

E[‖∇xif(xt)‖2] ≤
b∑
i=1

Lβmax
t

√∑
j<i

(G2 + σ2) +

b∑
i=1

E[‖git‖2]. (36)
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Combine (36) with (34), we can obtain

(βmin
t − L

2
(βmax
t )2)E[‖∇f(xt)‖22]

≤(βmin
t − L

2
(βmax
t )2)

b∑
i=1

Lβmax
t

√∑
j<i

(G2 + σ2) + (βmin
t − L

2
(βmax
t )2)

b∑
i=1

E[‖git‖2]

≤E[f(xt)]− E[f(xt+1)] + (βmin
t − L

2
(βmax
t )2)

b∑
i=1

Lβmax
t

√∑
j<i

(G2 + σ2)

+

b∑
i=1

(
(βmax
t )2AG+

L

2
(βit)

2σ2

)
, (37)

where the first inequality follows from substituting (36) into the left-hand side of (34), and the second
inequality follows from substituting (36) into the right-hand side of (34).

Summing (37) over t, we have

N∑
t=1

(βmin
t − L

2
(βmax
t )2)E[‖∇f(xt)‖22]

≤f(x1)− f(x∗)

+

N∑
t=1

(βmin
t − L

2
(βmax
t )2)

b∑
i=1

Lβmax
t

√∑
j<i

(G2 + σ2) +

b∑
i=1

(
(βmax
t )2AG+

L

2
(βit)

2σ2

)

≤f(x1)− f(x∗) +

N∑
t=1

(βmax
t )2Ct. (38)

where Ct is

Ct =(1− L

2
βmax
t )

b∑
i=1

L

√∑
j<i

(G2 + σ2) + b

(
AG+

L

2
σ2

)
.

Using the probability distribution of R given in (25), we completes the proof.

Proof of Corollary 1. Combine these conditions with (38), we have

N∑
t=1

(βmin − L

2
(βmax)2)E[‖∇f(xt)‖22] ≤ f(x1)− f(x∗) +N(βmax)2C,

where C is

C =(1− L

2
βmax)

b∑
i=1

L

√∑
j<i

(G2
j + σ2) + b

(
AG+

L

2
σ2

)
.

Using the probability distribution of z given in (25), we can obtain

E
[
‖∇f(xz)‖22

]
≤ f(x1)− f∗ +N(βmax)2C

N(βmin − L
2 (βmax)2)

.

Thus, we can reach the rate of convergence ofO(1/
√
N) by setting βmin = βmax = O(1/

√
N).
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Algorithm 3 Risk-Sensitive Randomized Coordinate Descent Policy Gradient (RCPG)

1: Input: Stepsizes {βθt } and {βyt }, let βmax
t = max{βθt , β

y
t }.

Option I: {βθt } and {βyt } satisfy the Robbins-Monro condition.
Option II: βθt and βyt are set to be constants.

2: for episode t = 1, . . . , N do
3: for time step k = 1, . . . , τt do
4: Compute ak ∼ πθ(a|sk), observe rk, sk+1.
5: end for
6: Compute

Rt =

τt∑
k=1

rk

ωt(θt) =

τt∑
k=1

∇θ lnπθt(ak|sk).

7: Randomly select it ∈ {1, 2} with distribution [0.5, 0.5]. If it = 1,

yt+1 = yt + βt

(
2Rt +

1

λ
− 2yt

)
,

θt+1 = θt.

else

yt+1 = yt,

θt+1 = θt + βt

(
2ytRt − (Rt)

2
)
ωt(θt).

8: end for
9: Output x̄N :

Option I: Set x̄N = xN .
Option II: Set x̄N = xz , where z is uniformly drawn from {1, 2, . . . , N}.

C RCPG and SGA Algorithm

C.1 Randomized Stochastic Block Coordinate Descent Algorithm

We propose the randomized stochastic block coordinate descent algorithm as Algorithm 3. Note that
we also use the same notation about gradient from Eq. (6) and Eq. (7) with very a tiny difference in
practical, where yt+1 = yt in Eq. (7).

Note that, the main difference between Cyclic SBCD and Randomized SBCD is that: at each iteration,
Cyclic SBCD cyclically updates all blocks of variables, and the later updated blocks depending on the
early updated blocks; while Randomized SBCD randomly chooses one block of variables to update.

C.2 Risk-Sensitive Stochastic Gradient Ascent Policy Gradient

We also proposed risk-sensitive stochastic gradient Ascent policy gradient as Algorithm 4.

D Details of the Experiments

The parameter settings for portfolio management domain are as follows: τ = 50, rl = 1.001,
rhigh

nl = 2, rlow
nl = 1.1, prisk = 0.05, pswitch = 0.1, W = 4, η = 0.2, startup cash $100, 000.

The parameter settings of American-style Option domain are as follows: Kput = 1, Kcall = 1.5,
x0 = 1.25, fu = 9/8, fd = 8/9, p = 0.45, τ = 20.
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Algorithm 4 Risk-Sensitive Stochastic Gradient Ascent Policy Gradient (SGA)

1: Input: Stepsizes {βθt } and {βyt }, let βmax
t = max{βθt , β

y
t }.

Option I: {βθt } and {βyt } satisfy the Robbins-Monro condition.
Option II: βθt and βyt are set to be constants.

2: for episode t = 1, . . . , N do
3: for time step k = 1, . . . , τt do
4: Compute ak ∼ πθ(a|sk), observe rk, sk+1.
5: end for
6: Compute

Rt =

τt∑
k=1

rk

ωt(θt) =

τt∑
k=1

∇θ lnπθt(ak|sk).

7: Update parameters,

yt+1 = yt + βt

(
2Rt +

1

λ
− 2yt

)
,

θt+1 = θt + βt

(
2ytRt − (Rt)

2
)
ωt(θt).

8: end for
9: Output x̄N :

Option I: Set x̄N = xN .
Option II: Set x̄N = xz , where z is uniformly drawn from {1, 2, . . . , N}.

The parameter settings of optimal stopping domain are as follows: x0 = 1.25, fu = 2, fd = 0.5,
p = 0.65, τ = 20.
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