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Learning graphs from data:

A signal representation perspective
Xiaowen Dong*, Dorina Thanou*, Michael Rabbat, and Pascal Frossard

The construction of a meaningful graph topology plays a crucial role in the effective representation,

processing, analysis and visualization of structured data. When a natural choice of the graph is not

readily available from the data sets, it is thus desirable to infer or learn a graph topology from the

data. In this tutorial overview, we survey solutions to the problem of graph learning, including classical

viewpoints from statistics and physics, and more recent approaches that adopt a graph signal processing

(GSP) perspective. We further emphasize the conceptual similarities and differences between classical and

GSP-based graph inference methods, and highlight the potential advantage of the latter in a number of

theoretical and practical scenarios. We conclude with several open issues and challenges that are keys to

the design of future signal processing and machine learning algorithms for learning graphs from data.

I. INTRODUCTION

Modern data analysis and processing tasks typically involve large sets of structured data, where the

structure carries critical information about the nature of the data. One can find numerous examples of such

data sets in a wide diversity of application domains, including transportation networks, social networks,

computer networks, and brain networks. Typically, graphs are used as mathematical tools to describe the

structure of such data. They provide a flexible way of representing relationship between data entities.

Numerous signal processing and machine learning algorithms have been introduced in the past decade

for analyzing structured data on a priori known graphs [1]–[3]. However, there are often settings where

the graph is not readily available, and the structure of the data has to be estimated in order to permit

effective representation, processing, analysis or visualization of graph data. In this case, a crucial task is

to infer a graph topology that describes the characteristics of the data observations, hence capturing the

underlying relationship between these entities.

Consider an example in brain signal analysis. Suppose we are given blood-oxygen-level-dependent

(BOLD) signals, which are time series extracted from functional magnetic resonance imaging (fMRI) data
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Fig. 1: Inferring functional connectivity between different regions of the brain. (a) BOLD time series

recorded in different regions of the brain. (b) A functional connectivity graph where the vertices represent

the brain regions and the edges (with thicker bars indicating heavier weights) represent the strength of

functional connections between these regions. Figure adapted from [4] with permission.

that reflect the activities of different regions of the brain. An area of significant interest in neuroscience is to

infer functional connectivity, i.e., capture relationship between brain regions which correlate or synchronize

given a certain condition of a patient, which may help reveal underpinnings of some neurodegenerative

diseases (see Fig. 1 for an illustration). This leads to the problem of inferring a graph structure given the

multivariate BOLD time series data.

Formally, the problem of graph learning is the following: given M observations on N variables or data

entities, represented in a data matrix X ∈ RN×M , and given some prior knowledge (e.g., distribution, data

model, etc) about the data, we would like to build or infer relationship between these variables that take

the form of a graph G. As a result, each column of the data matrix X becomes a graph signal defined on

the node set of the estimated graph, and the observations can be represented as X = F(G), where F

represents a certain generative process or function on the graph.

The graph learning problem is an important one because: 1) a graph may capture the actual geometry of

structured data, which is essential to efficient processing, analysis and visualization; 2) learning relationship

between data entities benefits numerous application domains, such as understanding functional connectivity

between brain regions or behavioral influence between a group of people; 3) the inferred graph can help

in predicting data evolution in the future.

Generally speaking, inferring graph topologies from observations is an ill-posed problem, and there are

many ways of associating a topology with the observed data samples. Some of the most straightforward
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methods include computing sample correlation, or using a similarity function, e.g., a Gaussian RBF kernel

function, to quantify the similarity between data samples. These methods are based purely on observations

without any explicit prior or model of the data, hence they may be sensitive to noise and have difficulty

in tuning the hyper-parameters. A meaningful data model or accurate prior may, however, guide the graph

inference process and lead to a graph topology that better reveals the intrinsic relationship among the

data entities. Therefore, a main challenge in this problem is to define such a model for the generative

process or function F , such that it captures the relationship between the observed data X and the learned

graph topology G. Naturally, such models often correspond to specific criteria for describing or estimating

structures between the data samples, e.g., models that put a smoothness assumption on the data, or that

represent an information diffusion process on the graph.

Historically, there have been two general approaches to learning graphs from data, one based on

statistical models and one based on physically-motivated models. From the statistical perspective, F(G)

is modeled as a function that draws a realization from a probability distribution over the variables that is

determined by the structure of G. One prominent example is found in probabilistic graphical models [5],

where the graph structure encodes conditional independence relationship among random variables that are

represented by the vertices. Therefore, learning the graph structure is equivalent to learning a factorization

of a joint probability distribution of these random variables. Typical application domains include inferring

interactions between genes using gene expression profiles, and relationship between politicians given their

voting behavior [6].

For physically-motivated models, F(G) is defined based on the assumption of an underlying physical

phenomenon or process on the graph. One popular process is network diffusion or cascades [7]–[10],

where F(G) dictates the diffusion behavior on G that leads to the observation of X, possibly at different

time steps. In this case, the problem is equivalent to learning a graph structure on which the generative

process of the observed signals may be explained. Practical applications include understanding information

flowing over a network of online media sources [7] or observing epidemics spreading over a network of

human interactions [11], given the state of exposure or infection at certain time steps.

The fast growing field of graph signal processing [3], [12] offers a new perspective to the problem

of graph learning. In this setting, the columns of the observation matrix X are explicitly considered as

signals that are defined on the vertex set of a weighted graph G. The learning problem can then be cast

as one of learning a graph G such that F(G) permits to make certain properties or characteristics of

the observations X explicit, e.g., smoothness with respect to G or sparsity in a basis related to G. This

signal representation perspective is particularly interesting as it puts a strong and explicit emphasis on the

relationship between the signal representation and the graph topology, where F(G) often comes with an
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Fig. 2: A broad categorization of different approaches to the problem of graph learning.

interpretation of frequency-domain analysis or filtering operation of signals on the graph. For example, it

is typical to adopt the eigenvectors of the graph Laplacian matrix associated with G as a surrogate for the

Fourier basis for signals supported on G [3], [13]; we go deeper into the details of this view in Sec. III.

One common representation of interest is a smooth representation in which X has a slow variation on

G, which can be interpreted as X mainly consisting of low frequency components in the graph spectral

domain. Such Fourier-like analysis on the graph leads to novel graph inference methods compared to

approaches rooted in statistics or physics; more importantly, it offers the opportunity to represent X in

terms of its behavior in the graph spectral domain, which makes it possible to capture complex and

non-typical behavior of graph signals that cannot be explicitly handled by classical tools, for example

bandlimited signals on graphs. Therefore, given potentially more accurate assumptions underlying the GSP

models, the inference of G given a specifically designed F may better reveal the intrinsic relationship

between the data entities and benefit subsequent data processing applications. Conceptually, as illustrated

in Fig. 2, GSP-based graph learning approaches can thus be considered as a new family of methods that

have close connections with classical methods while also offering certain unique advantages in graph

inference.

In this tutorial overview, we first review well-established solutions to the problem of graph learning

that adopt a statistics or a physics perspective. Next, we survey a series of recent GSP-based approaches

and show how signal processing tools and concepts can be utilized to provide novel solutions to the graph
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learning problem. Finally, we showcase applications of GSP-based methods in a number of domains and

conclude with open questions and challenges that are central to the design of future signal processing and

machine learning algorithms for learning graphs from data.

II. LITERATURE REVIEW

The recent availability of a large amount of data collected in a variety of application domains leads to

an increasing interest in estimating the structure, often encoded in the form of a network or a graph, that

underlies the data. Two general approaches have been proposed in the literature, one based on statistical

models and the other based on physically-motivated models. We provide a detailed review of these two

approaches next.

A. Statistical models

The general philosophy behind the statistical view is that there exists a graph G whose structure

determines the joint probability distribution of the observations on the data entities, i.e., columns of the

data matrix X. In this case, the function F(G) in our problem formulation is one that draws a collection

of realizations, i.e., the columns of X, from the distribution governed by G. Such models are known as

probabilistic graphical models [5], [6], [14]–[16], where the edges (or lack thereof) in the graph encode

conditional independence relationship among the random variables represented by the vertices.

There are two main types of graphical models: 1) undirected graphical models, also known as Markov

random fields (MRFs), in which local neighborhoods of the graph capture the independence structure

of the variables; and 2) directed graphical models, also known as Bayesian networks or belief networks

(BNs), which have a more complicated notion of independence by taking into account the direction of

edges. Both MRFs and BNs have their respective advantages and disadvantages. In this section, we focus

primarily on the approaches for learning MRFs, which admit a simpler representation of conditional

independence and also have connections to GSP-based methods, as we will see later. Readers who are

interested in the comparison between MRFs and BNs as well as approaches for learning BNs are referred

to [5], [17].

An MRF with respect to a graph G = {V, E}, where V and E denote the vertex and edge set, respectively,

is a set of random variables x = {xi : vi ∈ V} that satisfy a Markov property. We are particularly

interested in the pairwise Markov property:

(vi, vj) /∈ E ⇔ p(xi|xj ,x \ {xi, xj}) = p(xi|x \ {xi, xj}). (1)
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(a) (b) (c) (d)

Fig. 3: (a) A groundtruth precision Θ. (b) An observation matrix X drawn from a multivariate Gaussian

distribution with Θ. (c) The sample covariance Σ̂. (d) The inverse of the sample covariance Σ̂.

Eq. (1) states that two variables xi and xj are conditionally independent given the rest if there is no edge

between the corresponding vertices vi and vj in the graph. Suppose we have N random variables, then

this condition holds for the exponential family of distributions with a parameter matrix Θ ∈ RN×N :

p(x|Θ) =
1

Z(Θ)
exp

∑
vi∈V

θiix
2
i +

∑
(vi,vj)∈E

θijxixj

 , (2)

where θij represents the ij-th entry of Θ, and Z(Θ) is a normalization constant.

Pairwise MRFs consist of two main classes: 1) Gaussian graphical models or Gaussian MRFs (GMRFs),

in which the variables are continuous; 2) discrete MRFs, in which the variables are discrete. In the case

of a (zero-mean) GMRF, the joint probability can be written as follows:

p(x|Θ) =
|Θ|1/2

(2π)N/2
exp
(
− 1

2
xTΘx

)
, (3)

where Θ is the inverse covariance or precision matrix. In this context, learning the graph structure boils

down to learning the matrix Θ that encodes pairwise conditional independence between the variables. It

is common to assume, or take as a prior, that Θ is sparse because: 1) real world interactions are typically

local; 2) the sparsity assumption makes learning computationally more tractable. In what follows, we

review some key developments in learning Gaussian and discrete MRFs.

For learning GMRFs, one of the first approaches is suggested in [18], where the author has proposed

to learn Θ by sequentially pruning the smallest elements in the inverse of the sample covariance matrix

Σ̂ = 1
M−1XXT (see Fig. 3). Although it is based on a simple and effective rule, this method does not

perform well when the sample covariance is not a good approximation of the “true” covariance, often

due to a small number of samples. In fact, the method cannot even be applied when the sample size is

smaller than the number of variables, in which case the sample covariance matrix is not invertible.

Since a graph is a representation of pairwise relationship, it is clear that learning a graph is equivalent

to learning a neighborhood for each vertex, i.e., the other vertices to which it is connected. In this case, it
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is natural to assume that the observation at a particular vertex may be represented by observations at the

neighboring vertices. Based on this assumption, the authors in [14] have proposed to approximate the

observation at each variable as a sparse linear combination of the observations at other variables. For a

variable x1, for instance, this approximation leads to a Lasso regression problem [19] of the form:

min
β1

||X1 −X\1β1||22 + λ||β1||1, (4)

where X1 and X\1 represent the observations on the variable x1 (i.e., transpose of the first row of X) and

the rest of the variables, respectively, and β1 ∈ RN−1 is a vector of coefficients for x1 (see Fig. 4(a)-(b)).

In Eq. (4), the first term can be interpreted as a local log-likelihood of β1 and the L1 penalty is added to

enforce its sparsity, with a regularization parameter λ balancing the two terms. The same procedure is

then repeated for all the variables (or vertices). Finally, the connection between a pair of vertices vi and

vj is given by θij = θji = max(|βij |, |βji|). This neighborhood selection approach using the Lasso is

intuitive with certain theoretical guarantees; however, due to the Lasso formulation, it does not work well

with non-i.i.d. observations.

Instead of per-node neighborhood selection, the works in [6], [15], [20] have proposed a popular method

for estimating an inverse covariance or precision matrix at once, which is based on maximum likelihood

estimation. Specifically, the so-called graphical Lasso method aims to solve the following problem:

max
Θ

log detΘ− tr(Σ̂Θ)− ρ||Θ||1, (5)

where Σ̂ is the sample covariance matrix (see Fig. 3), and det(·) and tr(·) represent the determinant

and trace operators, respectively. The first two terms together can be interpreted as the log-likelihood

under a GMRF and the entry-wise L1 norm of Θ is added to enforce sparsity of the connections with a

regularization parameter ρ. The main difference between this approach and the neighborhood selection

method of [14] is that the optimization in the latter is decoupled for each vertex, while the one in graphical

Lasso is coupled, which can be essential for stability under noise. Although the problem of Eq. (5) is

convex, log-determinant programs are in general computationally demanding. Nevertheless, a number of

efficient approaches have been proposed specifically for the graphical Lasso. For example, the work in

[16] proposes a quadratic approximation of the Gaussian negative log-likelihood that can significantly

speed up optimization.

Unlike the GMRFs, variables in discrete MRFs take discrete values. One popular example is the binary

Ising model [21]. Various learning methods may be applied in such cases, and one notable example

is the approach proposed in [22], based on the idea of neighborhood selection similar to that in [14].

Specifically, given the exponential family distribution introduced before, it is easy to verify that the
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(a) (b) (c)

Fig. 4: (a) Learning graphical models by neighborhood selection. (b) Neighborhood selection via the Lasso

regression for Gaussian MRFs. (c) Neighborhood selection via logistic regression for discrete MRFs.

conditional probability of one variable given the rest, e.g., p(X1m|X\1m) for variable x1 where X1m and

X\1m respectively represent the first entry and the rest of the m-th column of X (see Fig. 4(c)), follows

the form of a logistic function. Therefore, x1 can be considered as the dependent variable in a logistic

regression where all the other variables serve as independent variables. To learn sparse connections within

the neighborhood of this vertex, the authors of [22] have proposed to solve an L1-regularized logistic

regression:

max
β1

log pβ1
(X1m|X\1m)− λ||β1||1. (6)

The same procedure is then repeated for the rest of the vertices to compute the final connection matrix,

similar to that in [14].

Most previous approaches for learning GMRFs recover a precision matrix with both positive and

negative entries. A positive off-diagonal entry in the precision matrix implies a negative partial correlation

between the two random variables, which is difficult to interpret in some contexts, such as road traffic

networks. For such application settings, it is therefore desirable to learn a graph topology with non-negative

weights. To this end, the authors in [23] have proposed to select the precision matrix from the family

of the so-called M-matrices [24], which are symmetric and positive definite matrices with non-positive

off-diagonal entries, leading to the attractive GMRFs. Since the graph Laplacian matrix L is a (singular)

M-matrix that uniquely determines the adjacency matrix W, it is a popular modeling choice and numerous

papers have focused on learning L as a specific instance of the precision matrices.

One notable example is the work in [25], which adapts the graphical Lasso formulation of Eq. (5) and
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proposes to solve the following problem1:

maximize
Θ, σ2

log detΘ− tr(
1

M
XXTΘ)− ρ||Θ||1,

subject to Θ = L +
1

σ2
I, L ∈ L,

(7)

where I is the identity matrix, σ2 > 0 is the a priori feature variance, L is the set of valid graph Laplacian

matrices, and || · ||1 represents the entry-wise L1 norm. In Eq. (7), the precision matrix Θ is modeled as

a regularized graph Laplacian matrix (hence full-rank). By solving for it, the authors obtain the graph

Laplacian matrix, or in other words, an adjacency matrix with non-negative weights.

Notice that the trace term in Eq. (7) includes the so-called Laplacian quadratic form XTLX, which

measures the smoothness of the data on the graph and has also been used in other approaches that are

not necessarily developed from the viewpoint of inverse covariance estimation. For instance, the works in

[26] and [27] have proposed to learn the graph by minimizing quadratic forms that involve powers of the

graph Laplacian matrix L. When the power of the Laplacian is set to two, this is equivalent to the locally

linear embedding criterion proposed in [28] for nonlinear dimensionality reduction. As we shall see in

the following section, the criterion of signal smoothness has also been adopted in one of the GSP models

for graph inference.

B. Physically-motivated models

While the above methods mostly exploit statistical properties for graph inference, in particular the

conditional independence structure between random variables, another family of approaches tackles the

problem by taking a physically-motivated perspective. In this case, the observations X are considered as

outcomes of some physical phenomena on the graph, specified by the function F(G), and the inference

problem consists in capturing the structure inherent to the physics of the observed data. Two examples of

such methods are 1) network tomography, where the physical process models data actually transmitted

in a communication network, and 2) epidemic or information propagation models, where the physical

process represents a disease spreading over a contact network or a meme spreading over social media.

The field of network tomography broadly concerns methods for inferring properties of networks from

indirect observations [29]. It is most commonly used in the context of telecommunication networks,

where the information to be inferred may include the network routes, or the properties such as available

bandwidth or reliability of each link in the network. For example, end-to-end measurements are acquired

1The exact formulation of the optimization problem in [25] is in a slightly different but equivalent form, due to the following

relationship: ||Θ||1 = ||L||1 + 1
σ2N = 2||W||1 + 1

σ2N. We therefore choose the formulation in Eq. (7) as it illustrates the

connection with the graphical Lasso formulation in a straightforward way.
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by sending a sequence of packets from one source to many destinations, and sequences of received

packets are used to infer the internal network topology. The seminal work on this problem aimed to infer

the routing tree from one source to multiple destinations [30]. Subsequent work considered interleaving

measurements from multiple sources to the same destinations simultaneously to infer general topologies

[31]. These methods can be interpreted as choosing the function F(G) in our formulation as one that

measures network responses by exhaustively sending probes between all possible pairs of end-hosts.

Consequently, this may impose a significant amount of measurement traffic on the network. In order to

reduce this traffic, approaches based on active sampling have also been proposed [32].

Information propagation models have been applied to infer latent biological, social and financial

networks based on observations of epidemics, memes, or other signals diffusing over them (e.g., [7]–[10]).

For simplicity and consistency, in our discussion, we adopt the terminology of epidemiology. This type of

models is characterized by three main components: (a) the nodes, (b) an infection process (i.e., the change

in the state of the node that is transferred by neighboring nodes in the network), and (c) the causality

(i.e., the underlying graph structure based on which the infection is propagated). Given a known graph

structure, epidemic processes over graphs have been well-studied through popular models in which nodes

may be susceptible, infected, and possibly recovered [33]. On the other hand, when the structure is not

known beforehand, it may be inferred by considering the propagation of contagions over the edges of an

unknown network, given usually only the time steps when nodes became infected.

A (fully-observed) cascade may be represented by the sequence of triples {(v′p, vp, tp)}Pp=0, where

P ≤ N , representing that node v′p infected its neighbor vp at time tp. In many applications, one may

observe when a node becomes infected, but not which neighbor infected it (see Fig. 5 for an illustration).

Then, the task is to recover a graph G given the (partial) observations {(vp, tp)}Pp=0, usually for a number

of such cascades. In this case, the set of nodes is given and the goal is to recover the edge structure. The

common convention is to shift the infection times so that the initial infection in each cascade always

occurs at time t0 = 0. Equivalently, let x denote a length-N vector where xi is the time when vi is

infected, using the convention that xi =∞ if vi is not infected in this cascade. The observations from M

cascades can then be represented in a N -by-M matrix X = F(G).

Methods for inferring networks from information cascades can be generally divided into two main

categories depending on whether they are based on homogeneous or heterogeneous models. Methods

based on homogeneous models assume that cascades propagate in a statistically identical manner across

all edges. For example, one model treats entries wij of the (unknown) adjacency matrix as representing

the conditional probability that vi infects vj given vi is infected [8]. In addition, a transmission time

model h(t) is assumed known such that the likelihood that vi infects vj at time xj given that vi was
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(a) (b)

Fig. 5: (a) A graph with directed edges indicating possible directions of spreading. (b) Observations of

cascades spreading over the graph. We observe the times when nodes became infected (i.e., the cascade

reached a node) but do not observe from which neighbor it was infected. Figure inspired by the one in

[9].

infected at time xi < xj is:

p(xj |xi, wij) = h(xj − xi)wij . (8)

Here, h(t) is taken to be zero for t < 0, and typically h(t) also decays to zero as t→∞.

Assuming that the function h(t) is given, the inference problem reduces to finding the conditional

probabilities wij . Given the set of nodes infected as well as the time of infection in each observed

cascade, and assuming that cascades are independent and identically distributed, the likelihood of a graph

with adjacency matrix W (with wij being the ij-th entry) is derived explicitly in [8], and it is further

shown that maximizing this likelihood can be recast as an equivalent geometric program, so that convex

optimization techniques can be applied to the problem of inferring W.

A similar model is considered in [7], in which the conditional transmission probabilities are taken to

be the same on all edges, i.e., wij = β · 1{(vi, vj) ∈ E} where 1{·} is an indicator function, for a given

constant β ∈ (0, 1). The task therefore reduces to determining where there are edges, which is a discrete

optimization problem. The maximum likelihood objective is shown to be submodular in [7], and an edge

selection scheme based on greedy optimization obtains the optimal likelihood up to a constant factor.

Clearly, the main drawbacks of homogeneous methods are the strong underlying assumption that cascades

propagate in an identical manner across all edges in the network.

Methods based on heterogeneous models relax these requirements and allow for cascades to propagate

at different rates across different edges. The NETRATE algorithm [9] is a prototypical example of this

category, in which one assumes a parametric form for the edge conditional likelihood p(xj |xi, wij).
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For example, in an exponential model, p(xj |xi, wij) = wije
−wij(xj−xi) · 1{xj > xi}. If we write

P (xj |xi, wij) =
∫ xj

xi
p(t|xi, wij) dt for the cumulative density function, then the survival function

Sur(xj |xi, wij) := 1− P (xj |xi, wij) (9)

is the probability that vj is not infected by vi by time xj given that vi was infected at time xi. Furthermore,

the hazard function

Haz(xj |xi, wij) :=
p(xj |xi, wij)

Sur(xj |xi, wij)
(10)

is the instantaneous probability, at time xj , that vj is infected by vi given that vi was infected at time xi.

With this notation, the likelihood of a given cascade observation x that is observed up to time

T = max{xv <∞ : v ∈ V} is [9]:

p(x|W) =
∏

i:xi≤T

∏
j:xj>T

Sur(T |xi, wij)

×
∏

k:xk<xi

Sur(xi|xk, wki)
∑

l:xl<xi

Haz(xi|xl, wli).
(11)

When the survival and hazard functions are log-concave (which is the case for exponentially-distributed

edge conditional likelihoods, as well as others), then the resulting maximum likelihood inference problem

is shown to be convex in [9]. In fact, the overall maximum likelihood problem decomposes into per-node

problems which can be solved using a soft-thresholding algorithm, in a manner similar to [14]. Furthermore,

conditions are provided in [34] under which the resulting estimate is shown to be consistent (as the

number of observed cascades tends to infinity), and sample complexity results are provided, quantifying

how quickly the error decays as a function of the number of observed cascades.

The above heterogeneous approach requires adopting a parametric model for the edge conditional

likelihood, which may be difficult to justify in some settings. The approach described in [10] uses

kernel methods to estimate the edge conditional likelihoods in a non-parametric manner. More recently, a

Bayesian approach to infer a graph topology from diffusion observations has been proposed where the

infection time is not directly observed [35], but rather the state of each node (susceptible or infected) is a

latent variable affecting the statistics of the signal which is observed at each node.

In summary, many physically-motivated approaches consider the function F(G) to be an information

propagation model on the network, and generally fall under the bigger umbrella of probabilistic inference

of the network of diffusion or epidemic data. Notice, however, that despite its probabilistic nature, such

inference is carried out with a specific model of the physical phenomena in mind, instead of using a

general probability distribution of the observations considered by statistical models in the previous section.

In addition, for both methods in network tomography and those based on information propagation models,
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the recovered network typically indicates only the existence of edges and does not promote a specific

graph-signal structure. As we shall see, this is a clear difference from the GSP models that are discussed

in the following section.

III. GRAPH LEARNING: A SIGNAL REPRESENTATION PERSPECTIVE

There is clearly a growing interest in the signal processing community to analyze signals that are

supported on the vertex set of weighted graphs, leading to the fast-growing field of graph signal processing

[3], [12]. GSP enables the processing and analysis of signals that lie on structured but irregular domains

by generalizing classical signal processing concepts, tools and methods, such as time-frequency analysis

and filtering, on graphs [3], [12], [13].

Consider a weighted graph G = {V, E} with the vertex set V of cardinality N and edge set E . A graph

signal is defined as a function x : V → RN that assigns a scalar value to each vertex. When the graph is

undirected, the combinatorial or unnormalized graph Laplacian matrix L is defined as:

L = D−W, (12)

where D is the degree matrix that contains the degrees of the vertices along the diagonal, and W is the

weighted adjacency matrix of G. Since L is a real and symmetric matrix, it admits a complete set of

orthonormal eigenvectors with the associated eigenvalues via the eigencomposition:

L = χΛχT , (13)

where χ is the eigenvector matrix that contains the eigenvectors as columns, and Λ is the eigenvalue matrix

diag(λ0, λ1, · · · , λN−1) that contains the eigenvalues along the diagonal. Conventionally, the eigenvalues

are sorted in an increasing order, and we have for a connected graph: 0 = λ0 < λ1 ≤ · · · ≤ λN−1. The

Laplacian matrix L enables a generalization of the notion of frequency and Fourier transform for graph

signals [36]. Alternatively, a graph Fourier transform may also be defined using the adjacency matrix W,

and this definition can be used in directed graphs [12]. Furthermore, both L and W can be interpreted as

a general class of shift operators on graphs [12].

The above operators are used to represent and process signals on a graph in a similar way as in

traditional signal processing. To see this more clearly, consider two equations of central importance in

signal processing: Dc = x for the synthesis view and Ax = b for the analysis view. In the synthesis

view, the signal x is represented as a linear combination of atoms that are columns of a representation

matrix D, with c being the coefficient vector. In the context of GSP, the representation D of a signal on

the graph G is realized via F(G), i.e., a function of G. In the analysis view of GSP, given G and x and
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with a design for F (that defines A), we study the characteristics of x encoded in b. Examples include

the generalization of the Fourier and wavelet transforms for graph signals [12], [36], which are defined

based on mathematical properties of a given graph G. Alternatively, graph dictionaries can be trained by

taking into account information from both G and x [37], [38].

Although most GSP approaches focus on developing techniques for analyzing signals on a predefined

or known graph, there is a growing interest in addressing the problem of learning graph topologies from

observed signals, especially in the case when the topology is not readily available (i.e., not pre-defined

given the application domain). This offers a new perspective to the problem of graph learning, especially

by focusing on the representation of the observed signals on the learned graph. Indeed, this corresponds

to a synthesis view of the signal processing model: given x, with some designs for F and c, we would

like to infer G. Of crucial importance is therefore a model that captures the relationship between the

signal representation and the graph, which, together with graph operators such as the adjacency/Laplacian

matrices or the graph shift operators [12], contributes to specific designs for F . Moreover, assumptions

on the structure or properties of c also play an important role in determining the characteristics of the

resulting signal representation. Graph learning frameworks that are developed from a signal representation

perspective therefore have the unique advantage of enforcing certain desirable representations of the

observed signals, by exploiting the notions of frequency-domain analysis and filtering operations on

graphs.

A graph signal representation perspective is complementary to the existing ones that we discussed in

the previous section. For instance, from the statistical perspective, the majority of approaches for learning

graphical models do not lead directly to a graph topology with non-negative edge weights, a property

that is often desirable in real world applications, and very little work has studied the case of inferring

attractive GMRFs. Furthermore, the joint distribution of the random variables is mostly imposed in a

global manner, while it is not easy to encourage localized behavior (i.e., about a subset of the variables)

on the learned graph. The physics perspective, on the other hand, mostly focuses on a few conventional

models such as network diffusion and cascades. It remains however an open question how observations

that do not necessarily come from a well-defined physical phenomenon can be exploited to infer the

underlying structure of the data. The graph signal processing viewpoint introduces one more important

ingredient that can be used as a regularizer for complicated inference problems: the frequency or spectral

representation of the observations. In what follows, we will review three models for signal representation

on graphs, which lead to various methodologies for inferring graph topologies from the observed signals.
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A. Models based on signal smoothness

The first model we consider is a smoothness model, under which the signal takes similar values at

neighboring vertices. Practical examples of this model could be temperature observed at different locations

in a flat geographical region, or ratings on movies of individuals in a social network. The measure of

smoothness of a signal x on the graph G is usually defined by the so-called Laplacian quadratic form:

Q(L) = xTLx =
1

2

∑
i,j

wij (x(i)− x(j))2 , (14)

where wij is the ij-th entry of the adjacency matrix W and L is the Laplacian matrix. Clearly, Q(L) = 0

when x is a constant signal over the graph (i.e., a DC signal with no variation). More generally, we can

see that given the same L2-norm, the smaller the value Q(L), the more similar are the signal values

at neighboring vertices (i.e., the lower the variation of x is with respect to G). One natural criterion is

therefore to learn a graph (or equivalently its Laplacian matrix L) such that the signal variation on the

resulting graph, i.e., the Laplacian quadratic Q(L), is small. As an example, for the same signal, learning

a graph in Fig. 6(a) leads to a smoother signal representation in terms of Q(L) than that by learning a

graph in Fig. 6(c). The criterion of minimizing Q(L) or its variants with powers of L has been proposed

in a number of existing approaches, such as the ones in [25]–[27].

A procedure to infer a graph that favors the smoothness of the graph signals can be obtained using

the synthesis model F(G)c = x, and this is the idea behind the approaches in [39], [40]. Specifically,

consider a factor analysis model with the choice of F(G) = χ and:

x = χc + ε, (15)

where χ is the eigenvector matrix of the Laplacian L and ε ∼ N (0, σ2ε I) is additive Gaussian noise. With

a further assumption that c follows a Gaussian distribution with a precision matrix Λ:

c ∼ N (0,Λ†), (16)

where Λ† is the Moore-Penrose pseudo-inverse of the eigenvalue matrix of L, and c and ε are statistically

independent, it is shown in [39] that the signal x follows a GMRF model:

x ∼ N (0,L† + σ2ε I). (17)

This leads to formulating the problem of jointly inferring the graph Laplacian and the latent variable c as:

min
χ,Λ,c

‖x− χc‖22 + α cTΛc, (18)
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(a) (b)

(c) (d)

Fig. 6: (a) A smooth signal on the graph with Q(L) = 1 and (b) its Fourier coefficients in the graph

spectral domain. The signal forms a smooth representation on the graph as its values vary slowly along

the edges of the graph, and it mainly consists of low frequency components in the graph spectral domain.

(c) A less smooth signal on the graph with Q(L) = 5 and (d) its Fourier coefficients in the graph spectral

domain. A different choice of the graph leads to a different representation of the same signal.

where α is a non-negative regularization parameter related to the assumed noise level σ2ε . By making the

change of variables y = χc and recalling that the matrix of Laplacian eigenvectors χ is orthornormal,

one arrives at the equivalent problem:

min
L,y
‖x− y‖22 + α yTLy, (19)

in which the Laplacian quadratic form appears. Therefore, these particular modeling choices for F and c

lead to a procedure for inferring a graph over which the observation x is smooth. Note that, there is a

one-to-one mapping between the Laplacian matrix L and a weighted undirected graph, so inferring L is

equivalent to inferring G.
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By taking the matrix form of the observations and adding an L2 penalty, the authors of [39] propose

to solve the following optimization problem:

minimize
L, Y

||X−Y||2F + α tr(YTLY) + β||L||2F ,

subject to tr(L) = N, L ∈ L,
(20)

where tr(·) and || · ||F represent the trace and Frobenius norm of a matrix, respectively, and α and β

are non-negative regularization parameters. The trace constraint acts as a normalization factor that fixes

the volume of the graph and L is the set of valid Laplacian matrices. This constitutes the problem of

finding Y that is close to the data observations X, while ensuring at the same time that Y is smooth on

the learned graph represented by its Laplacian matrix L. The Frobenius norm of L is added to control

the distribution of the edge weights and is inspired by the approach in [27]. The problem is solved via

alternating minimization in [39], in which the step of solving for L bears similarity to the optimization in

[27]. A formulation similar to Eq. (20) has further been studied in [40] where reformulating the problem

in terms of the adjacency matrix W leads to a more efficient algorithm computationally. Both works

emphasize the characteristics of GSP-based graph learning approaches, i.e., enforcing desirable signal

representations through the learning process.

As we have seen, the smoothness property of the graph signal is associated with a multivariate Gaussian

distribution, which is also behind the idea of classical approaches for learning graphical models, such as

the graphical Lasso. Following the same design for F and slightly different ones for Λ compared to [39],

[40], the authors of [41] have proposed to solve a similar objective compared to the graphical Lasso, but

with the constraints that the solutions correspond to different types of graph Laplacian matrices (e.g., the

combinatorial or generalized Laplacian). The basic idea in the latter approach is to identify GMRF models

such that the precision matrix has the form of a graph Laplacian. Their work generalizes the classical

graphical Lasso formulation and the formulation proposed in [25] to precision matrices restricted to have

a Laplacian form. From a probabilistic perspective, the problems of interest correspond to a maximum a

posteriori (MAP) parameter estimation of GMRF models, whose precision matrix is a graph Laplacian. In

addition, the proposed approach allows for incorporating prior knowledge on graph connectivity, which,

if applicable, can help improve the performance of the graph inference algorithm.

It is also worth mentioning that, the approaches in [39]–[41] learn a graph topology without any

explicit constraint on the density of the edges in the learned graph. This information, if available, can be

incorporated in the learning process. For example, the work of [42] has proposed to learn a graph with a

targeted number of edges by selecting the ones that lead to the smallest Q(L).
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To summarize, in the global smoothness model, the objective of minimizing the original or a variant

of the Laplacian quadratic form of Q(L) can be interpreted as having F(G) = χ and c following a

multivariate Gaussian distribution. However, different learning algorithms may differ in both the output

of the algorithm and the computational complexity. For instance, the approaches in [40], [42] learn an

adjacency matrix, while the ones in [39], [41] learn a graph Laplacian matrix or its variants. In terms

of complexity, the approaches in [39], [40] and [41] all solve a quadratic program (QP), with efficient

implementations provided in the latter two based on primal-dual techniques and block-coordinate descent

algorithms, respectively. On the other hand, the method in [42] involves a sorting algorithm that scales

with the desired number of edges.

Finally, it is important to notice that Q(L) is a measure for global smoothness on G in the sense that a

small Q(L) implies a small variation of signal values along all the edges in the graph, and the signal

energy is mostly concentrated in the low frequency components in the graph spectral domain. Although

global smoothness is often a desirable property for the signal representation, it can also be limiting in other

scenarios. The second class of models that we introduce in the following section relaxes this constraint,

by allowing for a more flexible representation of the signal in terms of its spectral characteristics.

B. Models based on spectral filtering of graph signals

The second graph signal model that we consider goes beyond the global smoothness of the signal

on the graph and focuses more on the general family of graph signals that are generated by applying a

filtering operation to a latent (input) signal. In particular, the filtering operation may correspond to the

diffusion of an input signal on the graph. Depending on the type of the graph filter, and the input signal,

the generated signal can have different frequency characteristics (e.g., bandpass signals) and localization

properties (e.g., locally smooth signals). Moreover, this family of algorithms is more appropriate than the

one based on a globally smooth signal model for learning graph topologies when the observations are the

result of a diffusion process on a graph. Particularly, the graph diffusion model can be widely applied in

real world scenarios to understand the distribution of heat (sources) [43], such as the propagation of a

heat wave in geographical spaces, the movement of people in buildings or vehicles in cities, and the shift

of people’s interest towards certain subjects on social media platforms [44].

In this type of models, the graph filters and the input signals may be interpreted as the functions F(G)

and the coefficients c in our synthesis model, respectively. The existing methods in the literature therefore

differ in the assumptions on F as well as the distribution of c. In particular, F may be defined as an

arbitrary (polynomial) function of a matrix related to the graph [45], [46], or a well-known diffusion

kernel such as the heat diffusion kernel [47] (see Fig. 7 for two examples). The assumptions on c can also
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Fig. 7: Diffusion processes on the graph defined by a heat diffusion kernel (top right) and a graph shift

operator (bottom right).

vary, with the most prevalent ones being zero-mean Gaussian distribution, and sparsity. Broadly speaking,

we can distinguish the graph learning algorithms belonging to this family in two different categories. The

first category models the graph signals as stationary processes on graphs, where the eigenvectors of a

graph operator, such as the adjacency/Laplacian matrix or a shift operator, are estimated from the sample

covariance matrix of the observations in the first step. The eigenvalues are then estimated in the second

step to obtain the operator. The second category poses the graph learning problem as a dictionary learning

problem with a prior on the coefficients c. In what follows, we will give a few representative examples

of both categories, which differ in terms of graph filters as well as input signal characteristics.

1) Stationarity based learning frameworks: The main characteristic of this line of work is that, given a

stationarity assumption, the eigenvectors of a graph operator are estimated by the empirical covariance

matrix of the observations. In particular, the graph signal x can be generated from:

x = β0Π
∞
k=1(I− βkS)c =

∞∑
k=0

αkS
kc, (21)

for some set of the parameters {α} and {β}. The latter implies that there exists an underlying diffusion

process in the graph operator S, which can be the adjacency matrix, Laplacian, or a variation thereof, that

produces the signal x from the input signal c. By assuming a finite polynomial degree K, the generative

signal model becomes:

x = F(G)c =

K∑
k=0

αkS
kc, (22)
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where the connectivity matrix of G is captured through the graph operator S. Usually, c is assumed

to be a zero-mean graph signal with covariance matrix Σc = E[ccT ]. In addition, if c is white and

Σc = I, Eq. (21) is equivalent to assuming that the graph process x is stationary in S. This assumption

of stationarity is important for estimating the eigenvectors of the graph operator. Indeed, since the graph

operator S is often a real and symmetric matrix, its eigenvectors are also eigenvectors of the covariance

matrix Σx. As a matter of fact:

Σx = E[xxT ] = E

[
K∑
k=0

αkS
kc
( K∑
k=0

αkS
kc
)T]

=

K∑
k=0

αkS
k
( K∑
k=0

αkS
k
)T

= χ

(
K∑
k=0

αkΛ
k

)2

χT ,

(23)

where we have used the assumption that Σc = I and the eigendecomposition S = χΛχT . Given a

sufficient number of graph signals, the eigenvectors of the graph operator S can therefore be approximated

by the eigenvectors of the empirical covariance matrix of the observations. To recover S, the second step

of the process would then be to learn its eigenvalues.

The authors in [46] follow the aforementioned reasoning and model the diffusion process by powers

of the normalized Laplacian matrix. More precisely, they propose an algorithm for characterizing and

then computing a set of admissible diffusion matrices, which defines a polytope. In general, this polytope

corresponds to a continuum of graphs that are all consistent with the observations. To obtain a particular

solution, an additional criterion is required. Two such criteria are proposed: one which encourages the

resulting graph to be sparse, and another which encourages the recovered graph to be simple (i.e., a

graph in which no vertex has a connection to itself hence an adjacency matrix with only zeros along the

diagonal).

Similarly, in [45], after obtaining the eigenvectors of a graph shift operator, the graph learning problem

is equivalent to learning its eigenvalues, under the constraints that the shift operator obeys some desired

properties such as sparsity. The optimization problem of [45] can be written as:

minimize
S, Ψ

f(S,Ψ),

subject to S = χΨχT , S ∈ S,
(24)

where f(·) is a convex function applied on S that imposes the desired properties of S, e.g., sparsity via

an entry-wise L1-norm, and S is the constraint set of S being a valid graph operator, e.g., non-negativity

of the edge weights. The stationarity assumption is further relaxed in [48]. However, all these approaches

are based on the assumption that the sample covariance of the observed data and the graph operator have

the same set of eigenvectors. Thus, their performance depends on the accuracy of eigenvectors obtained
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from the sample covariance of data, which can be difficult to guarantee especially when the number of

data samples is small relative to the number of vertices in the graph.

Given the limitation in estimating the eigenvectors of the graph operator from the sample covariance, the

work of [49] has proposed a different approach. They have formulated the problem of graph learning as a

graph system identification problem where, by assuming that the observed signals are output of a system

with a graph-based filter given certain input, the goal is to learn a weighted graph (a graph Laplacian

matrix) and the graph-based filter (a function of the graph Laplacian matrices). The algorithm is based

on the minimization of a regularized maximum likelihood criterion and it is valid under the assumption

that the graph filters are one-to-one functions, i.e., increasing or decreasing in the space of eigenvalues,

such as a heat diffusion kernel. More specifically, the system input is assumed to be multivariate white

Gaussian noise (hence the stationarity assumption on the observed signals), and Eq. (23) is again used

for computing an initial estimate of the eigenvectors. However, different from [45], [46] where these

eigenvectors are used directly in forming the graph operators, in [49] they are used to compute the graph

Laplacian: after initializing the filter parameter, the algorithm iterates until convergence between the

following three steps: (a) pre-filter the sample covariance using the inverse of the graph filter; (b) estimate

a graph Laplacian from the pre-filtered covariance matrix by solving a maximum likelihood optimization

criterion, using an algorithm proposed in [41]; (c) update the filter parameter based on the current estimate

of the graph Laplacian. Compared to [45], [46], this approach may therefore lead to a more accurate

inference of the graph operator (graph Laplacian in this case).

2) Graph dictionary based learning frameworks: Methods belonging to this category are based on the

notion of spectral graph dictionaries for efficient signal representation. Specifically, the authors in [47],

[50] assume a different graph signal diffusion model, where the data consist of (sparse) combinations

of overlapping local patterns that reside on the graph. These patterns may describe localized events or

specific processes appearing at different vertices of the graph, such as traffic bottlenecks in transportation

networks or rumor sources in social networks. The graph signals are then viewed as observations at

different time instants of a few processes that start at different nodes of an unknown graph and diffuse

with time. Such signals can be represented as the combination of graph heat kernels or, more generally,

of localized graph kernels. Both algorithms can be considered as a generalization of dictionary learning

to graph signals. Dictionary learning [51], [52] is an area of research in signal processing and machine

learning where the signals are represented as a linear combination of simple components, i.e., atoms,

in an (often) overcomplete basis. Signal decompositions with overcomplete dictionaries offer a way to

efficiently approximate or process signals, such that the important characteristics are revealed by the

sparse signal representation. Due to these desirable properties, dictionary learning has been extended to
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Fig. 8: (a) A graph signal. (b-e) Its decomposition in four localized simple components. Each component

is a heat diffusion process (e−τL) at time τ that has started from different network nodes. The size and

the color of each ball indicate the value of the signal at each vertex of the graph. Figure from [47].

the representation of graph signals, and eventually has been applied to the problem of graph inference.

Next, we provide more details on one of the above mentioned algorithms. The authors in [47] have

focused on graph signals generated from heat diffusion processes, which are useful in identifying processes

evolving nearby a starting seed node. An illustrative example of such a signal can be found in Fig. 8, in

which case the graph Laplacian matrix is used to model the diffusion of the heat throughout a graph. The

concatenation of a set of heat diffusion operators at different time instances defines a graph dictionary

that is further on used to represent the graph signals. Hence, the graph signal model becomes:

x = F(G)c = [e−τ1L e−τ2L · · · e−τSL ]c =

S∑
s=1

e−τsLcs, (25)

which is a linear combination of different heat diffusion processes evolving on the graph. In this synthesis

model, the coefficients cs corresponding to a subdictionary e−τsL can be seen as a graph signal that goes

through a heat diffusion process on the graph. The signal component e−τsLcs can then be interpreted

as the result of this diffusion process at time τs. It is interesting to notice that the parameter τs in the

model carries a notion of scale. In particular, when τs is small, the i-th column of e−τsL, i.e., the atom

centered at node vi of the graph, is mainly localized in a small neighborhood of vi. As τs becomes larger,

it reflects information about the graph at a larger scale around vi. Thus, the signal model can be seen as

an additive model of diffusion processes of S initial graph signals, that undergo a diffusion model with

different diffusion times.

An additional assumption on the above signal model is that the diffusion processes are expected to

start from only a few nodes of the graph, at specific times, and spread over the entire graph over time2.

This assumption can be formally captured by imposing a sparsity constraint on the latent variable c. The

2When no locality assumptions are imposed (e.g., large τs) and a single diffusion kernel is used in the dictionary, the model

reduces to a global smoothness model.
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graph learning problem can be cast as a structured dictionary learning problem, where the dictionary is

defined by the unknown graph Laplacian matrix. The latter can then be estimated as a solution of the

following optimization problem:

minimize
L, C, τ

‖X−DC‖2F + α

M∑
m=1

‖cm‖1 + β‖L‖2F ,

subject to D = [e−τ1L e−τ2L . . . e−τSL ], {τs}Ss=1 ≥ 0,

tr(L) = N, L ∈ L,

(26)

where the constraints on L is the same as that in Eq. (20). Following the same reasoning, the work in

[50] extends the heat diffusion dictionary to the more general family of polynomial graph kernels. In

summary, these approaches propose to recover the graph Laplacian matrix by assuming that the graph

signals can be sparsely represented by a dictionary that consists of graph diffusion kernels.

In summary, from the perspective of spectral filtering, and in particular network diffusion, the function

F(G) is one that helps define a meaningful diffusion process on the graph via the graph Laplacian,

heat diffusion kernel, or other more general graph shift operators. This directly leads to the slightly

different output of the learning algorithms in [45]–[47]. The choice of the coefficients c, on the other

hand, determines specific characteristics of the graph signals, such as stationarity or sparsity. In terms of

computational complexity, the methods in [45]–[47] all involve the computation of eigenvectors, followed

by solving a linear program (LP), a semidefinite program (SDP), and a SDP, respectively.

C. Models based on causal dependencies on graphs

The models described in the previous two sections are mainly designed for learning undirected graphs,

which is also the predominant consideration in the current GSP literature. Undirected graphs are associated

with symmetric Laplacian matrices L, which admit a complete set of orthonormal eigenvalues and

eigenvectors that conveniently provide a notion of frequency for signals on graphs. It is often the case,

however, that in some application domains learning directed graphs is more desirable as in those cases

the directions of edges may be interpreted as causal dependencies between the variables that the vertices

represent. For example, in brain analysis, even though the inference of an undirected functional connectivity

between the regions of interest (ROIs) is certainly of interest, a directed effective connectivity may reveal

extra information about the causal dependencies between those regions [53], [54]. The third class of

models that we discuss is therefore one that allows for the inference of such directed dependencies.

The authors of [55] have proposed a causal graph process based on the idea of sparse vector autoregressive

(SVAR) estimation [56], [57]. In their model, the signal at time step t, x[t], is represented as a linear
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Fig. 9: A graph signal x at time step t is modeled as a linear combination of its observations in the past

T time steps and a random noise process n[t].

combination of its observations in the past T time steps and a random noise process n[t]:

x[t] = n[t] +

T∑
j=1

Pj(W)x[t− j]

= n[t] +

T∑
j=1

j∑
k=0

ajkW
kx[t− j],

(27)

where Pj(W) is a degree j polynomial of the (possibly directed) adjacency matrix W with coefficients ajk

(see Fig. 9 for an illustration). Clearly, this model admits the design of F(G) = Pi(W) and c = x[t− i] in

forming one time-lagged copy of the signal x[t]. For temporal observations X =
(
x[0] x[1] · · · x[M−1]

)
,

the authors have therefore proposed to solve the following optimization problem:

min
W,a

1

2

M−1∑
t=T

∥∥∥x[t]−
T∑
j=1

Pj(W)x[t− j]
∥∥∥2
2

+ α ||vec(W)||1 + β ||a||1, (28)

where vec(W) is the vectorized form of W, a =
(
a10 a11 · · · ajk · · · aTT

)
is a vector of all the

polynomial coefficients ajk, and the entry-wise L1-norm is imposed on W and a for promoting sparsity.

Due to non-convexity introduced by the matrix polynomials, the problem in Eq. (28) is solved in three

steps, i.e., solving sequentially for Pj(W), W, and a. In summary, in the SVAR model, the specific

designs of F and c lead to a particular generative process of the observed signals on the learned graph.

Similar ideas can also be found in the Granger causality or vector autoregressive models (VARMs) [58],

[59].

Structural equation models (SEMs) are another popular approach for inferring directed graphs [60],

[61]. In the SEMs, the signal observation x at time step t is modeled as:

x[t] = Wx[t] + Ey[t] + n[t], (29)

where the first term in Eq. (29) consists of endogenous variables, which define the signal value at each

variable as a linear combination of the values at its neighbors in the graph, and the second term represents
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exogenous variables y[t] with a coefficient matrix E. The third term represents observation noise which

is similar to that in Eq. (27). The endogenous component of the signal implies a choice of F(G) = W

(which can again be directed) and c = x[t] and, similar to the SVAR model, enforces a certain generative

process of the signal on the learned graph.

As we can see, causal dependencies on the graph, either between different components of the signal or

between its present and past observations, can be conveniently modeled in a straightforward manner by

choosing F(G) as a polynomial of the adjacency matrix of a directed graph and choosing the coefficients

c as the present or past signal observations. As a consequence, methods in [54], [55], [62] are all able

to learn an asymmetric graph adjacency matrix, which is a potential advantage compared to methods

based on the previous two models. Furthermore, the SEMs can be extended to track network topologies

that evolve dynamically [62] and deal with highly correlated data [63], or combined with the SVAR

model which leads to the structural vector autoregressive models (SVARMs) [64]. Interested readers are

referred to [65] for a recent review of the related models. In these extensions of the classical models, the

designs of F and c can be generalized accordingly to link the signal representation and the learned graph

topology. Finally, as an overall comparison, the differences between methods that are based on the three

models discussed in this review are summarized in Table I.

D. Connections with the broader literature

We have seen that GSP-based approaches can be unified by the viewpoint of learning graph topologies

that enforce desirable representations of the signals on the learned graph. This offers a new interpretation

of the traditional statistical and physically-motivated models. First, as a typical example of approaches for

learning graphical models, the graphical Lasso solves the optimization problem of Eq. (5) in which the

trace term tr(Σ̂Θ) = 1
M−1tr(XTΘX) bears similarity to the Laplacian quadratic form Q(L) and the

trace term in the problem of Eq. (20), when the precision matrix Θ is chosen to be the graph Laplacian

L. This is the case for the approach in [25], which has proposed to consider Θ = L + 1
σ2 I (see Eq. (7))

as a regularized Laplacian to fit into the formulation of Eq. (5). The graphical Lasso approach therefore

can be interpreted as one that promotes global smoothness of the signals on the learned topology.

Second, models based on spectral filtering and causal dependencies on graphs can generally be thought of

as the ones that define generative processes of the observed signals, in particular the diffusion processes on

the graph. This is achieved either explicitly by choosing F(G) as diffusion matrices as that in Section III-B,

or implicitly by defining the causal processes of signal generation as that in Section III-C. Both types of

models share similar philosophies as the ones developed from a physics viewpoint in Section II-B, in that
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TABLE I: Comparison between different GSP-based approaches to graph learning.

Method Signal Model
Assumption

Learning Output Edge Directionality
F(G) c

Dong et al. [39] Global Smoothness
Eigenvector

Matrix
Gaussian Laplacian Undirected

Kalofolias et al. [40] Global Smoothness
Eigenvector

Matrix
Gaussian Adjacency Matrix Undirected

Egilmez et al. [41] Global Smoothness
Eigenvector

Matrix
Gaussian Generalized Laplacian Undirected

Chepuri et al. [42] Global Smoothness
Eigenvector

Matrix
Gaussian Adjacency Matrix Undirected

Pasdeloup et al. [46]
Spectral Filtering

(Diffusion by Adjacency)

Normalized

Adjacency Matrix
IID Gaussian

Normalised Adjacency Matrix

Normalized Laplacian
Undirected

Segarra et al. [45]
Spectral Filtering

(Diffusion by Graph Shift Operator)

Graph Shift

Operator
IID Gaussian Graph Shift Operator Undirected

Thanou et al. [47]
Spectral Filtering

(Heat diffusion)
Heat Kernel Sparsity Laplacian Undirected

Mei and Moura [55]
Causal Dependency

(SVAR)

Polynomials of

Adjacency Matrix
Past Signals Adjacency Matrix Directed

Baingana et al. [62]
Causal Dependency

(SEM)
Adjacency Matrix Present Signal

Time-Varying

Adjacency Matrix
Directed

Shen et al. [54]
Causal Dependency

(SVARM)

Polynomials of

Adjacency Matrix

Past and

Present Signals
Adjacency Matrix Directed

they all propose to infer the graph topologies by modeling signals as outcomes of physical processes on

the graph, especially the diffusion and cascading processes.

It is also interesting to notice that certain models can be interpreted from all the three viewpoints, an

example being the global smoothness model. Indeed, in addition to the statistical and GSP perspectives

described above, the property of global smoothness can also be observed in a square-lattice Ising model

[21], hence admitting a physical interpretation. Despite the connections with traditional approaches,

however, GSP-based approaches offer some unique advantages compared to the classical methods. On the

one hand, the flexibility in designing the function F(G) allows for statistical properties of the observed

signals that are not limited to a Gaussian distribution, which is however the predominant choice in many

statistical machine learning methods. On the other hand, this also makes it easier to consider models that

go beyond a simple diffusion or cascade model. For example, by the sparsity assumption on the coefficients

c, the method in [47] defines the signals as the outcomes of possibly more than one diffusion processes

originated at different parts of the graph after possibly different time steps. Similarly, by choosing different

F(G) and c, the SVAR models [55] and the SEMs [62] correspond to different generative processes of

the signals, one based on the static network structure and the other on temporal dynamics. These design
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flexibilities provide more powerful modeling of the signal representation for the graph inference process.

IV. APPLICATIONS OF GSP-BASED GRAPH LEARNING METHODS

The field of GSP is strongly motivated by a wide range of applications where there exist inherent

structures behind data observations. Naturally, GSP-based graph learning methods are appealing in areas

where learning hidden structures behind data has been of constant interest. In particular, the emphasis on

the modeling of the signal representation within the learning process has made them increasingly popular

in a growing number of applications. Currently, these methods mainly find applications in image coding

and compression, brain signal analysis, and a few other diverse areas, as described briefly below.

A. Image coding and compression

Image representation and coding has been one main area of interest for GSP-based methods. Images

can be naturally thought of as graph signals defined on a regular grid structure, where the nodes are

the image pixels and the edge weights capture the similarity between adjacent pixels. The design of

new flexible graph signal representations has opened the door to new structure-aware transform coding

techniques, and eventually to more efficient image compression frameworks [66]. Such representation

permits to go beyond traditional transform coding by moving from classical fixed transforms such as the

discrete cosine transform (DCT) to graph-based transforms that are better adapted to the actual image

structure.

The design of the graph and the corresponding transform remains, however, one of the biggest challenges

in graph-based image compression. A suitable graph for effective transform coding should lead to easily

compressible signal coefficients, at the cost of a small overhead for coding the graph. Most graph-based

coding techniques focus mainly on images, and they construct the graph by considering pairwise similarities

among pixel intensities. A few attempts on adapting the graph topology and consequently the graph

transform exist in the literature, as for example in [67], [68]. However, they rely on the selection from a

set of representative graph templates, without being fully adapted to the image signals.

Graph learning has been introduced only recently for this type of problems. A learning model based

on signal smoothness, inspired by [39], [70], has been further extended in order to design a graph-based

coding framework that takes into account the coding of the signal values as well as the cost of transmitting

the graph in rate distortion terms [69]. In particular, the cost of coding the image signal is minimized by

promoting its smoothness on the learned topology. The transmission cost of the graph itself is further

controlled by adding an additional term in the optimization problem which penalizes the sparsity of the

graph Fourier coefficients of the edge weight signal.

December 14, 2018 DRAFT



28

(a)

(b) (c)

Fig. 10: Inferring a graph for image coding: (a) The graph learned on a random patch of the image Teddy

using [69]. (b) Comparison between the GFT coefficients of the image signal on the learned graph and

the four nearest neighbor grid graph. The coefficients are ordered decreasingly by log-magnitude. (c) The

GFT coefficients of the graph weights.

An illustrative example of the graph-based transform coding proposed in [69], as well as its application

to image compression, is shown in Fig. 10. Briefly, the compression algorithm consists of three important

parts. First, the solution to an optimization problem that takes into account the rate approximation of the

image signal at a patch level, as well as the cost of transmitting the graph, provides a graph topology

(Fig. 10(a)) that defines the optimal coding strategy. Second, the GFT coefficients of the image signal

on the learned graph can be used to compress efficiently the image. As we can see in Fig. 10(b), the

decay of these coefficients (in terms of their log-magnitude) is much faster than the decay of the GFT

coefficients corresponding to a regular grid graph that does not involve any learning. Third, the weights of

the learned graph are treated as a new edge weight signal that lies on a dual graph, whose nodes represent
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the edges in the learned graph, with the signal values on the nodes being the edge weights of the learned

graph. Two nodes are connected in this dual graph if and only if the two corresponding edges share one

common node in the learned graph. The learned graph is then transmitted by the GFT coefficients of this

edge weight signal, where the decay of these coefficients is shown in Fig. 10(c). The obtained results

confirm that the GFT coefficients of the graph weights are concentrated on the low frequencies, which

indicates a highly compressible graph.

Another example is the work in [71] that introduces an efficient graph learning approach for fast graph

Fourier transform that is based on [41]. The authors have considered a maximum likelihood estimation

problem with additional constraints based on a matrix factorization of the graph Laplacian matrix, such

that its eigenvector matrix is a product of a block diagonal matrix and a butterfly-like matrix. The learned

graph leads to a fast non-separable transform for intra predictive residual blocks in video compression.

Such efforts confirm that learning a meaningful graph can have a significant impact in graph-based image

compression. These are only some first attempts which leave much room for improvement, especially in

terms of coding performance. Thus, we expect to see more research efforts in the future to fully exploit

the potential of graph methods.

B. Brain signal analysis

GSP has been shown to be a promising and powerful framework for brain network data, mainly due

to the potential to jointly model the brain structure through the graph and the brain activity as a signal

residing on the nodes of the graph. The overview paper [72] provides a summary of how a graph signal

processing view on brain signals can provide additional insights into the functionality of the brain.

Graph learning in particular has been successfully applied for inferring the structural and functional

connectivity of the brain related to different diseases or external stimuli. For example, [27] introduced a

graph regression model for learning brain structural connectivity of patients with Alzheimer’s disease,

which is based on the signal smoothness model discussed in Section III-A. A similar framework [73],

extended to the noisy settings, has been applied on a set of magnetoencephalography (MEG) signals to

capture the brain activity in two categories of visual stimuli (e.g., the subject was viewing face or non-face

images). In addition to the smoothness assumption, the proposed framework is based on the assumption

that the perturbation on the low-rank components of the noisy signals is sparse. The recovered functional

connectivity graphs under these assumptions are compatible with findings in the neuroscientific literature,

which is a promising result indicating that graph learning can contribute to this application domain.

Instead of the smoothness model adopted in [27], [73], the authors in [54] have utilized models on

causal dependencies and proposed to infer effective connectivity networks of brain regions that may shed
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light on the understanding of the cause behind epilepsy. The signals that they use are electrocorticography

(ECoG) time series data before and after ictal onset of seizures of epilepsy. All these applications show

the potential impact GSP-based graph learning methods may have on brain and more generally biomedical

data analysis where the inference of hidden functional connections can be crucial.

C. Other application domains

In addition to image processing and biomedical analysis, GSP-based graph learning methods have been

applied to a number of other diverse areas. One notable example is meteorology, where it is of interest to

understand the relationship between different locations based on the temperatures recorded at the weather

stations in these locations. Interestingly, this is an area where all the three major signal models introduced

in this tutorial may be employed to learn graphs that lead to different insights. For instance, the authors

of [39], [42] have proposed to learn a network of weather stations using the signal smoothness model,

which essentially captures the relationship between these stations in terms of their altitude. Alternatively,

the work in [46] has adopted the heat diffusion model in which the evolution of temperatures in different

regions is modeled as a diffusion process on the learned geographical graph. The authors of [55] have

further developed a framework based on causal dependencies to infer a directed temperature propagation

network that is consistent with major wind directions over the United States. We note, however, that most

of these studies are proof of concept, and future research is expected to focus more on the perspective of

practical applications in meteorology.

Another area of interest is environmental monitoring. As an example, the author of [74] has proposed

to apply the GSP-based graph learning framework of [70] for the analysis of exemplary environmental

data of ozone concentration in Poland. More specifically, the paper has proposed to learn a network that

reflects the relationship between different regions in terms of ozone concentration. Such relationship may

be understood in a dynamic fashion using data from different temporal periods. Similarly, the work in [39]

has analyzed evapotranspiration data collected in California to understand relationship between regions of

different geological features.

Finally, GSP-based methods have also been applied to infer graphs that reveal urban traffic flows [47],

patterns of news propagation on the Internet [62], inter-region political relationship [39], similarity between

animal species [41], and ontologies of concepts [25]. The diversity of these areas has demonstrated the

potential of applying GSP-based graph learning methods for understanding hidden relationship behind

data observations in real world applications.
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V. CONCLUDING REMARKS AND FUTURE DIRECTIONS

Learning structures and graphs from data observations is an important problem in modern data analytics,

and the novel signal processing approaches reviewed in this paper have both theoretical and practical

significance. On the one hand, GSP provides a new theoretical framework for graph learning by utilizing

signal processing tools, with a strong emphasis on the representation of the signals on the learned graph,

which can be essential from a modeling viewpoint. As a result, the novel approaches developed in this

field would benefit not only the inference of optimal graph topologies, but potentially also the subsequent

signal processing and data analysis tasks. On the other hand, the novel signal and graph models designed

from a GSP perspective may contribute uniquely to the understanding of the often complex data structure

and generative processes of the observations made in real world application domains, such as brain and

social network analysis. For these reasons, GSP-based approaches for graph learning have since recently

attracted an increasing amount of interest; there exist, however, many open issues and questions that are

worthy of further investigation. In what follows, we discuss five general directions for future work.

A. Input signals of learning frameworks

The first important point that needs further investigation is the quality of the input signals. Most of

the approaches in the literature have focused on the scenario where a complete set of data is observed

for all the entities of interest (i.e., at all vertices in the graph). However, there are often situations when

observations are only partially available either due to failure in data acquisition from some sensors or

simply because of the cost of making full observations. For example, in large-scale social, biomedical or

environmental networks, sampling or active learning may need to be applied to select a limited number of

sensors for observations [75]. It is a challenge to design graph learning approaches that can handle such

cases, and to study the extent to which the partial or missing observations affect the learning performance.

Another scenario is dealing with sequential input data that come in an online and adaptive fashion, which

has been studied in the recent work of [76].

B. Outcome of learning frameworks

Compared to the input signals, it is perhaps even more important to rethink the potential outcome of

the learning frameworks. Several important lines of thoughts remain largely unexplored in the current

literature. First, while most of the existing work focuses on learning undirected graphs, it is certainly of

interest to investigate approaches for learning directed ones. Methods described in Section III-C, such

as [54], [55], [62], are able to achieve this since they do not explicitly rely on the notion of frequency

provided by the eigendecomposition of the symmetric graph adjacency or Laplacian matrices. However, it
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is certainly possible and desirable to extend the frequency interpretation obtained with undirected graphs

to the case of directed ones. For example, alternative definitions of frequencies of graph signals have

been recently proposed based on normalization of the random walk Laplacian [77], novel definition of

inner product of graph signals [78], and explicit optimization for an orthonormal basis on graphs [79],

[80]. How to design techniques that learn directed graphs by making use of these new developments in

the frequency interpretation of graph signals remains an interesting question.

Second, in many real world applications, noticeably social network interactions and brain functional

connectivities, the network structure changes over time. It is therefore interesting to look into learning

frameworks that can infer dynamic graph topologies. To this end, [62] proposes a method to track network

structure that can be switched between a number of different states. Alternatively, [70] has proposed to

infer dynamic networks from observations within different time windows, with a penalty term imposed

on the similarity between consecutive networks to be inferred. Such a notion of temporal smoothness is

certainly an interesting question to study, which may draw inspiration from visualizations of dynamic

networks recently proposed in [81].

Third, although the current lines of work reviewed in this survey mainly focus on the signal representation,

it is also possible to put constraints directly on the learned graphs by enforcing certain graph properties

that go beyond the common choice of sparsity, which has been adopted explicitly in the optimization

problems in many existing methods such as the ones in [15], [25], [42], [45], [46], [55], [62]. One example

is the work in [82], where the authors have proposed to infer graphs with monotone topology properties.

Another example is the approach in [83] which learns a sparse graph with connected components. Learning

graphs with desirable properties inspired by a specific application domain (e.g., community detection [2])

can also have great potential benefit, and it is a topic worth investigating.

Fourth, in some applications it might not be necessary to learn the full graph topology, but some other

intermediate or graph-related representations. For example, this can be an embedding of the vertices in the

graph for the purpose of clustering [84], or a function of the graph such as graph filters for the subsequent

signal processing tasks [85]. Another possibility is to learn graph properties such as the eigenvalues

(for example using technique described in [46]) or degree distribution, or templates that constitute local

regions of the graph. Similar to the previous point, in these scenarios, the learning framework needs to be

designed accordingly with the end objective or application in mind.

Finally, instead of learning a deterministic graph structure as in most existing methods, it would be

interesting to explore the possibility of learning graphs in a probabilistic fashion in which we specify the

confidence in building an edge between each pair of the vertices. This would benefit situations when

a soft decision is preferred to a hard decision, possibly due to anticipated measurement errors in the
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observations or other constraints.

C. Signal models

Throughout this tutorial, we have emphasized the important role a properly defined signal model plays

in the design of the graph learning framework. The current literature predominantly focuses on either the

globally or locally smooth models. Other models such as bandlimited signals, i.e., the ones that have

limited support in the graph spectral domain, may also be considered for inferring graph topologies [86].

More generally, more flexible signal models that go beyond the smoothness-based criteria can be designed

by taking into account general filtering operations of signals on the graph.

The learning framework may also need to adapt to the specific input and output as outlined in Section V-A

and Section V-B. For instance, given only partially available observations, it might make sense to consider

a signal model tailored for the observed, instead of the whole, region of the graph. Another scenario

would be that, in learning dynamic graph topologies, the signal model employed needs to be consistent

with the temporal smoothness criteria adopted to learn the sequence of graphs.

D. Performance guarantees

Graph inference is an inherently difficult problem given the large number of unknown variables

(generally in the order of N2) and the relatively small amount of observations. As a result, learning

algorithms need to be designed with additional assumptions or priors. In this case, it is desirable to have

theoretical guarantees on the performance of graph recovery under the specific model and prior. It would

also be interesting to put the errors in graph recovery into the context of the subsequent data processing

tasks and study their impact. Furthermore, for many graph learning algorithms, in addition to the empirical

performance it is necessary to provide guarantees of the convergence when alternating minimization is

employed, as well as to study the computational complexity that can be essential for learning large-scale

graphs. These theoretical considerations remain largely unexplored in the current literature and hence

require much further investigation, given their importance.

E. Objective of graph learning

The final comment on future work is a reflection on the objective of the graph learning problem and,

in particular, how to better integrate the inference framework with the subsequent data analysis tasks.

Clearly, the learned graph may be readily used for classical machine learning tasks such as clustering

or semi-supervised learning, but it may also directly benefit the processing and analysis of the graph

signals. In this setting, it is often the case that a cost related to the application is directly incorporated into
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the optimization for graph learning. For instance, the work in [87] has proposed a method for inferring

graph topologies with a joint goal of dictionary learning, whose cost function is incorporated into the

optimization problem. In many applications, such as image coding, accuracy is not the only interesting

performance metric. Typically, there exist different trade-offs that are more complex and should be taken

into consideration. For example, in image compression, the actual cost of coding the graph is at least

equally important compared to the cost of coding the image signal. Such constraints are indicated by

the application, and they should be incorporated in the graph learning framework (e.g., [69]) in order to

make the learning framework more targeted to a specific application.
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