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ABSTRACT

We revisit self-training in the context of end-to-end speech
recognition. We demonstrate that training with pseudo-labels
can substantially improve the accuracy of a baseline model.
Key to our approach are a strong baseline acoustic and lan-
guage model used to generate the pseudo-labels, filtering
mechanisms tailored to common errors from sequence-to-
sequence models, and a novel ensemble approach to increase
pseudo-label diversity. Experiments on the LibriSpeech cor-
pus show that with an ensemble of four models and label
filtering, self-training yields a 33.9% relative improvement
in WER compared with a baseline trained on 100 hours of
labelled data in the noisy speech setting. In the clean speech
setting, self-training recovers 59.3% of the gap between the
baseline and an oracle model, which is at least 93.8% rela-
tively higher than what previous approaches can achieve.

Index Terms— speech recognition, semi-supervised,
deep learning

1. INTRODUCTION

Building automatic speech recognition (ASR) systems re-
quires a large amount of transcribed data. Compared with
hybrid models, the performance of end-to-end models signif-
icantly degrades as the amount of available training data de-
creases [1]. Transcribing large quantities of audio is both ex-
pensive and time-consuming, and thus many semi-supervised
training approaches have been proposed to take advantage of
abundant unpaired audio and text data. One such approach,
self-training [2], uses noisy labels generated from a model
trained on a much smaller labelled data set.

We revisit self-training in the context of sequence-to-
sequence models. Self-training has not been carefully studied
in end-to-end speech recognition. We start from training a
strong baseline acoustic model on a small paired data set and
performing stable decoding [3] with a language model (LM)
trained on a large-scale text corpus to generate pseudo-labels.
We evaluate one heuristic and one confidence-based method
for pseudo-label filtering [4–7] tailored to the mistakes often
encountered with sequence-to-sequence models. In addition,
we propose an ensemble approach that combines multiple
models during training to improve label diversity and keep
the model from being overly confident to noisy pseudo-labels.

We demonstrate the effectiveness of self-training on Lib-
riSpeech [8], a publicly available corpus of read speech. In
particular, we study the trade-off between the amount of un-
paired audio data, the quality of the pseudo-labels, and the
model performance. We find that in the clean speech setting,
as the label quality is high, the model performance depends
heavily on the amount of data. In the noisy speech setting,
a proper filtering mechanism is essential for removing noisy
pseudo-labels. In addition, using an ensemble of models can
be complementary to filtering.

Compared with other semi-supervised methods with
sequence-to-sequence models [9, 10], we show that self-
training achieves a 93.8% relatively higher WER recovery
rate (WRR) [11] on the clean test set, a metric indicating
how much the gap between a supervised baseline and an
oracle can be bridged. One goal of this work is to provide
a publicly-available and reproducible benchmark to which
future semi-supervised approaches in ASR can compare.

2. MODEL

Our sequence-to-sequence model is an encoder-decoder ar-
chitecture with attention [12, 13]. Let X = [X1, . . . , XT ]
be the frames of speech with transcription Y = [y1, . . . , yU ].
The encoder maps X into a key-value hidden representation:[

K
V

]
= encode(X) (1)

where K = [K1, . . . ,KT ] are the keys and V = [V1 . . . , VT ]
are the values. We use a fully convolutional encoder with
time-depth separable (TDS) blocks proposed in [3]. The de-
coder is given by

Qu = RNN(yu−1, Qu−1) (2)
Su = attend(Qu,K, V ) (3)

P (yu | X, y<u) = h(Su, Qu). (4)

The RNN encodes the previous token and query vector Qu−1

to produce the next query vector. The attention mechanism
produces a summary vector Su with a simple inner product:

attend(K,V,Q) = V · softmax
(

1√
d
K>Q

)
(5)

where d is the hidden dimension of K (as well as Q and V ).
h(·) computes a distribution over the output tokens.



2.1. Inference

During inference, we carry out beam search to search for the
most likely hypothesis according to the sequence-to-sequence
model (PAM) and an external language model (PLM):

Ȳ = argmax
Y

logPAM(Y | X) + α logPLM(Y ) + β|Y | (6)

where α is the LM weight, and β is a token insertion term for
avoiding the early stopping problem common for sequence-
to-sequence models [14]. We follow the techniques in [3] to
improve the efficiency and stability of the decoder. One such
technique is to only propose end-of-sentence (EOS) when the
corresponding probability satisfies

logPu(EOS | y<u) > γ · max
c6=EOS

logPu(c | y<u) (7)

where γ is a hyper-parameter that can be tuned.

3. SEMI-SUPERVISED SELF-TRAINING

In a supervised learning setting, we have access to a paired
data set D = {(X1, Y1), . . . , (Xn, Yn)}. We train a model on
D by maximizing the likelihood of the ground-truth transcrip-
tions given their corresponding utterances:∑

(X,Y )∈D

logP (Y | X). (8)

In a semi-supervised setting, we have an unlabelled audio data
setX and an unpaired text data setY in addition toD. We first
train an acoustic model on D by maximizing the objective in
Equation 8. We also train an LM on Y . We then combine the
two models to generate a pseudo-label for each unlabelled ex-
ample by solving Equation 6 and obtain a pseudo paired data
set D̄ = {(Xi, Ȳi) | Xi ∈ X}. A new acoustic model can be
trained on the combination of D and D̄ with the objective∑

(X,Y )∈D

logP (Y | X) +
∑

(X,Ȳ )∈D̄

logP (Ȳ | X). (9)

3.1. Filtering

The pseudo-labelled data set D̄ contains noisy transcriptions.
Filtering is a commonly used technique to achieve the right
balance between the size of D̄ and the noise in the pseudo-
labels. We design two heuristic-based filtering functions spe-
cific to sequence-to-sequence models, which can be further
combined with conventional confidence-based filtering, and
apply both filtering techniques on the sentence level.

Sequence-to-sequence models are known to easily fail at
inference in two ways: looping and early stopping [14]. We
filter for the looping by removing pseudo-labels which con-
tain an n-gram repeated more than c times. As described in
Section 2.1, we deal with early stopping by only keeping hy-
potheses with an EOS probability above a threshold. How-
ever, we filter examples where the beam search terminates
without finding any complete hypotheses.

Additionally, for each pseudo-label, we compute the
length-normalized log likelihood from the sequence-to-
sequence model as the confidence score:

ConfidenceScore(Ȳi) =
logPAM(Ȳi | Xi)

|Ȳi|

where |Ȳi| is the number of tokens in the utterance.

3.2. Ensembles

Model combination often helps reduce word error rates in
ASR. One way to utilize multiple models in self-training is
to combine the model scores during inference to generate a
single pseudo-labelled set with higher quality. However, as
M increases, the decoding process becomes heavyweight.

Instead, we propose sample ensemble. Given M boot-
strapped acoustic models, we generate a pseudo-labelled data
set, D̄m, for each model in parallel. We then combine all M
sets of pseudo-labels with uniform weights and optimize the
following objective during training

∑
(X,Y )∈D

logP (Y | X) +
1

M

M∑
m=1

∑
(X,Ȳ )∈D̄m

logP (Ȳ | X).

In the implementation, we first train M models on D us-
ing different randomly initialized weights. We generate D̄m

with hyper-parameters tuned with each model, respectively.
During training, we uniformly sample a pseudo-label from
one of the M models as the target in every epoch.

4. EXPERIMENTS

4.1. Data

All experiments are performed on the LibriSpeech corpus [8].
We use the “train-clean-100” set containing 100 hours of
clean speech as the paired data set. We perform experiments
in two settings. In the clean speech setting, we use 360 hours
of clean speech in the “train-clean-360” set as the unpaired
audio set, and in the noisy speech setting, we use 500 hours
of noisy speech in the “train-other-500” set. We report results
on the standard dev and test clean/other (noisy) sets.

The standard LM training text in LibriSpeech is derived
from 14,476 public domain books [8]. To make the learning
problem more realistic for self-training, we remove all books
related to the acoustic training data from the LM training data,
resulting in a removal of 997 books. We apply sentence seg-
mentation using the NLTK toolkit [15] and normalize the text
by lower-casing, removing punctuation except for the apos-
trophe, and replacing hyphens with spaces. We do not re-
place non-standard words with a canonical verbalized form.
We find that the resulting LMs achieve comparable perplexity
to LMs trained on the standard corpus on the dev sets.
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Fig. 1. Results of different filtering functions and the cor-
responding pseudo-label quality ((a), (b)) and model perfor-
mance with LM beam search decoding ((c), (d)) in clean ((a),
(c)) and noisy ((b), (d)) settings, averaged across three runs.
We vary the threshold on the confidence score to filter data at
various deciles. (Both: heuristic and confidence-based filters)

4.2. Experimental Setting

Our encoder consists of nine TDS blocks in groups of three,
each with 10, 14 and 16 channels and a kernel width of 21.
Other architectural details are the same as [3]. We use the Sen-
tencePiece toolkit [16] to compute 5,000 word pieces from
the transcripts in “train-clean-100” as the target tokens.

We follow the same training process as in [3] with soft-
window pre-training and teacher-forcing with 20% dropout,
1% random sampling, 10% label smoothing and 1% word
piece sampling for regularization. We use a single GPU with
a batch size of 16 when training baselines, and 8 GPUs when
training with pseudo-labels. We use SGD without momentum
for 200 epochs with a learning rate of 0.05, decayed by 0.5 ev-
ery 40 epochs when using one GPU or 80 epochs for 8 GPUs.
Experiments are done in the wav2letter++ framework [17].

We train a word piece convolutional LM (ConvLM) using
the same model architecture and training recipe as [18]. All
beam search hyper-parameters are tuned on the dev sets be-
fore generating the pseudo-labels. When training models with
the combined paired and pseudo-labelled data sets, we start
from random initialization instead of two-stage fine-tuning.

4.3. Results

4.3.1. Importance of Filtering

Figure 1 shows various filtering functions and the resulting
amount of data, the quality of the labels and the corresponding
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Fig. 2. WER with respect to number of models in ensemble
under the clean ((a)) or noisy ((b)) setting. Results are with
LM beam search decoding and averaged across three runs.
(Both: heuristic and confidence-based filters)

model performance. Label quality is defined as the WER of
the filtered pseudo-labels as compared to the ground truth. We
apply our heuristic filtering, i.e. “no EOS + n-gram” filters,
with c= 2 and n= 4 and then add confidence-based filtering
on top of the filtered data set. We can see that filtering indeed
improves the pseudo-label quality as we adjust the threshold
on the confidence score.

In the clean setting, the heuristic filter removes 1.8% of
the data, and further removal of the worst 10% of the pseudo-
labels based on confidence scores results in a 5.2% relative
improvement in WER on the dev clean set compared with a
baseline without filtering. More aggressive filtering improves
the label quality but results in worse model performance.

In the noisy setting, removing the worst 10% of the
pseudo-labels results in a significant reduction in WER, and
the best performance comes from filtering 60% of the labels
with a WER 22.7% relative lower on the dev other set com-
pared with no filtering. Filtering more data leads to the same
degradation in model performance as in the clean setting.

4.3.2. Model Ensembles

Figure 2 shows WER as a function of the number of models in
the ensemble on the dev sets for both clean and noisy settings.
We can see that combining multiple models improves the per-
formance, especially for the noisy setting, where we obtain
a 13.7% relative improvement with six models and heuristic
filtering. One possible explanation is that since the sample
ensemble uses different transcripts for the same utterance at
training time, this keeps the model from being overly confi-
dent in a noisy pseudo-label. We also show that the two filter-
ing techniques can be combined with ensembles effectively.
In the noisy setting, model ensembles with both filterings im-
prove WER by 27.0% relative compared with a single model
without any filtering (Figure 1(d)).

4.3.3. Comparison with Literature

Table 1 summarizes our best results, as well as the supervised
baseline and the oracle models trained with ground-truth tran-



Method
No LM With LM

Dev WER Test WER (WRR) Dev WER Test WER (WRR)
clean other clean other clean other clean other

Baseline Paired 100hr 14.00 37.02 14.85 39.95 7.78 28.15 8.06 30.44

Paired 100hr + Unpaired 360hr clean speech

Oracle 7.20 25.32 7.99 26.59 3.98 17.00 4.23 17.36
Single Pseudo 9.61 29.72 10.27 (66.8%) 30.50 (70.7%) 5.84 21.86 6.46 (41.8%) 22.90 (57.6%)
Ensemble (5 models) 9.00 27.74 9.62 (76.2%) 29.53 (78.0%) 5.41 20.31 5.79 (59.3%) 21.63 (67.4%)

Paired 100hr + Unpaired 500hr noisy speech

Oracle 6.90 17.55 7.09 18.36 3.74 10.49 3.83 11.28
Single Pseudo 10.90 28.37 11.48 (43.4%) 29.73 (47.3%) 6.38 19.98 6.56 (35.5%) 22.09 (43.6%)
Ensemble (4 models) 10.41 27.00 10.50 (56.1%) 29.25 (49.6%) 6.01 18.95 6.20 (44.0%) 20.11 (53.9%)

Table 1. Best results from single runs tuned on the dev sets. The best filtering setup found in Section 4.3.1 is applied.

No LM With LM

Method Text Test clean Test clean
(# words) WER (WRR) WER (WRR)

Cycle TTE [9] 4.8M 21.5 (27.6%) 19.5 (30.6%∗)
ASR+TTS [10] 3.6M 17.5 (38.0%) 16.6 (-)
this work 842.5M 9.62 (76.2%) 5.79 (59.3%)

Table 2. A comparison with previous work using 100hr
paired data and 360hr unpaired audio. WRR is computed with
the baseline and oracle WER from the original work if avail-
able. (∗: The oracle WER is without LM decoding, so the
WRR is an upper bound estimation.)

scriptions. We present results from both AM only greedy
decoding and LM beam search decoding to demonstrate the
full potential of self-training. In addition to WER, we report
WER recovery rate (WRR) [11] to demonstrate how much
gap between the baseline and the oracle that we can bridge
with pseudo-labels. WRR is defined as

baseline WER− semi-supervised WER
baseline WER− oracle WER

.

When decoded with an external LM, our best model achieves
a WRR over 50% in both clean and noisy speech settings.

Table 2 compares our approach with other semi-supervised
learning methods with sequence-to-sequence models that use
the same audio data setup. We see that our conventional
pseudo-labelling approach together with filtering and ensem-
ble produces a WER at least 65.1% relatively lower than
the previously best results. The gain comes from the strong
baseline model with TDS-based encoders [3] to generate the
pseudo-labels, and a much larger unpaired text corpus, which
we believe is easy to obtain in a real-world setting. As a com-
parison, the baseline WER on the test clean set is above 20
in [9, 10]. However, even with a strong baseline, we achieve
a WRR at least 93.8% relatively higher than other methods.

5. RELATED WORK
In speech recognition, self-training has been explored in hy-
brid systems [4–7, 19]. Prior work mainly focuses on dif-
ferent ways of data filtering to improve pseudo-label qual-
ity, e.g. confidence-based filtering [4,5] and agreement-based
selection [20], which also takes advantage of multiple sys-
tems. The data selection process can take place at different
levels ranging from frames to utterances [6, 7]. In [21], the
output probability of a teacher model is used as soft pseudo-
labels to train a student model. Training with pseudo-labels
can give an improvement to WER not only for low-resource
languages [6, 7] but also on large-scale data sets [21].

Recently-proposed semi-supervised approaches for end-
to-end speech recognition take advantage of text-to-speech
(TTS) modules to generate synthetic data from unpaired
text [22] or introduce a cycle-consistency loss between the
input and the output of an ASR+TTS pipeline [9, 10]. Al-
ternatively, inter-domain loss is proposed to constrain speech
and text in the same embedding space [23]. In this work,
we demonstrate that the self-training approach is simple yet
effective with end-to-end systems.

6. CONCLUSION
We have shown that self-training can yield substantial im-
provements for end-to-end systems over a strong baseline
model by leveraging a large unlabelled data set. We show
that filtering mechanisms tailored to the types of mistakes
encountered with sequence-to-sequence models as well as
an ensemble of models can further improve the accuracy
gains from self-training. Our experiments on LibriSpeech
have set forth a strong baseline model and a reproducible
semi-supervised learning setting for which new and more
sophisticated approaches can be evaluated.
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“Semi-supervised sequence-to-sequence ASR using un-
paired speech and text,” in Interspeech, 2019.

[11] Jeff Ma and Richard Schwartz, “Unsupervised versus
supervised training of acoustic models,” in Interspeech,
2008.

[12] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio, “Neural machine translation by jointly learning

to align and translate,” in International Conference on
Learning Representations, 2015.

[13] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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